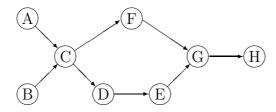

## Exercise Sheet 6

## Exercise 19 Probabilistic Propagation

Consider the following Bayesian network and the corresponding (conditional) probability distributions:



| P(A) | $a_1$ | $a_2$ |
|------|-------|-------|
|      | 0.4   | 0.6   |


| P(C B) | $b_1$ | $b_2$ |
|--------|-------|-------|
| $c_1$  | 0.4   | 0.8   |
| $c_2$  | 0.6   | 0.2   |

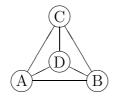
| P(B A) | $a_1$ | $a_2$ |
|--------|-------|-------|
| $b_1$  | 0.1   | 0.6   |
| $b_2$  | 0.9   | 0.4   |

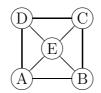
| P(D B) | $b_1$ | $b_2$ |
|--------|-------|-------|
| $d_1$  | 0.7   | 0.2   |
| $d_2$  | 0.3   | 0.8   |

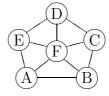
- a) Determine the a-priori distribution for all four variables!
- b) It becomes evident that variable C assumes value  $c_2$ . Propagate this evidence across the network with the tree-based propagation algorithm presented in the lecture, i.e., compute all four a-posteriori distributions!

## Exercise 20 Construction of Clique Trees




Construct stepwise for the depicted Bayesian network


- a) the moral graph,
- b) a triangulated moral graph, and
- c) a cliquen tree/join tree!


At which steps of the construction do you have multiple options to proceed?

## Exercise 21 Triangulation and Joint Tree Construction

Given the following three undirected graphs:







- a) Check which graphs are triangulated! Try to recognize this without applying the triangulation algorithm from the lecture.
- b) Triangulate the graphs that are not yet triangulated and determine for each of them a join tree!