Bayesian Networks Prof. Dr. R. Kruse / M. Steinbrecher

Exercise Sheet 10

Markov Properties of Undirected Graphs

Let $(\cdot \perp \cdot \mid \cdot)$ be the ternary relation that represents the conditional independence statements that hold true in a probability distribution p over a common domain and set V of attributes. An undirected graph G = (V, E) satisfies the

pairwise Markov property

if and only if every pair of non-adjacent attributes in the graph are conditional independent in p given all other attributes, i. e.

$$\forall A, B \in V, A \neq B : (A, B) \notin E \Rightarrow A \perp\!\!\!\perp B \mid V \backslash \{A, B\}.$$

G has the local Markov property

if and only if every attribute in p is conditionally independent of all others given its neighbors, i. e.

 $\forall A \in V : A \perp U \setminus \{A\} \setminus neighbors(A) \mid neighbors(A),$

with neighbors(A) = { $B \in V \mid (A, B) \in E$ },

${\cal G}$ has the global Markov property

if and only if from u-separation of two sets of attributes given a third one it follows that these two sets are conditionally independent in p given the third one, i.e.

 $\forall X, Y, Z \subseteq V : \langle X \mid Z \mid Y \rangle_G \Rightarrow X \perp \!\!\!\perp Y \mid Z.$

Exercise 29 Markov Properties of Undirected Graphs

Consider the following graph:

Let dom $(A) = \cdots = \text{dom}(E) = \{0, 1\}$. Assuming the probability distribution $P(A = 0) = P(E = 0) = \frac{1}{2}$, A = B (i.e. $P(B = 0 \mid A = 0) = 1$ and $P(B = 1 \mid A = 1) = 1$), D = E and $C = B \cdot D$, show that the graph satisfies the pairwise and local but not the global Markov property.

Exercise 30 Dempster-Shafer Theory

Specify for all following mass distributions over $\Omega = \{1, 2, 3\}$ the respective belief and plausibility function (missing table entries denote 0).

	m_1	m_2	m_3	m_4	m_5
Ø					
{1}			0.2		0.25
$\{2\}$		1	0.5	0.4	
{3}			0.3		
$\{1, 2\}$				0.1	
$\{1, 3\}$					
$\{2,3\}$				0.5	0.75
$\{1, 2, 3\}$	1				

Exercise 31 Dempster-Shafer Theory

Homicide was committed. The circle of suspects consists of three persons:

 $\Omega = \{\mathsf{Antony}, \mathsf{Beth}, \mathsf{Charly}\}$

We assume that exactly one of these persons has committed the homicide. Two witnesses provide us with the following evidence:

- $m_1(\{\text{Antony}, \text{Beth}\}) = 0.8 \text{ und } m_1(\{\text{Charly}\}) = 0.2$
- $m_2(\{\text{Antony}, \text{Charly}\}) = 0.3 \text{ und } m_2(\{\text{Beth}\}) = 0.7$

Calculate $m_1 \oplus m_2$ and $\operatorname{Bel}_1 \oplus \operatorname{Bel}_2$ for the arguments \emptyset , {Antony}, {Beth} und {Charly}.