## Exercise Sheet 7

## **Exercise 22** Probabilistic Propagation

Consider the following Bayesian network and the corresponding (conditional) probability distributions:

|                   | P(A)      | $a_1  a_2$ | 2     |   | P(B A)   | $a_1$ | $a_2$ |
|-------------------|-----------|------------|-------|---|----------|-------|-------|
| $(\underline{A})$ |           | 0.4 0.     | 6     |   | $b_1$    | 0.1   | 0.6   |
| ↓<br>▼            |           |            |       |   | $b_2$    | 0.9   | 0.4   |
| (B)               | ( - 1 - X |            |       | 1 | <i>.</i> |       |       |
|                   | P(C B)    | $b_1$      | $b_2$ |   | P(D B)   | $b_1$ | $b_2$ |
| (C) $(D)$         | $c_1$     | 0.4        | 0.8   |   | $d_1$    | 0.7   | 0.2   |
|                   | $C_2$     | 0.6        | 0.2   |   | $d_2$    | 0.3   | 0.8   |

- a) Determine the a-priori distribution for all four variables!
- b) It becomes evident that variable C assumes value  $c_2$ . Propagate this evidence across the network with the tree-based propagation algorithm presented in the lecture, i.e., compute all four a-posteriori distributions!

**Exercise 23** Construction of Clique Trees



Construct stepwise for the depicted Bayesian network

- a) the moral graph,
- b) a triangulated moral graph, and
- c) a cliquen tree/join tree!

At which steps of the construction do you have multiple options to proceed?

## **Exercise 24** Triangulation and Joint Tree Construction

Given the following three undirected graphs:



- a) Check which graphs are triangulated! Try to recognize this without applying the triangulation algorithm from the lecture.
- b) Triangulate the graphs that are not yet triangulated and determine for each of them a join tree!