Prof. Dr. R. Kruse / Pascal Held

## Exercise Sheet 2

## Exercise 5 Conditional Probabilities

a) Four balls are placed into four boxes one after another. All $4^{4}$ orders be equally likely. What is the probability that a box contains exactly three balls given the fact that the first two balls have been placed into different boxes?
b) A family has two children. What is the probability of both being girls if is known that at least one of them is a girl?
c) What is the probability of b) if it is known that the younger child is a girl?

Exercise 6 Stochastic Independency
a) A wheel of fortune has 36 numbered sectors (numbers 1 to 36 ). These sectors are colored in red (R) or blue (B) according the following scheme:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R | R | R | R | R | B | B | B | B | R | R | R | R | B | B | B | B | B |
| 36 | 35 | 34 | 33 | 32 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 |

We consider the three events
$A$ : the wheel stops in a red sector,
$B$ : the wheel stops in a sector with an even number,
$C:$ the wheel stops in a sector with a number $\leq 18$.
Show that these events are pairwise independent but that $P(A \cap B \cap C)=$ $P(A) P(B) P(C)$ does not hold.
b) Two fair dice, red and white, are cast. We consider the following three events:
$A$ : the red die shows up 1 or 2 ,
$B$ : the white die shows up 3,4 or 5 ,
$C$ : the sum of the spots of both dice is 4,11 or 12 .
Show that $P(A \cap B \cap C)=P(A) P(B) P(C)$ holds but not the pairwise independence.

## Exercise $7 \quad$ Bayesian Theorem

a) A weather satellite sends a binary encoded description of a developing storm. Inevitable noise (atmospheric inferences) causes transmission errors. Assume the message contains $70 \%$ zeros and the probability of correctly receiving a sent bit is $80 \%$. What is the probability of having sent a zero if a one was received?
b) Color blindness affects 5 out of 100 men and 25 out of 10000 women. A color blind person is randomly picked. What is the probability of this person being male?

## Exercise 8 Bayesian Theorem

a) In a given population, $2 \%$ of all persons suffer a certain desease. Let a test have the property that it correctly recognizes an ill person with $95 \%$ probability whereas the rate of correctly revealing a healthy person in $99 \%$. What is the probability that a person does (not) suffer from the desease if the test does (not) reveal the desease?
b) Consider two urns. Urn 1 contains two white and one red ball, urn 2 one white and two red. First, a ball from urn 1 is randomly chosen and placed into urn 2. Finally, a ball from urn 2 is picked. This ball be red: What is the probability that the ball transferred from urn 1 to urn 2 was white?

Additional Exercise Probabilities: Triple Duel
$A, B$ and $C$ compete against each other in a duel with pistols simultaneously. $A$ is the worst shooter: His chance of hitting the target is 0.3 . The chance of $C$ is 0.5 whereas $B$ never misses his target. The three shot in order $A, B, C, A, \ldots$ at a target of their choice (of course, who was shot, quits the game) until just one of them is left. Which is $A$ 's best strategy?

