Exercise Sheet 10

Markov Properties of Undirected Graphs

Let $(\cdot \Perp \cdot \mid \cdot)$ be the ternary relation that represents the conditional independence statements that hold true in a probability distribution p over a common domain and set V of attributes. An undirected graph $G=(V, E)$ satisfies the

pairwise Markov property

if and only if every pair of non-adjacent attributes in the graph are conditional independent in p given all other attributes,i.e.

$$
\forall A, B \in V, A \neq B:(A, B) \notin E \Rightarrow A \Perp B \mid V \backslash\{A, B\}
$$

G has the local Markov property

if and only if every attribute in p is conditionally independent of all others given its neighbors,i. e.

$$
\forall A \in V: A \Perp V \backslash\{A\} \backslash \text { neighbors }(A) \mid \operatorname{neighbors}(A),
$$

with neighbors $(A)=\{B \in V \mid(A, B) \in E\}$,
G has the global Markov property
if and only if from u-separation of two sets of attributes given a third one it follows that these two sets are conditionally independent in p given the third one, i. e.

$$
\forall X, Y, Z \subseteq V:\langle X| Z|Y\rangle_{G} \Rightarrow X \Perp Y \mid Z .
$$

Exercise 29 Markov Properties of Undirected Graphs
Consider the following graph:

Let $\operatorname{dom}(A)=\cdots=\operatorname{dom}(E)=\{0,1\}$. Assuming the probability distribution $P(A=$ $0)=P(E=0)=\frac{1}{2}, A=B$ (i. e. $P(B=0 \mid A=0)=1$ and $P(B=1 \mid A=1)=1$), $D=E$ and $C=B \cdot D$, show that the graph satisfies the pairwise and local but not the global Markov property.

Exercise 30 Dempster-Shafer Theory
Specify for all following mass distributions over $\Omega=\{1,2,3\}$ the respective belief and plausibility function (missing table entries denote 0).

	m_{1}	m_{2}	m_{3}	m_{4}	m_{5}
\emptyset					
$\{1\}$			0.2		0.25
$\{2\}$		1	0.5	0.4	
$\{3\}$			0.3		
$\{1,2\}$				0.1	
$\{1,3\}$					
$\{2,3\}$				0.5	0.75
$\{1,2,3\}$	1				

Exercise 31 Dempster-Shafer Theory

Homicide was committed. The circle of suspects consists of three persons:

$$
\Omega=\{\text { Antony, Beth, Charly }\}
$$

We assume that exactly one of these persons has committed the homicide. Two witnesses provide us with the following evidence:

- $m_{1}(\{$ Antony, Beth $\})=0.8$ und $m_{1}(\{$ Charly $\})=0.2$
- $m_{2}(\{$ Antony, Charly $\})=0.3$ und $m_{2}(\{$ Beth $\})=0.7$

Calculate $m_{1} \oplus m_{2}$ and $\mathrm{Bel}_{1} \oplus \mathrm{Bel}_{2}$ for the arguments $\emptyset,\{$ Antony $\},\{$ Beth $\}$ und $\{$ Charly $\}$.

