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Frameworks of Imprecision and Uncertainty
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Representation of Ignorance (dt. Unwissen)

• We are given a die with faces 1, . . . , 6
What is the certainty of showing up face i ?

◦ Conduct a statistical survey (roll the die 10000 times) and estimate the relative
frequency: P ({i}) = 1

6

◦ Use subjective probabilities (which is often the normal case): We do not know
anything (especially and explicitly we do not have any reason to assign unequal
probabilities), so the most plausible distribution is a uniform one.

⇒ Problem: Uniform distribution because of ignorance or extensive statistical
tests

• Experts analyze aircraft shapes: 3 aircraft types A,B,C
“It is type A or B with 90% certainty. About C, I don’t have any clue and I do
not want to commit myself. No preferences for A or B.”

⇒ Problem: Propositions hard to handle with Bayesian theory
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“A ⊆ X being an imprecise date” means: the true value x0 lies in A but there are no
preferences on A.

Ω set of possible elementary events

Θ = {ξ} set of observers

λ(ξ) importance of observer ξ

Some elementary event from Ω occurs and every observer ξ ∈ O shall announce which
elementary events she personally considers possible. This set is denoted by Γ(ξ) ⊆ Ω.
Γ(ξ) is then an imprecise date.

λ : 2Θ → [0, 1] probability measure

(interpreted as importance measure)

(Θ, 2Θ, λ) probability space

Γ : Θ → 2Ω set-valued mapping



Imprecise Data (2)
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Let A ⊆ Ω:

a) Γ∗(A)
Def
= {ξ ∈ Θ | Γ(ξ) ∩ A �= ∅}

b) Γ∗(A)
Def
= {ξ ∈ Θ | Γ(ξ) �= ∅ and Γ(ξ) ⊆ A}

Remarks:

a) If ξ ∈ Γ∗(A), then it is plausible for ξ that the occurred elementary
event lies in A.

b) If ξ ∈ Γ∗(A), then it is certain for ξ that the event lies in A.

c) {ξ | Γ(ξ) �= ∅} = Γ∗(Ω) = Γ∗(Ω)

Let λ(Γ∗(Ω)) > 0. Then we call

P ∗(A) =
λ(Γ∗(A))

λ(Γ∗(Ω))
the upper, and P∗(A) =

λ(Γ∗(A))

λ(Γ∗(Ω))
the lower

probability w. r. t. λ and Γ.
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Θ = {a, b, c, d} λ : a &→ 1/6 Γ : a &→ {1}
Ω = {1, 2, 3} b &→ 1/6 b &→ {2}

Γ∗(Ω) = {a, b, d} c &→ 2/6 c &→ ∅
λ(Γ∗(Ω)) = 4/6 d &→ 2/6 d &→ {2, 3}

A Γ∗(A) Γ∗(A) P ∗(A) P∗(A)
∅ ∅ ∅ 0 0

{1} {a} {a} 1
4

1
4

{2} {b, d} {b} 3
4

1
4

{3} {d} ∅ 1
2 0

{1, 2} {a, b, d} {a, b} 1 1
2

{1, 3} {a, d} {a} 3
4

1
4

{2, 3} {b, d} {b, d} 3
4

3
4

{1, 2, 3} {a, b, d} {a, b, d} 1 1

One can consider P ∗(A) and P∗(A) as upper and lower probability bounds.
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Some properties of probability bounds:

a) P ∗ : 2Ω → [0, 1]

b) 0 ≤ P∗ ≤ P ∗ ≤ 1, P∗(∅) = P ∗(∅) = 0, P∗(Ω) = P ∗(Ω) = 1

c) A ⊆ B ⇒ P ∗(A) ≤ P ∗(B) and P∗(A) ≤ P∗(B)

d) A ∩ B = ∅ �⇒ P ∗(A) + P ∗(B) = P ∗(A ∪B)

e) P∗(A ∪B) ≥ P∗(A) + P∗(B)− P∗(A ∩B)

f) P ∗(A ∪B) ≤ P ∗(A) + P ∗(B)− P ∗(A ∩B)

g) P∗(A) = 1− P ∗(Ω\A)



Imprecise Data (4)
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One can prove the following generalized equation:

P∗(
n⋃
i=1

Ai) ≥ ∑
∅�=I :I⊆{1,...,n}

(−1)|I|+1 · P∗(
⋂
i∈I

Ai)

These set functions also play an important role in theoretical physics (capacities, Cho-
quet, 1955). Shafer did generalize these thoughts and developed a theory of belief
functions.
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Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 391

How is new knowledge incoporated?

Every observer announces the location of the ship in form of a subset of all possible ship
locations. Given these set-valued mappings, we can derive upper and lower probabilities
with the help of the observer importance measure. Let us assume the ship is certainly
at sea.

How do the upper/lower probabilities change?
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a) Geometric Conditioning
(observers that give partial or full wrong information are discarded)

P∗(A | B) =
λ({ξ ∈ Θ | Γ(ξ) ⊆ A and Γ(ξ) ⊆ B})

λ({ξ ∈ Θ | Γ(ξ) ⊆ B}) =
P∗(A ∩B)

P∗(B)

P ∗(A | B) =
λ({ξ ∈ Θ | Γ(ξ) ⊆ B and Γ(ξ) ∩ A �= ∅})

λ({ξ ∈ Θ | Γ(ξ) ⊆ B}) =
P ∗(A ∪B)− P ∗(B)

1− P ∗(B)



Belief Revision (2)
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b) Data Revision
(the observed data is modified such that they fit the certain information)

(P∗)B(A) =
P∗(A ∪B)− P∗(B)

1− P∗(B)

(P ∗)B(A) =
P ∗(A ∩B)

P ∗(B)

These two concepts have different semantics. There are several more belief revision
concepts.



Imprecise Probabilities
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Let x0 be the true value but assume there is no information about P (A) to decide
whether x0 ∈ A. There are only probability boundaries.

Let L be a set of probability measures. Then we call

(PL)∗ : 2Ω → [0, 1] , A &→ inf{P (A) | P ∈ L} the lower and

(PL)∗ : 2Ω → [0, 1] , A &→ sup{P (A) | P ∈ L} the upper

probability of A w. r. t. L.

a) (PL)∗(∅) = (PL)∗(∅) = 0; (PL)∗(Ω) = (PL)∗(Ω) = 1

b) 0 ≤ (PL)∗(A) ≤ (PL)∗(A) ≤ 1

c) (PL)∗(A) = 1− (PL)∗(A)

d) (PL)∗(A) + (PL)∗(B) ≤ (PL)∗(A ∪B)

e) (PL)∗(A ∩B) + (PL)∗(A ∪B) �≥ (PL)∗(A) + (PL)∗(B)
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Let B ⊆ Ω and L a class of probabilities. The we call

A ⊆ Ω : (PL)∗(A | B) = inf{P (A | B) | P ∈ L ∧ P (B) > 0} the lower and

A ⊆ Ω : (PL)∗(A | B) = sup{P (A | B) | P ∈ L ∧ P (B) > 0} the upper

conditional probability of A given B.

A class L of probability measures on Ω = {ω1, . . . , ωn} is of type 1, iff there exist
functions R1 and R2 from 2Ω into [0, 1] with:

L = {P | ∀A ⊆ Ω : R1(A) ≤ P (A) ≤ R2(A)}



Belief Revision (2)
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Intuition: P is determined by P ({ωi}), i = 1, . . . , n which corresponds to a point in
R
n with coordinates

(
P ({ω1}), . . . , P ({ωn})

)
.

If L is type 1, it holds true that:

L ⇔
{

(r1, . . . , rn) ∈ R
n | ∃P : ∀A ⊆ Ω:

(PL)∗(A) ≤ P (A) ≤ (PL)∗(A)

and ri = P ({ωi}), i = 1, . . . , n
}
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Ω = {ω1, ω2, ω3}
L = {P | 1

2 ≤ P ({ω1, ω2}) ≤ 1, 1
2 ≤ P ({ω2, ω3}) ≤ 1, 1

2 ≤ P ({ω1, ω3}) ≤ 1}

general restriction:

0 ≤ P ({ωi}) ≤ 1

P ({ω1}) + P ({ω2}) + P ({ω3}) = 1

{P | 1
2 ≤ P ({ω1, ω2}) ≤ 1}

Let A1 = {ω1, ω2}, A2 = {ω2, ω3}, A3 = {ω1, ω3}
P∗(A1)+P∗(A2)+P∗(A3)−P∗(A1∩A2)−P∗(A2∩A3)−P∗(A1∩A3)+P∗(A1∩A2∩A3)

=
1

2
+

1

2
+

1

2
− 0− 0− 0 + 0 =

3

2
> 1 = P (A1 ∪ A2 ∪ A3)



Belief Revision (3)

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 398

If L is type 1 and (PL)∗(A ∪B) ≥ (PL)∗(A) + (PL)∗(B)− (PL)∗(A ∩B), then

(PL)∗(A | B) =
(PL)∗(A ∩B)

(PL)∗(A ∩B) + (PL)∗(B ∩ A)

and

(PL)∗(A | B) =
(PL)∗(A ∩B)

(PL)∗(A ∩B) + (PL)∗(B ∩ A)

Let L be a class of type 1. L is of type 2, iff

(PL)∗(A1 ∪ · · · ∪ An) ≥ ∑
I :∅�=I⊆{1,...,n}

(−1)|I|+1 · (PL)∗(
⋂
i∈I

Ai)
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Motivation

(Θ, Q) Sensors

Ω possible results, Γ : Θ → 2Ω

Γ, Q induce a probability m on 2Ω

m : A &→ Q({θ ∈ Θ | Γ(θ) = A}) mass distribution

Bel : A &→ ∑
B:B⊆Am(B) Belief (lower probability)

Pl : A &→ ∑
B:B∩A�=∅m(B) Plausibility (upper probability)

• Random sets: Dempster (1968)

• Belief functions: Shafer (1974)
Development of a completely new uncertainty calculus



Belief Functions (2)
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The function Bel : 2Ω → [0, 1] is called belief function, if it possesses the following
properties:

• Bel(∅) = 0

• Bel(Ω) = 1

• ∀n ∈ N : ∀A1, . . . , An ∈ 2Ω :
Bel(A1 ∪ · · · ∪ An) ≥ ∑∅�=I⊆{1,...,n}(−1)|I|+1 · Bel(

⋂
i∈I Ai)

If Bel is a belief function then for m : 2Ω → R with m(A) =
∑
B:B⊆A(−1)|A\B| ·

Bel(B) the following properties hold:

• 0 ≤ m(A) ≤ 1

• m(∅) = 0

• ∑A⊆Ωm(A) = 1



Belief Functions (3)
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Let |Ω| <∞ and f, g : 2Ω → [0, 1].

∀A ⊆ Ω: (f(A) =
∑

B:B⊆A
g(B))

⇔
∀A ⊆ Ω: (g(A) =

∑
B:B⊆A

(−1)|A\B| · f(B))

(g is called the Möbius transformed of f)

The mapping m : 2Ω → [0, 1] is called a mass distribution, if the following properties
hold:

• m(∅) = 0

• ∑A⊆Ωm(A) = 1
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A ∅ {1} {2} {3} {1, 2} {2, 3} {1, 3} {1, 2, 3}
m(A) 0 1/4

1/4 0 0 0 2/4 0

Bel(A) 0 1/4
1/4 0 2/4

1/4
3/4 1

Belief =̂ lower probability with modified semantic

Bel({1, 3}) = m(∅) + m({1}) + m({3}) + m({1, 3})
m({1, 3}) = Bel({1, 3})− Bel({1})− Bel({3})

m(A) measure of the trust/belief that exactly A occurs

Belm(A) measure of total belief that A occurs

Plm(A) measure of not being able to disprove A (plausibility)

Plm(A) =
∑

B:A∩B �=∅
m(B) = 1− Bel(A)

Given one of m,Bel or Pl, the other two can be efficiently computed.
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m(Ω) = 1, m(A) = 0 else total ignorance

m({ω0}) = 1, m(A) = 0 else value (ω0) known

m({ωi}) = pi,
∑n
i=1 pi = 1 Bayesian analysis

Further intermediate steps can be modeled.



Belief Revision
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• Data Revision:

◦ Mass of A flows onto A ∩B.

◦ Masses are normalized to 1 (∅-mass is destroyed)

• Geometric Conditioning:

◦ Masses that do not lie completely inside B, flow off

◦ Normalize

There is a mass flow from t to s (written: s ' t) iff for every A ⊆ Ω there exist
functions hA : 2Ω → [0, 1] such that the following properties hold:

• ∑B:B⊆Ω hA(B) = t(A) for all A

• h(A(B) �= 0 ⇒ B ⊆ A for all A,B

• s(B) =

∑
A:A⊆Ω hA(B)

1−∑A:A⊆Ω hA(∅)



Example

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 405

A s(A) t(A) u(A)
∅ 0 0 0
{1} 0 0 0.1
{2} 0.4 0.4 0
{3} 0.1 0 0
{1, 2} 0.2 0.5 0.1
{1, 3} 0 0 0.4
{2, 3} 0.3 0.1 0.4

Ω 0 0 0

The following relations hold:
s ' t, t ' s, s ' u, t ' u, t ' t, u �' s
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Let (Ω, 2Ω) be a space of events. Further be (O1, 2
O1, λ1) and (O2, 2

O2, λ2) spaces of
independent observers.

We call (O1 ×O2, λ1 · λ2) the product space of observers and

Γ : O1 ×O2 → 2Ω,Γ(x1, x2) = Γ1(x1) ∩ Γ2(x2)

the combined observer function.

We obtain with

(PL)∗(A) =
(λ1 · λ2)({(x1, x2) | Γ(x1, x2) �= ∅ ∧ Γ(x1, x2) ' A})

(λ1 · λ2)({(x1, x2 | Γ(x1, x2) �= ∅)})
the lower probability of A that respects both observations.
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Ω = {1, 2, 3} λ1 : {a} &→ 1/3 λ2 : {c} &→ 1/2

{b} &→ 2/3 λ2 : {d} &→ 1/2

O1 = {a, b} Γ1 : a &→ {1, 2} Γ2 : c &→ {1}
O2 = {c, d} b &→ {2, 3} d &→ {2, 3}

Combination:

O1 ×O2 = {ac, bc, ad, bd}

λ : {ac} &→ 1/6 Γ : ac &→ {1} Γ∗(Ω) = {(x1, x2) | Γ(x1, x2) �= ∅}
{ad} &→ 1/6 ad &→ {2} = {ac, ad, bd}
{bc} &→ 2/6 bc &→ ∅
{bd} &→ 2/6 bd &→ {2, 3} λ(Γ∗(Ω)) = 4/6
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A m1(A) (P∗)Γ1(A) m2(A) (P∗)Γ2(A) m(A) (P∗)Γ(A)
∅ 0 0 0 0 0 0

{1} 0 0 1/2
1/2

1/4 =
1/6/4/6

1/4

{2} 0 0 0 0 1/4
1/4

{3} 0 0 0 0 0 0

{1, 2} 1/3
1/3 0 1/2 0 1/2

{1, 3} 0 0 0 1/2 0 1/4
{2, 3} 2/3

2/3
1/2

1/2
1/2

3/4
{1, 2, 3} 0 1 0 1 0 1
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Motivation: Combination of m1 and m2

m1(Ai) ·m2(Bj) : Mass attached to Ai ∩Bj ,
if only Ai or Bj are concerned∑

i,j:Ai∩Bj=Am1(Ai) ·m2(Bj) : Mass attached to A (after combination)

This consideration only leads to a mass distribution,
if
∑
i,j:Ai∩Bj=∅m1(Ai) ·m2(Bj) = 0.

If this sum is > 0 normalization takes place.
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If m1 and m2 are mass distributions over Ω with belief functions Bel1 and Bel2 and
does further hold

∑
i,j:Ai∩Bj=∅m1(Ai) ·m2(Bj) < 1, then the

function m : 2Ω → [0, 1] ,m(∅) = 0

m(A) =

∑
B,C:B∩C=Am1(B) ·m2(C)

1−∑B,C:B∩C=∅m1(B) ·m2(C)

is a mass distribution. The belief function of m is denoted as comb(Bel1,Bel2) or
Bel1⊕Bel2. The above formula is called the combination rule.
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m1({1, 2}) = 1/3 m2({1}) = 1/2

m1({2, 3}) = 2/3 m2({2, 3}) = 1/2

m = m1 ⊕m2 :

{1} &→
1/6
4/6

= 1/4

{2} &→
1/6
4/6

= 1/4

∅ &→ 0

{2, 3} &→
2/6
4/6

= 1/2



Combination Rule (2)
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Remarks:

a) The result from the combination rule and the analysis of random sets is identical

b) There are more efficient ways of combination

c) Bel1⊕Bel2 = Bel2⊕Bel1

d) ⊕ is associative

e) Bel1⊕Bel1 �= Bel1 (in general)

f) Bel2 : 2Ω → [0, 1] ,m2(B) = 1

Bel2(A) =

⎧⎨⎩1 ifB ⊆ A

0 otherwise

The combination of Bel1 and Bel2 yields the data revision of m1 with B.
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• The best-known calculus for handling uncertainty is, of course,
probability theory. [Laplace 1812]

• An less well-known, but noteworthy alternative is
possibility theory. [Dubois and Prade 1988]

• In the interpretation we consider here, possibility theory can handle uncertain
and imprecise information, while probability theory, at least in its basic
form, was only designed to handle uncertain information.

• Types of imperfect information:

◦ Imprecision: disjunctive or set-valued information about the obtaining
state, which is certain: the true state is contained in the disjunction or set.

◦ Uncertainty: precise information about the obtaining state (single case),
which is not certain: the true state may differ from the stated one.

◦ Vagueness: meaning of the information is in doubt: the interpretation of
the given statements about the obtaining state may depend on the user.



Possibility Theory: Axiomatic Approach
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Definition: Let Ω be a (finite) sample space.
A possibility measure Π on Ω is a function Π : 2Ω → [0, 1] satisfying

1. Π(∅) = 0 and

2. ∀E1, E2 ⊆ Ω : Π(E1 ∪ E2) = max{Π(E1),Π(E2)}.

• Similar to Kolmogorov’s axioms of probability theory.

• From the axioms follows Π(E1 ∩ E2) ≤ min{Π(E1),Π(E2)}.
• Attributes are introduced as random variables (as in probability theory).

• Π(A = a) is an abbreviation of Π({ω ∈ Ω | A(ω) = a})
• If an event E is possible without restriction, then Π(E) = 1.

If an event E is impossible, then Π(E) = 0.



Possibility Theory and the Context Model
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Interpretation of Degrees of Possibility [Gebhardt and Kruse 1993]

• Let Ω be the (nonempty) set of all possible states of the world,
ω0 the actual (but unknown) state.

• Let C = {c1, . . . , cn} be a set of contexts (observers, frame conditions etc.)
and (C, 2C, P ) a finite probability space (context weights).

• Let Γ : C → 2Ω be a set-valued mapping, which assigns to each context
the most specific correct set-valued specification of ω0.
The sets Γ(c) are called the focal sets of Γ.

• Γ is a random set (i.e., a set-valued random variable) [Nguyen 1978].
The basic possibility assignment induced by Γ is the mapping

π : Ω → [0, 1]

π(ω) &→ P ({c ∈ C | ω ∈ Γ(c)}).
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shaker 1 shaker 2 shaker 3 shaker 4 shaker 5

tetrahedron hexahedron octahedron icosahedron dodecahedron

1 – 4 1 – 6 1 – 8 1 – 10 1 – 12

numbers degree of possibility

1 – 4 1
5 + 1

5 + 1
5 + 1

5 + 1
5 = 1

5 – 6 1
5 + 1

5 + 1
5 + 1

5 = 4
5

7 – 8 1
5 + 1

5 + 1
5 = 3

5

9 – 10 1
5 + 1

5 = 2
5

11 – 12 1
5 = 1

5



From the Context Model to Possibility Measures
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Definition: Let Γ : C → 2Ω be a random set.
The possibility measure induced by Γ is the mapping

Π : 2Ω → [0, 1],

E &→ P ({c ∈ C | E ∩ Γ(c) �= ∅}).

Problem: From the given interpretation it follows only:

∀E ⊆ Ω : max
ω∈E π(ω) ≤ Π(E) ≤ min

⎧⎨⎩1,
∑
ω∈E

π(ω)

⎫⎬⎭.
1 2 3 4 5

c1 : 1
2 •

c2 : 1
4 • • •

c3 : 1
4 • • • • •

π 0 1
2 1 1

2
1
4

1 2 3 4 5

c1 : 1
2 •

c2 : 1
4 • •

c3 : 1
4 • •

π 1
4

1
4

1
2

1
4

1
4



From the Context Model to Possibility Measures (cont.)
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Attempts to solve the indicated problem:

• Require the focal sets to be consonant:
Definition: Let Γ : C → 2Ω be a random set with C = {c1, . . . , cn}. The
focal sets Γ(ci), 1 ≤ i ≤ n, are called consonant, iff there exists a sequence
ci1, ci2, . . . , cin, 1 ≤ i1, . . . , in ≤ n, ∀1 ≤ j < k ≤ n : ij �= ik, so that

Γ(ci1) ⊆ Γ(ci2) ⊆ . . . ⊆ Γ(cin).

→ mass assignment theory [Baldwin et al. 1995]

Problem: The “voting model” is not sufficient to justify consonance.

• Use the lower bound as the “most pessimistic” choice. [Gebhardt 1997]

Problem: Basic possibility assignments represent negative information,
the lower bound is actually the most optimistic choice.

• Justify the lower bound from decision making purposes.



From the Context Model to Possibility Measures (cont.)
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• Assume that in the end we have to decide on a single event.

• Each event is described by the values of a set of attributes.

• Then it can be useful to assign to a set of events the degree of possibility
of the “most possible” event in the set.

Example:

∑

max

0

18

18

0

18

0

0

0

18

0

0

0

0

0

0

28

36

18

18

18

18

18

28

28

36

18

18

18

18

18

28

28

max

0

40

0

0

20

0

0 40 0

40

20

40

40

20

40
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Definition: Let X = {A1, . . . , An} be a set of attributes defined on a (finite) sample
space Ω with respective domains dom(Ai), i = 1, . . . , n. A possibility distribu-
tion πX over X is the restriction of a possibility measure Π on Ω to the set of all events
that can be defined by stating values for all attributes in X . That is, πX = Π|EX ,
where

EX =

⎧⎨⎩E ∈ 2Ω

∣∣∣∣∣∣ ∃a1 ∈ dom(A1) : . . .∃an ∈ dom(An) :

E =̂
∧

Aj∈X
Aj = aj

⎫⎬⎭
=

⎧⎨⎩E ∈ 2Ω

∣∣∣∣∣∣ ∃a1 ∈ dom(A1) : . . .∃an ∈ dom(An) :

E =

⎧⎨⎩ω ∈ Ω

∣∣∣∣∣∣
∧

Aj∈X
Aj(ω) = aj

⎫⎬⎭
⎫⎬⎭.

• Corresponds to the notion of a probability distribution.

• Advantage of this formalization: No index transformation functions are needed
for projections, there are just fewer terms in the conjunctions.
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all numbers in
parts per 1000

small

medium

large s m l

small
medium

large

40 70 10 70
20 10 20 20
30 30 20 10

40 80 10 70
30 10 70 60
60 60 20 10

20 20 10 20
30 10 40 40
80 90 20 10

40 80 10 70
30 10 70 60
80 90 20 10

40 70 20 70
60 80 70 70
80 90 40 40

20 80 70
40 70 20
90 60 30

80 90 70 70

80
70
90

90

80

70

• The numbers state the degrees of possibility of the corresp. value combination.



Reasoning

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 435

all numbers in
parts per 1000

small

medium

large s m l

small
medium

large

0 0 0 70
0 0 0 20
0 0 0 10

0 0 0 70
0 0 0 60
0 0 0 10

0 0 0 20
0 0 0 40
0 0 0 10

0 0 0 70
0 0 0 60
0 0 0 10

0 0 0 70
0 0 0 70
0 0 0 40

20 70 70
40 60 20
10 10 10

0 0 0 70

70
60
10

40

70

70

• Using the information that the given object is green.
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• As for relational and probabilistic networks, the three-dimensional possibility
distribution can be decomposed into projections to subspaces, namely:

– the maximum projection to the subspace color × shape and

– the maximum projection to the subspace shape × size.

• It can be reconstructed using the following formula:

∀i, j, k : π
(
a

(color)
i , a

(shape)
j , a

(size)
k

)
= min

{
π
(
a

(color)
i , a

(shape)
j

)
, π
(
a

(shape)
j , a

(size)
k

)}

= min

⎧⎨⎩max
k
π
(
a

(color)
i , a

(shape)
j , a

(size)
k

)
,

max
i
π
(
a

(color)
i , a

(shape)
j , a

(size)
k

)⎫⎬⎭
• Note the analogy to the probabilistic reconstruction formulas.
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Again the same result can be obtained using only projections to subspaces
(maximal degrees of possibility):

s

s

m

m

l

l

color
new

old

shape

new old

size
old

new

old
new

old
new

min
new

max
line

min
new

max
column

0 0 0 70

80 90 70 70

40
0

80
0

10
0

70
70

30
0

10
0

70
0

60
60

80
0

90
0

20
0

10
10

70 80

60 70

10 90

20
20

80
70

70
70

40
40

70
60

20
20

90
10

60
10

30
10

90 80 70

40 70 70

This justifies a graph representation:
�
�

�
�color

�
�

�
�shape

�
�

�
�size
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Definition: Let Ω be a (finite) sample space, Π a possibility measure on Ω, and
E1, E2 ⊆ Ω events. Then

Π(E1 | E2) = Π(E1 ∩ E2)

is called the conditional possibility of E1 given E2.

Definition: Let Ω be a (finite) sample space, Π a possibility measure on Ω, and
A, B, and C attributes with respective domains dom(A), dom(B), and dom(C).
A and B are called conditionally possibilistically independent given C,
written A⊥⊥ΠB | C, iff

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :

Π(A = a,B = b | C = c) = min{Π(A = a | C = c),Π(B = b | C = c)}.

• Similar to the corresponding notions of probability theory.



Possibilistic Evidence Propagation

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 439

π(B = b | A = aobs)

= π

⎛⎝ ∨
a∈dom(A)

A = a,B = b,
∨

c∈dom(C)

C = c

∣∣∣∣∣∣A = aobs

⎞⎠ A: color
B: shape
C: size

(1)
= max

a∈dom(A)
{ max
c∈dom(C)

{π(A = a,B = b, C = c | A = aobs)}}
(2)
= max

a∈dom(A)
{ max
c∈dom(C)

{min{π(A = a,B = b, C = c), π(A = a | A = aobs)}}}
(3)
= max

a∈dom(A)
{ max
c∈dom(C)

{min{π(A = a,B = b), π(B = b, C = c),

π(A = a | A = aobs)}}}
= max

a∈dom(A)
{min{π(A = a,B = b), π(A = a | A = aobs),

max
c∈dom(C)

{π(B = b, C = c)}︸ ︷︷ ︸
=π(B=b)≥π(A=a,B=b)

}}

= max
a∈dom(A)

{min{π(A = a,B = b), π(A = a | A = aobs)}}
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