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Abstract

When it comes to learning graphical models from data, approaches based on con-
ditional independence tests are among the most popular methods. Since Bayesian
networks dominate research in this field, these methods usually refer to directed
graphs, and thus have to determine not only the set of edges, but also their direc-
tion. At least for a certain kind of possibilistic graphical models, however, undirected
graphs are a much more natural basis. Hence, in this area, algorithms for learning
undirected graphs are desirable, especially, since first learning a directed graph and
then transforming it into an undirected one wastes resources and computation time.
In this paper I present a general algorithm for learning undirected graphical models,
which is strongly inspired by the well-known Cheng–Bell–Liu algorithm for learning
Bayesian networks from data. Its main advantage is that it needs fewer conditional
independence tests, while it achieves results of comparable quality.

Key words: graphical models, possibilistic network, learning from data,
conditional independence test

1 Introduction

After modeling complex domains with graphical models, especially Bayesian
networks, had become a popular research area in the eighties [19,24,17,9,15,12],
since it allowed for consistent dependence modeling and efficient reasoning,
learning graphical models from data was a focus of attention in the nineties
[4,21,7,14,5,16,23,6,3,18]. Several search strategies and scoring functions, which
are the two core ingredients of any algorithm for learning graphical models,
were developed and applied not only to learning probabilistic graphical mod-
els, but also for the somewhat less well known possibilistic networks [13,1,8,3].
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Among such learning algorithms, methods that are based on conditional inde-
pendence (CI) tests are highly popular [22,5,23,6], because they possess several
advantages over other methods. For example, they do not restrict the structure
of the graphs that can be learned and do not require any prior information
about the domain (while the famous K2 algorithm, for example, requires, at
least in its basic form, a topological order of the attributes as input). They
may even be used to enhance other methods, since they can be used to find
missing prior information (in [21], for example, conditional independence tests
are used to determine the topological order needed by the K2 algorithm).

Unfortunately, though, conditional independence test approaches are usually
developed for directed graphs. To some degree this is understandable, since
the set of conditional independence statements that can be represented by
undirected graphs is monotonic in the condition sets (that is, if a conditional
independence statement holds, expanding its set of conditioning attributes
must not invalidate the conditional independence). As a consequence, undi-
rected graphs cannot express certain (in)dependence structures that are fairly
common in practice. In particular, they cannot capture a structure in which
two variables are independent unconditionally, but become dependent condi-
tional on a third variable, which is typical for a situation in which an effect can
be brought about—jointly or independently—by two causes. This restriction
is also one of the main reasons for the predominance of Bayesian networks
(which, since they are based on directed graphs, allow for capturing such de-
pendence structures) in the research on graphical models.

However, at least for a certain kind of possibilistic networks, which are based
on a specific interpretation of degrees of possibility [3], undirected graphs are
a much more natural basis. Of course, if one desires an undirected graphical
model, it is always possible to turn a found directed graph into a correspond-
ing undirected one by simply “moralizing” the graph (that is, by adding edges
between non-adjacent parents of a node). This may lose independence infor-
mation, but cannot lead to incorrect models. Nevertheless it is desirable to
have methods that can learn undirected graphical models directly. In such
algorithms the missing edge directions can be exploited, for example, to avoid
certain tests and thus to achieve faster and possibly also more robust learning.

In this paper I present an algorithm for learning undirected graphical mod-
els that is strongly inspired by the well-known Cheng–Bell–Liu algorithm for
learning Bayesian networks [5,6]. Its main advantage is that it requires fewer
conditional independence tests, while it achieves results of comparable quality.
This paper is organized as follows: in Sections 2 and 3 I briefly review some
basics of CI tests needed in the algorithm and in Section 4 recall the Cheng–
Bell–Liu algorithm. In Section 5 I present my algorithm for learning undirected
graphical models. Section 6 reports experiments which compare the results of
the two algorithms and Section 7 draws conclusion from the discussion.
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2 Conditional Independence and Graphical Models

In general, graphical models are based on the idea to exploit the structural
similarity of the sets of conditional independence statements that can hold
in high-dimensional (probability or possibility) distributions and the sets of
(node) separation statements that can hold in (directed or undirected) graphs.
To be more specific, both conditional independence statements and (node)
separation statements satisfy the so-called (semi-)graphoid axioms:

Definition 1 Let V be a set of (mathematical) objects and (· ⊥⊥ · | ·) a three-
place relation of subsets of V . Furthermore, let W, X, Y, and Z be four disjoint
subsets of V . Then the four statements

symmetry: (X ⊥⊥ Y | Z) ⇒ (Y ⊥⊥X | Z)

decomposition: (W ∪X ⊥⊥ Y | Z) ⇒ (W ⊥⊥ Y | Z) ∧ (X ⊥⊥ Y | Z)

weak union: (W ∪X ⊥⊥ Y | Z) ⇒ (X ⊥⊥ Y | Z ∪W )

contraction: (X ⊥⊥ Y | Z ∪W ) ∧ (W ⊥⊥ Y | Z) ⇒ (W ∪X ⊥⊥ Y | Z)

are called the semi-graphoid axioms. A three-place relation (· ⊥⊥ · | ·) that
satisfies the semi-graphoid axioms for all W, X, Y, and Z is called a semi-
graphoid. The above four statements together with

intersection: (W ⊥⊥ Y | Z ∪X) ∧ (X ⊥⊥ Y | Z ∪W ) ⇒ (W ∪X ⊥⊥ Y | Z)

are called the graphoid axioms. A three-place relation (· ⊥⊥ · | ·) that satisfies
the graphoid axioms for all W, X, Y, and Z is called a graphoid.

The rationale underlying graphical models is that the three-place relation
named in this definition may either be interpreted as conditional independence
or as separation, thus making it possible to use graphs as a “language” for
representing sets of conditional independence statements. If the three-place
relation is interpreted as conditional independence, X ⊥⊥ Y | Z means that

∀x ∈ dom(X) : ∀y ∈ dom(Y ) : ∀z ∈ dom(Z) :

P (X = x, Y = y | Z = z) = P (X = x | Z = z) · P (Y = y | Z = z)

in the probabilistic case and

∀x ∈ dom(X) : ∀y ∈ dom(Y ) : ∀z ∈ dom(Z) :

Π(X = x, Y = y | Z = z) = max{Π(X = x | Z = z),Π(Y = y | Z = z)}

in the possibilistic case. It is easy to show that the semi-graphoid axioms hold
for both probabilistic and possibilistic conditional independence and that the
graphoid axioms hold for strictly positive probability measures.
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What X ⊥⊥ Y | Z means if it is interpreted as a statement about separation
(of nodes) in a graph depends on whether the graph is directed or undirected.
If it is undirected, the meaning is simply the following:

Definition 2 Let G = (V,E) be an undirected graph and X, Y, and Z three
disjoint subsets of nodes. Z u-separates X and Y in G, written 〈X | Z | Y 〉G,
iff all paths from a node in X to a node in Y contain a node in Z. A path that
contains a node in Z is called blocked (by Z), otherwise it is called active.

For directed graphs the conditions are slightly more complicated:

Definition 3 Let ~G = (V, ~E) be a directed acyclic graph and X, Y, and Z three

disjoint subsets of nodes. Z d-separates X and Y in ~G, written 〈X | Z | Y 〉 ~G,
iff there is no path from a node in X to a node in Y along which the following
two conditions hold:

(1) every node with converging edges either is in Z or has a descendant in Z,
(2) every other node is not in Z.

A path satisfying the two conditions above is said to be active, otherwise it is
said to be blocked (by Z).

It is easy to show that both u-separation and d-separation satisfy the graphoid
axioms. Hence one may use an appropriate graph to capture the set of condi-
tional independence statements that hold in a given distribution.

Definition 4 Let (· ⊥⊥δ · | ·) be a three-place relation representing the set of
conditional independence statements that hold in a given distribution δ over
a set U of attributes. A (directed or undirected) graph G = (U,E) over U is
called a conditional dependence graph or a dependence map w.r.t. δ, iff for
all disjoint subsets X, Y, Z ⊆ U of attributes

X ⊥⊥δ Y | Z ⇒ 〈X | Z | Y 〉G,

i.e., if G captures by u-separation all (conditional) independences that hold
in δ and thus represents only valid (conditional) dependences. Similarly, G is
called a conditional independence graph or an independence map w.r.t. δ, iff
for all disjoint subsets X, Y, Z ⊆ U of attributes

〈X | Z | Y 〉G ⇒ X ⊥⊥δ Y | Z,

i.e., if G captures by u-separation only (conditional) independences that are
valid in δ. G is said to be a perfect map of the conditional (in)dependences
in δ, if it is both a dependence map and an independence map.

4



Although the correspondence cannot always be made perfect, it is a very
convenient tool. Together with the core theorem of graphical models, which
connects conditional independence graphs with decompositions of distribu-
tions (factorizations in the case of probability distributions), these definitions
are the basis of using graphs to capture essential properties of distributions
and to derive consistent and efficient methods for drawing inferences in them.
W.r.t. learning graphical models from data, these definitions provide the basis
for induction algorithms based on conditional independence tests.

3 Conditional Independence Tests

The core ingredient of the algorithms for learning graphical models, which I
focus on in this paper, is a conditional independence test (CI test for short).
Such a test usually consists of a scoring function for assessing the strength
of the (conditional) dependence of two variables together with a threshold.
If the value of the scoring function is below the threshold, the variables are
considered to be (conditionally) independent, otherwise they are judged to be
(conditionally) dependent. By checking which conditional independences hold,
one tries to find a suitable conditional independence graph. Which conditional
independences are tested (it is immediately clear that we cannot perform an
exhaustive search) is determined by the search strategy (see Sections 4 and 5).

There is an abundance of possible scoring functions, especially for (condi-
tional) probabilistic (in)dependence. The reason is that apart from standard
dependence measures used in classical statistics, basically all measures used in
decision tree induction can be transferred and then yield such a scoring func-
tion. Even if a measure was originally only intended for assessing the strength
of marginal dependence, it can usually be extended to yield a measure for
conditional dependence by simply computing its value for each possible in-
stantiation of the conditioning attributes and then aggregating these values
in a suitable manner. For example, one of the most common measures for the
strength of marginal (probabilistic) dependence is information gain,

Igain(A,B) =
∑
i,j

pij log2

pij
pi.p.j

= −
∑
i

pi. log2 pi. +
∑
j

pj.
∑
i

pi|j log2 pi|j

(where A and B are two variables, i and j range over their respective values,
pij, pi. and p.j are the probabilities of the joint and individual occurrence of
these values, and conditional probabilities are defined in the usual way). It can
be extended to conditional information gain as

Igain(A,B|C) =
∑
k

p..k
∑
i,j

pij|k log2

pij|k
pi.|kp.j|k

,
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that is, by simply summing its value over all possible instantiations of the con-
ditions. (Note that here C may be an individual variable or a set of variables;
and then k refers to individual values or value vectors, respectively.)

For the transfer to the possibilistic case, which is discussed below, it is relevant
that information gain may be written conveniently as

Igain(A,B) = H(pA) +H(pB)−H(pAB),

where H(p) = −∑i pi log2 pi denotes the well-known Shannon entropy of the
probability distribution p.

In order to remove the tendency of information gain to over-assess the strength
of dependence of many-valued attributes (which is not a fundamental prop-
erty, but simply results from the discretization of the—estimated—probability
values due to the necessarily limited size of a database to learn from; see [3]),
it is often normalized to information gain ratio

Igr(A,B) =
Igain(A,B)

H(pA)
=

∑
i,j pij log2

pij

pi.p.j

−∑i pi log2 pi

or one of its two symmetrical forms

Isgr1(A,B) =
Igain(A,B)

H(pA) +H(pB)
=

∑
i,j pij log2

pij

pi.p.j

−∑i pi log2 pi −
∑
j pj log2 pj

and

Isgr2(A,B) =
Igain(A,B)

H(pAB)
=

∑
i,j pij log2

pij

pi.p.j

−∑ij pij log2 pij
.

Worth mentioning is, of course, also the well-known χ2 measure,

χ2(A,B) = N..

∑
i,j

(pi.p.j − pij)2

pi.p.j
,

where N.. is the total number of sample cases in the database to learn from.
Extended to conditional tests it reads

χ2(A,B|C) = N..

∑
k

p..k
∑
i,j

(pi.|kp.j|k − pij|k)2

pi.|kp.j|k
.

Other probabilistic dependence measures include, for example, the Gini index
or the relief measure (see [3] for details and a more extensive list of measures).
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Not surprisingly, there is also a variety of measures for the possibilistic case
[1,3]. A fairly well-known example is the so-called specificity gain,

Sgain(A,B) = nsp(πA) + nsp(πB)− nsp(πAB).

It is easy to see that it is formed in direct analogy to information gain, with the
Shannon entropy of a probability distribution replaced by the nonspecificity
nsp(π) of a possibility distribution π. This nonspecificity is defined as

nsp(π) =

supE∈E π(E)∫
0

log2

( ∑
E∈E

[π]α(E)
)
dα,

where E is the set of elementary events underlying the possibility distribution π
(that is, the set of distinct instantiations of the variable or variables) and [π]α
denotes the indicator function of the α-cut of the possibility distribution π
(that is, [π]α(E) = 1 if π(E) ≥ α and [π]α(E) = 0 otherwise).

Other measures include the following, which I used to obtain the experimental
results reported in Section 6: in the first place, specificity gain may be nor-
malized in analogy to information gain, which serves the purpose to eliminate
or at least reduce a possible tendency to overrate the strength of dependence
of many-valued attributes. This leads to the specificity gain ratio,

Sgr(A,B) =
Sgain(A,B)

nsp(πA)
=

nsp(πA) + nsp(πB)− nsp(πAB)

nsp(πA)

and two symmetric specificity gain ratios, namely

Ssgr1(A,B) =
Sgain(A,B)

nsp(πAB)
and Ssgr2(A,B) =

Sgain(A,B)

nsp(πA) + nsp(πB)
.

By exploiting the fact that information gain can be written in two ways,
another possibilistic measure can be derived. It relies on the form that is
usually called “mutual information” (even though it is the same measure as
information gain, since the formulas are equivalent) and compares the actual
joint distribution and a hypothetical independent distribution by computing
and summing their pointwise quotients, that is,

dmi(A,B) = −
∑
i,j

πij log2

πij
min{πi., π.j}

,

where πij denotes the degree of possibility of the combination of the i-th
value of attribute A and the j-th value of attribute B. Furthermore, πi. and
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πj. denote the marginal degrees of possibility, which result from taking the
maximum over all values of the missing index.

Finally, the χ2 measure (see above), which computes and sums pointwise
squared differences between the actual joint distribution and a hypothetical
independent distribution, can be transferred to possibility distributions. Thus
we obtain the following measure:

dχ2(A,B) =
∑
i,j

(min{πi., π.j} − πij)2

min{πi., π.j}
.

Other scoring functions, as well as a more extensive discussion of the ideas
underlying them, can be found in [3].

All of these (possibilistic) scoring functions can be extended to conditional
tests by summing their values over all instantiations of the conditioning at-
tributes, weighted with the degree of possibility of the instantiation. This
mimics the way in which conditional measures are constructed in the proba-
bilistic case from their marginal counterparts (see above).

A general problem of conditional independence tests is their order, that is,
the number of conditioning attributes. Since the data sets that are available
in practice are always of limited size, conditional independence tests become
quickly unreliable, the higher their order. Hence algorithms for learning graph-
ical models from data must take care to keep the order of conditional inde-
pendence tests under control. For example, the Cheng–Bell–Liu algorithm,
which is reviewed in the next section, does so by exploiting an already con-
structed graphical model to determine suitable condition sets. If the occurring
condition sets still become too large, it is usually fixed that all conditional
independence tests with an order higher than a user-specified maximum fail.

4 The Cheng–Bell–Liu Algorithm

The Cheng–Bell–Liu algorithm [5,6] constructs a Bayesian network from a
data set of sample cases. It assumes that the given domain can accurately be
modeled by a perfect map, that is, by a directed graph that captures exactly
the conditional independences that are present in the probability distribution
governing the data generation process. In addition, it assumes that the scor-
ing function used for the conditional independence tests is, in a certain sense,
well-behaved. Among other things, this means that the result of a conditional
independence test coincides with the actual situation (that is, the test suc-
ceeds if and only if the tested pair of attributes is actually (conditionally)
independent). In addition, if a condition that is needed for the conditional
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independence of two attributes is removed, the value of the measure should
increase, regardless of what other attributes are present in the conditions. For
detailed discussion of the exact assumptions and preconditions underlying the
Cheng–Bell–Liu algorithm, see [6].

The Cheng–Bell–Liu algorithm works in four phases:

4.1 Drafting

A so-called Chow–Liu tree [10] is built as an initial graphical model. This
involves evaluating all possible edges (that is, pairs of attributes) with an
(unconditional) independence test. The standard form of the algorithm uses
information gain as the scoring function and an independence threshold of
about 0.1 bits. Edges (identified by attribute pairs) having a score lower than
this threshold are permanently discarded from the construction process, since
the incident attributes are considered to be (marginally) independent. The
rest form a set of candidate edges, which are weighted with the value of the
scoring function. The initial graphical model is then formed by constructing
an optimum weight spanning tree with these edge weights.

4.2 Thickening

The candidate edges that were not used for the initial graphical model (that is,
are not contained in the constructed spanning tree) are traversed in the order
of decreasing score. For each of these edges it is tested whether it may be
needed in the graphical model. The test exploits the current graphical model
in order to find a good set of conditions, namely by selecting the set of adjacent
nodes of one attribute that lie on paths leading to the other attribute.

The rationale underlying this scheme is the so-called local Markov property of
directed conditional independence graphs: an attribute is conditionally inde-
pendent of all non-descendants given its parents (cf. the notion of d-separation,
defined in Definition 3, which implies this property in a conditional indepen-
dence graph). Of course, since the graph is undirected at this point we cannot
determine which attribute is a non-descendant of the other, and hence both
possibilities may have to be tried (one trial with the neighbors of one attribute,
another with the neighbors of the other). In addition, the set of adjacent nodes
may not only include parents, but also children. Children are a problem, be-
cause in the true graphical model there may be a so-called v-structure on
the path between the nodes (that is, there may be a node at which edges
converge). Including such a node (which may be a child) in the conditions is
harmful as it activates the path and thus hinders conditional independence.
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Therefore the set of adjacent nodes is reduced iteratively and greedily. In each
step the conditioning attribute, which, if removed, lowers the dependence score
the most, is discarded. This reduction is carried out until the score falls below
the given independence threshold or no removal of a conditioning attribute
lowers the score. In the former case, if it occurs in either of the the two trials,
the attributes of the tested edge are judged to be conditionally independent
and the edge is not added to the graphical model. Otherwise it is added.

4.3 Thinning

In the thickening phase a test whether an edge is needed was based on a graph
that was possibly still to sparse to reveal the conditional independence of a
pair of attributes. This is the case, because not all paths that exist between
the two attributes in the true model may have been present at the time of
the test (even though they must all be present at the end of the thickening
phase, provided the assumptions underlying the algorithm hold [6]). Hence
the edges that are present in the graphical model after the thickening phase
are traversed again and it is retested whether they are needed.

This test is carried out in two ways: first in the way described on the thickening
phase (which is the so-called “heuristic” form of the test). However, there are
certain degenerate cases where this test does not correctly identify an existing
conditional independence and thus a superfluous edge may not be removed
(see [6] for an example). Hence a strict test, which adds the neighbors of the
neighbors of an attribute to the condition set (because two adjacent nodes on
a path cannot both have v-structures) before this set is reduced, is carried out
(this is called the so-called “strict” form of the test).

If any of these tests reveals that two attributes are conditionally independent,
the corresponding edge is removed from the graph. It can be shown that the
resulting graph is a skeleton for the perfect map describing the domain (that is,
it contains exactly the needed edges, only directions are missing)—provided,
of course, the underlying assumptions hold.

4.4 Orienting

In the last phase the edges of the graph are directed. This is done in two steps:
first the v-structures (converging edges) are identified and then the remain-
ing edges are oriented, using rules that avoid the introduction of v-structures
and cycles. (The latter step may be done fully automatically or may be sup-
ported manually, since the v-structures usually do not uniquely determine the
direction of all edges and thus human intervention may be advisable.)
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In order to find the v-structures, all pairs of attributes with common neigh-
bors are traversed and it is determined by a (strict) conditional independence
test (as described above), which common neighbors are in the (maximally) re-
duced set of conditions that render the attributes conditionally independent.
Those attributes that are removed from the condition set must be common
children (since they do not contribute to rendering the attributes conditionally
independent, while fixing parents is essential for achieving conditional inde-
pendence due to the local Markov property). Hence a v-structure is built with
them (that is, the edges are directed towards the common neighbor).

Afterwards other edges may be directed by alternatingly extending directed
chains and choosing random directions for edges, the direction of which is not
fixed by the v-structures and already extended chains. The rationale underly-
ing this procedure is that extending existing chains is the only way to avoid
additional v-structures. Furthermore, cycles must, of course, be avoided.

5 Learning Undirected Graphs

It is obvious that one way of constructing an undirected graphical model con-
sists in executing the Cheng–Bell–Liu algorithm, which yields a directed graph,
and then moralizing the result (that is, adding edges between non-adjacent
parents of a node). However, from the above description of the algorithm it is
clear that in this case a lot of unnecessary work is done. For example, edges are
directed and then their direction is discarded again when the graph is moral-
ized. In the tests whether an edge is needed, it is tried to remove children from
the condition sets even though in an undirected graph there is no concept of
child or parent. Finally, the “strict” form of a conditional independence test
has to add neighbors of neighbors of the attributes in order to make sure that
all paths are securely blocked, regardless of any possibly existing v-structures,
thus introducing a strong tendency towards conditional independence tests of
fairly high order. Hence it is desirable to devise an algorithm that removes
this unnecessary work and thus obtains an undirected graphical model faster
and possibly also in a more reliable way.

The algorithm I propose for this task works in four phases:

5.1 Drafting

This phase is identical to the Cheng–Bell–Liu algorithm, that is, a Chow–Liu
tree is formed (that is, an optimum weight spanning tree is constructed from
edge weights that represent dependence strengths).
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5.2 Thickening

As in the Cheng–Bell–Liu algorithm, the remaining candidate edges (that is,
edges with a score above the threshold, but not used in the initial graphical
model) are traversed and tested. If the test indicates that they may be needed
(because the incident attributes are not conditionally independent given the
chosen conditions), they are added to the graphical model.

The difference to the Cheng–Bell–Liu algorithm consists in how the condi-
tional independence tests are executed. The underlying principle is analogous,
but exploits the local Markov property of undirected graphs: an attribute is
conditionally independent of any other attribute given its neighbors (cf. the
notion of u-separation, defined in Definition 2, which implies this property in
a conditional independence graph). We may even restrict the set of neighbors
to those lying on paths leading to the other attribute (even though this is,
strictly speaking, already part of the so-called global Markov property).

Note that there is no need for any (greedy or non-greedy) reduction of the con-
dition set, since we need not take care of children with v-structures. In princi-
ple, only a single conditional independence test is needed per edge. However,
in order to improve the robustness, but also the efficiency of the algorithm, it
may be advisable to carry out the alternative test (that is, using the neighbors
of the other attribute) if it fails. The reason is that a test may fail, because the
current graph is still too sparse and thus not all neighbors that are necessary
to render the attributes conditionally independent are already present. If this
is the case for one attribute, there is still a chance that the set of neighbors of
the other attribute is already complete and thus this test is worthwhile.

Clearly, if the executed test indicates that the attributes are not conditionally
independent given the current graph structure, the edge is added to the graph.
Otherwise it is discarded.

5.3 Moralizing

If one assumes that there exists an undirected perfect map of the domain
under consideration, the thinning phase (see below) already yields the result.
However, this would not be a feasible assumption. Dependence structures that
contain (directed) v-structures are much too frequent in practice and unfor-
tunately there is no lossless way of representing v-structures in undirected
graphs. Hence simply assuming that there is an undirected perfect map would
render the algorithm basically useless for practical purposes.

However, in order to take care of v-structures one only has to connect the par-
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ents, that is, one has to moralize the graph. The reason is that even though
the parents are independent given their common ancestors (which may be
the empty set), they become dependent once a common child is given. This
non-monotone behavior (enlarging the set of conditions destroys a conditional
independence) cannot be expressed in undirected graphs (cf. Section 2). Thus
one must allow for unrepresented conditional independences. However, this is
not too much of a problem, since at least for reasoning purposes an indepen-
dence map suffices—we do not necessarily need a perfect map.

The consequences of these considerations for the algorithm are clear: some
of the edges, which have an unconditional score below the threshold (and
thus were discarded before the initial graphical model was constructed) or
were discarded in the thickening phase, may be needed in the graphical model
in order to achieve monotony w.r.t. conditional independence. However, for
these tests only edges need to be considered that have a common neighbor
in the graph constructed so far, since no other edges can connect nodes that
are involved in a v-structure. Therefore all such edges are traversed and it is
tested whether they are needed in the graph. If the corresponding attributes
are not found to be conditionally independent given the current graph (that
is, given all neighbors of one of the attributes), the edge is added.

5.4 Thinning

As for the Cheng–Bell–Liu algorithm it holds that the graph resulting from the
preceding step may contain superfluous edges, since when the test was carried
out not all necessary edges and paths may have been present in the graph.
Hence all edges of the graph are retested and those found to be unnecessary
are removed from the graph. (Note that both edges added in the thickening
step as well as edges added in the moralizing step are retested.)

5.5 Additional Thinning

As a simple extension of this algorithm one may add a second thinning phase
between the thickening phase and the moralizing phase. The idea of such a
phase is that the graph resulting from the thinning phase may contain fewer
attribute pairs with common neighbors, so that fewer tests have to be carried
out in the moralizing phase. Furthermore, the order of the conditional inde-
pendence tests may be lower, because a lower number of edges can generally
be expected to reduce the number of neighbors that enter the condition sets.

The additional costs for such a phase are negligible, since the results of already
executed conditional independence tests will be stored in a cache anyway (to
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Fig. 1. Example graphical model that can be learned with the proposed algorithm,
but not with the Cheng–Bell–Liu algorithm.

avoid redundant computations). Hence only for edges between attributes that
received a new incident edge in the moralizing step a new test has to be
carried out in the second thinning phase. The result of all other tests are
already present in the cache and thus can be reused basically without costs.

5.6 Illustrative Remarks

In order to illustrate the difference of the proposed algorithm to the Cheng–
Bell–Liu algorithm, in particular w.r.t. their ability to learn undirected graph-
ical models, consider the example shown in Figure 1. The (undirected) graph
shown on the left is a perfect map of the probability distribution shown on
the right. However, the Cheng–Bell–Liu algorithm is unable to discover this
graph. The reason is that it makes the assumption that there is a directed
perfect map of the domain under consideration. However, there is no directed
perfect map for this probability distribution.

Nevertheless, carrying out the Cheng–Bell–Liu algorithm for this probability
distribution (or a corresponding data set), and then moralizing the resulting
graph, yields a proper undirected independence map of this probability distri-
bution. Unfortunately, though, this map contains a superfluous edge, namely
either the edge A—C or the edge B—D (which edges is selected depends on
the order in which edges with the same score are processed). Note that the
thinning phase of the Cheng–Bell–Liu algorithm cannot remove this edge, be-
cause it is actually introduced by the moralizing step and not part of the result
of the Cheng–Bell–Liu algorithm (which contains an (incorrect) v-structure).

This example also reveals that using the Cheng–Bell–Liu algorithm to learn
an undirected graphical model may fail to find the best undirected graphical
model even if there exists an undirected perfect map of the domain and thus
provides an additional argument in favor of the proposed algorithm. This
algorithm finds the optimal model easily, since it is already the result of the
thickening phase, and neither moralizing nor thinning change the graph.
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6 Experiments

In order to test the learning algorithm proposed above, I implemented it as
part of the INeS program (Induction of Network Structures), which also com-
prises a large number of other learning algorithms for probabilistic and possi-
bilistic graphical models, including the Cheng–Bell–Liu algorithm. 1

As a test case I chose a standard benchmark, namely the well-known BOBLO
(BOvine BLOod) network and data set [20], which is also known as the Danish
Jersey cattle data. It consists of a manually constructed Bayesian network over
21 attributes, which describe genotypical and phenotypical properties of dam,
sire and calf, together with switch variables that specify whether dam or sire
were correctly identified. The network serves the serves the purpose to verify
parentage for pedigree registration. In addition, there is a real-world data set
of 500 cases, a large number of which contain missing values.

I focused on learning a possibilistic network, since at least the kind, in which
conditional distributions are identified with joint distributions on the same
subspace, is more naturally represented with the help of an undirected graph.
In the implementation I made use of a method to efficiently compute maximum
projections of a multivariate possibility distribution [2], which is represented
by a database of sample cases with missing values or set-valued information.

As already pointed out in Section 3, I collected scoring functions from [1,3],
taking the restriction into account that the measure must be symmetric in
order to be usable for a conditional independence test. As a consequence I
chose the specificity gain Sgain, a symmetric ratio of the specificity gain Ssgr1

(the two variants mentioned in Section 3 behave similarly), the possibilistic
analog of the χ2 measure dχ2 , and the possibilistic analog of mutual infor-
mation dmi (see Section 3 for the definitions). As independence thresholds I
used 0.015 for Sgain, 0.1 for Ssgr1 and dχ2 , and 0.04 for dmi. These values were
chosen, because they yielded reasonably good results. By tuning these values,
the complexity of the learned network may be controlled to some degree: the
higher the threshold, the sparser the learned network.

The results of the experiments together with information about the number
of conditional independence tests needed are shown in Tables 1 and 2. Table 1
shows the size and the quality of the networks learned with the Cheng–Bell–
Liu algorithm and subsequent moralization using different scoring functions.

1 Note, however, that [5,6] do not specify all relevant details of the algorithm.
Especially, there is no clear description how cycles introduced by v-structures—a
situation that can occur due to certain numerical properties of information gain
in connection with a threshold—are treated. Hence INeS may produce results that
differ from the reference implementation of this algorithm.
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Table 1
Network quality with Cheng–Bell–Liu Algorithm (and moralization)

measure edges params min. avg. max.

Sgain 16 678 8.784 8.932 10.620

Ssgr1 20 4701 8.638 8.826 10.340

dχ2 14 9450 9.344 9.446 10.728

dmi 17 1010 8.460 8.538 10.406

Table 2
Network quality of learning an undirected graphical model

measure edges params min. avg. max.

Sgain 17 639 8.738 8.888 10.614

Ssgr1 21 3847 8.740 8.926 10.464

dχ2 12 3442 9.352 9.453 10.730

dmi 19 570 8.586 8.656 10.558

The number of edges (in the moralized graph) and the number of parameters
show the considerably different behavior of the measures w.r.t. the complexity
of the learned network. The last three columns state the sums of the minimum,
average, and maximum possibility degree of points covered by the tuples in
the database, which should be as low as possible (see [3] for more details about
this way of evaluating learned possibilistic graphical models).

As could also be observed in experiments with other learning algorithms, dχ2

tends to learn large networks. However, they are usually of better quality than
the ones built by the Cheng–Bell–Liu algorithm. This could not be improved
by increasing the independence threshold: although the networks get smaller
when doing so, they also get even worse, thus indicating that this measure may
not be well suited for an approach based on conditional independence tests.
With the possibilistic analog of mutual information dmi and the specificity gain
Sgain, however, results are obtained that are competitive with other learning
approaches. This confirms earlier results (see [3]) that dmi is among the most
recommendable measures for learning possibilistic graphical models.

Table 2 shows the results for the proposed algorithm that learns undirected
graphical models directly. It can be observed that it tends to learn smaller
networks: even though the number of edges is the same or even slightly larger,
the number of parameters is clearly smaller for all measures. Nevertheless
the quality of the learned networks is comparable, only for dmi the quality
deteriorates slightly. However, this may be counteracted by adapting the in-
dependence threshold (a smaller threshold improves the network quality).
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Table 3
Number of tests with strict Cheng–Bell–Liu Algorithm

marg. order of cond. tests

measure tests 1 2 3 4 5 any

Sgain 210 24 14 9 2 0 49

Ssgr1 210 67 50 33 20 3 173

dχ2 210 19 18 35 12 3 87

dmi 210 28 37 26 9 0 100

Table 4
Number of tests with heuristic Cheng–Bell–Liu Algorithm

marg. order of cond. tests

measure tests 1 2 3 4 5 any

Sgain 210 24 14 9 2 0 49

Ssgr1 210 71 48 30 20 3 172

dχ2 210 19 18 32 11 3 83

dmi 210 31 39 14 2 0 86

Table 5
Number of tests with algorithm for undirected graphs

marg. order of cond. tests

measure tests 1 2 3 4 5 any

Sgain 210 13 11 5 4 0 33

Ssgr1 210 42 29 16 3 0 90

dχ2 210 9 7 2 8 0 26

dmi 210 13 15 20 0 0 48

My main goal when developing the proposed algorithm was to reduce the num-
ber of the conditional independence tests, especially of higher order. There-
fore Tables 3 to 5 show the number of (conditional) independence tests that
were carried out by the two algorithms. Since the drafting phase is identical
in both algorithms, they execute the same number of marginal independence
test, namely 210 (= 21·20

2
). This number obviously cannot be reduced, since all

edges must be tested marginally. However, there are considerable differences
in the number of conditional independence tests carried out.

In order to treat the original Cheng–Bell–Liu algorithm as fairly as possible,
I executed it in two versions. The first version is the one as it was described
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above and the numbers of tests needed are shown in Table 3. The second
version is simplified in as far as in the thinning phase it only carries out
heuristic tests (using only direct neighbors in the condition sets) and skips
the strict tests (using also neighbors of neighbors). Both versions lead to the
same networks on this example problem and thus Table 1 applies for both
version. However, in terms of the number of conditional independence tests
one can expect fewer and lower order tests with the second version. This is
confirmed by Table 4, although the gains are a lot smaller than I had expected.
The reason may be that for the orienting phase strict tests are needed anyway
and thus skipping them in the thinning phase does not help much. The biggest
savings result for dmi, where the number of tests goes down by 14.

In contrast to these fairly small gains the gains achieved by using the pro-
posed algorithm for learning undirected graphs directly are considerable. The
number of conditional independence tests is cut to about half of the tests
needed by the Cheng–Bell–Liu algorithm. The biggest gains result for dχ2 ,
but also dmi, one of the most recommendable measure, benefits significantly.
It is worth noting that for all measures except Sgain the highest order of a
conditional independence test drops by 1.

7 Conclusions

In this paper I presented an algorithm for learning undirected graphical mod-
els from data that is based on conditional independence tests and inspired by
the well-known Cheng–Bell–Liu algorithm. It is particularly useful for possi-
bilistic networks, since at least for a certain kind of these networks undirected
graphs are the most natural representation. The expectation that the algo-
rithm would achieve its results with fewer conditional independence tests or
conditional independence tests of lower order was clearly confirmed in the re-
ported experiments. Hence if undirected graphical models are to be learned,
the presented algorithm provides significant advantages. It may be conjec-
tured that it is not only faster, but also provides more reliable results, since
the number and order of the tests is decisive in this respect. However, this
needs to be substantiated with more experiments.

Software

The INeS program, which is written in C and was used to carry out the
experiments described above, can be downloaded free of charge at

http://www.borgelt.net/ines.html
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