
Bayesian Networks Prof. Dr. R. Kruse / M. Steinbrecher

3. Exercise Sheet

Exercise 9 Separation Criteria: d-Separation

Consider the following directed graph:

Which of the following propositions hold true in the graph?? $(,X \perp \!\!\!\perp Y \mid Z^{"} \text{ denotes } ,X \text{ and }Y \text{ are d-separated (in }G) \text{ by }Z^{"})$

i)	$F \perp\!\!\!\perp H \mid G$	v)	$A \perp\!\!\!\perp B \mid D$
ii)	$C \perp\!\!\!\perp G \mid F$	vi)	$D \perp\!\!\!\perp F \mid \{C,G\}$
iii)	$F \perp\!\!\!\perp E \mid C$	vii)	$E \perp\!\!\!\perp F \mid \{A, B\}$
iv)	$A \perp\!\!\!\perp B \mid \emptyset$	viii)	$C \perp\!\!\!\perp E \mid \{D, F, H\}$

Exercise 10 Separation Criteria: u-Separation

Consider the undirected graph that is obtained if all arrow heads from the directed graph in exercise 9 are dropped. Check again the propositions i)–viii) of exercise 9, now with the u-separation criterion! Which differences can be observed?

Exercise 11 Separation Criteria: d/u-Separation

Remember the alternative way of checking for d-separation that was presented in the lecture (slides 51–53): X and Y are d-separated by Z if X and Y are u-separated by Z in the moralised minimal ancestral subgraph induced by $X \cup Y \cup Z$. With this approach, verify again the results from exercise 9!