Frameworks of Imprecision and Uncertainty

Problems with Probability Theory

Representation of Ignorance (dt. Unwissen)

- We are given a die with faces 1, ..., 6 What is the certainty of showing up face *i* ?
 - $\circ~$ Conduct a statistical survey (roll the die 10000 times) and estimate the relative frequency: $P(\{i\})=\frac{1}{6}$
 - Use subjective probabilities (which is often the normal case): We do not know anything (especially and explicitly we do not have any reason to assign unequal probabilities), so the most plausible distribution is a uniform one.
 - \Rightarrow Problem: Uniform distribution because of ignorance or extensive statistical tests
- Experts analyze aircraft shapes: 3 aircraft types A, B, C
 "It is type A or B with 90% certainty. About C, I don't have any clue and I do not want to commit myself. No preferences for A or B."
- \Rightarrow Problem: Propositions hard to handle with Bayesian theory

" $A \subseteq X$ being an imprecise date" means: the true value x_0 lies in A but there are no preferences on A.

- Ω set of possible elementary events
- $\Theta = \{\xi\} \qquad \text{set of observers}$
- $\lambda(\xi)$ importance of observer ξ

Some elementary event from Ω occurs and every observer $\xi \in O$ shall announce which elementary events she personally considers possible. This set is denoted by $\Gamma(\xi) \subseteq \Omega$. $\Gamma(\xi)$ is then an imprecise date.

$\lambda: 2^{\Theta} \to [0,1]$	probability measure
	(interpreted as importance measure)
$(\Theta, 2^{\Theta}, \lambda)$	probability space
$\Gamma: \Theta \to 2^{\Omega}$	set-valued mapping

Imprecise Data (2)

Let
$$A \subseteq \Omega$$
:
a) $\Gamma^*(A) \stackrel{\text{Def}}{=} \{\xi \in \Theta \mid \Gamma(\xi) \cap A \neq \emptyset\}$
b) $\Gamma_*(A) \stackrel{\text{Def}}{=} \{\xi \in \Theta \mid \Gamma(\xi) \neq \emptyset \text{ and } \Gamma(\xi) \subseteq A\}$

Remarks:

- a) If $\xi \in \Gamma^*(A)$, then it is *plausible* for ξ that the occurred elementary event lies in A.
- b) If $\xi \in \Gamma_*(A)$, then it is *certain* for ξ that the event lies in A.

c)
$$\{\xi \mid \Gamma(\xi) \neq \emptyset\} = \Gamma^*(\Omega) = \Gamma_*(\Omega)$$

Let $\lambda(\Gamma^*(\Omega)) > 0$. Then we call

$$P^*(A) = \frac{\lambda(\Gamma^*(A))}{\lambda(\Gamma^*(\Omega))}$$
 the upper, and

$$P_*(A) = \frac{\lambda(\Gamma_*(A))}{\lambda(\Gamma_*(\Omega))}$$

the lower

probability w.r.t. λ and Γ .

Example

$\Theta = \{a, b, c \\ \Omega = \{1, 2, 3 \\ \Gamma^*(\Omega) = \{a, b, d \\ \lambda(\Gamma^*(\Omega)) = \frac{4}{6}$	d, d } }	$\begin{array}{ccc} \lambda \colon a \mapsto & \\ & b \mapsto & \\ & c \mapsto & \\ & d \mapsto & \end{array}$	$\frac{1}{6}$ $\frac{1}{6}$ $\frac{2}{6}$ $\frac{2}{6}$	$\begin{array}{ccc} \Gamma \colon & a \vdash \\ & b \vdash \\ & c \vdash \\ & d \vdash \end{array}$	$ \begin{array}{l} \rightarrow \{1\} \\ \rightarrow \{2\} \\ \rightarrow \emptyset \\ \rightarrow \{2,3\} \end{array} $
A	$\Gamma^*(A)$	$\Gamma_*(A)$	$P^*(A)$	$P_*(A)$	
Ø	Ø	Ø	0	0	
{1}	$\{a\}$	$\{a\}$	$\frac{1}{4}$	$\frac{1}{4}$	
$\{2\}$	$\{b,d\}$	$\{b\}$	$\frac{3}{4}$	$\frac{1}{4}$	
{3}	$\{d\}$	Ø	$\frac{1}{2}$	0	
$\{1, 2\}$	$\{a, b, d\}$	$\{a,b\}$	1	$\frac{1}{2}$	
$\{1, 3\}$	$\{a,d\}$	$\{a\}$	$\frac{3}{4}$	$\frac{1}{4}$	
$\{2,3\}$	$\{b,d\}$	$\{b,d\}$	$\frac{3}{4}$	$\frac{3}{4}$	
$\{1, 2, 3\}$	$\{a, b, d\}$	$\{a, b, d\}$	1	1	

One can consider $P^*(A)$ and $P_*(A)$ as upper and lower probability bounds.

Rudolf Kruse, Matthias Steinbrecher, Pascal Held

Imprecise Data (3)

Some properties of probability bounds:

a)
$$P^*: 2^{\Omega} \to [0, 1]$$

b) $0 \le P_* \le P^* \le 1$, $P_*(\emptyset) = P^*(\emptyset) = 0$, $P_*(\Omega) = P^*(\Omega) = 1$
c) $A \subseteq B \implies P^*(A) \le P^*(B)$ and $P_*(A) \le P_*(B)$
d) $A \cap B = \emptyset \implies P^*(A) + P^*(B) = P^*(A \cup B)$
e) $P_*(A \cup B) \ge P_*(A) + P_*(B) - P_*(A \cap B)$
f) $P^*(A \cup B) \le P^*(A) + P^*(B) - P^*(A \cap B)$
g) $P_*(A) = 1 - P^*(\Omega \setminus A)$

Imprecise Data (4)

One can prove the following generalized equation:

$$P_*(\bigcup_{i=1}^n A_i) \ge \sum_{\emptyset \neq I: I \subseteq \{1,...,n\}} (-1)^{|I|+1} \cdot P_*(\bigcap_{i \in I} A_i)$$

These set functions also play an important role in theoretical physics (capacities, Choquet, 1955). Shafer did generalize these thoughts and developed a theory of belief functions. How is new knowledge incoporated?

Every observer announces the location of the ship in form of a subset of all possible ship locations. Given these set-valued mappings, we can derive upper and lower probabilities with the help of the observer importance measure. Let us assume the ship is certainly at sea.

How do the upper/lower probabilities change?

Example

a) Geometric Conditioning (observers that give partial or full wrong information are discarded)

$$P_*(A \mid B) = \frac{\lambda(\{\xi \in \Theta \mid \Gamma(\xi) \subseteq A \text{ and } \Gamma(\xi) \subseteq B\})}{\lambda(\{\xi \in \Theta \mid \Gamma(\xi) \subseteq B\})} = \frac{P_*(A \cap B)}{P_*(B)}$$
$$P^*(A \mid B) = \frac{\lambda(\{\xi \in \Theta \mid \Gamma(\xi) \subseteq B \text{ and } \Gamma(\xi) \cap A \neq \emptyset\})}{\lambda(\{\xi \in \Theta \mid \Gamma(\xi) \subseteq B\})} = \frac{P^*(A \cup \overline{B}) - P^*(\overline{B})}{1 - P^*(\overline{B})}$$

Belief Revision (2)

b) Data Revision

(the observed data is modified such that they fit the certain information)

$$(P_*)_B(A) = \frac{P_*(A \cup \overline{B}) - P_*(\overline{B})}{1 - P_*(B)}$$
$$(P^*)_B(A) = \frac{P^*(A \cap B)}{P^*(B)}$$

These two concepts have different semantics. There are several more belief revision concepts.

Imprecise Probabilities

Let x_0 be the true value but assume there is no information about P(A) to decide whether $x_0 \in A$. There are only probability boundaries.

Let \mathcal{L} be a set of probability measures. Then we call

$$(P_{\mathcal{L}})_* : 2^{\Omega} \to [0, 1], A \mapsto \inf\{P(A) \mid P \in \mathcal{L}\}$$
 the lower and
$$(P_{\mathcal{L}})^* : 2^{\Omega} \to [0, 1], A \mapsto \sup\{P(A) \mid P \in \mathcal{L}\}$$
 the upper

probability of A w.r.t. \mathcal{L} .

a)
$$(P_{\mathcal{L}})_*(\emptyset) = (P_{\mathcal{L}})^*(\emptyset) = 0; \quad (P_{\mathcal{L}})_*(\Omega) = (P_{\mathcal{L}})^*(\Omega) = 1$$

b) $0 \le (P_{\mathcal{L}})_*(A) \le (P_{\mathcal{L}})^*(A) \le 1$
c) $(P_{\mathcal{L}})^*(A) = 1 - (P_{\mathcal{L}})_*(\overline{A})$

d)
$$(P_{\mathcal{L}})_*(A) + (P_{\mathcal{L}})_*(B) \le (P_{\mathcal{L}})_*(A \cup B)$$

e) $(P_{\mathcal{L}})_*(A \cap B) + (P_{\mathcal{L}})_*(A \cup B) \not\geq (P_{\mathcal{L}})_*(A) + (P_{\mathcal{L}})_*(B)$

Belief Revision

Let $B \subseteq \Omega$ and \mathcal{L} a class of probabilities. The we call

 $A \subseteq \Omega : (P_{\mathcal{L}})_*(A \mid B) = \inf\{P(A \mid B) \mid P \in \mathcal{L} \land P(B) > 0\}$ the lower and $A \subseteq \Omega : (P_{\mathcal{L}})^*(A \mid B) = \sup\{P(A \mid B) \mid P \in \mathcal{L} \land P(B) > 0\}$ the upper

conditional probability of A given B.

A class \mathcal{L} of probability measures on $\Omega = \{\omega_1, \ldots, \omega_n\}$ is of type 1, iff there exist functions R_1 and R_2 from 2^{Ω} into [0, 1] with:

$$\mathcal{L} = \{ P \mid \forall A \subseteq \Omega : R_1(A) \le P(A) \le R_2(A) \}$$

Belief Revision (2)

Intuition: P is determined by $P(\{\omega_i\}), i = 1, ..., n$ which corresponds to a point in \mathbb{R}^n with coordinates $(P(\{\omega_1\}), \ldots, P(\{\omega_n\}))$.

If \mathcal{L} is type 1, it holds true that:

$$\mathcal{L} \Leftrightarrow \left\{ (r_1, \dots, r_n) \in \mathbb{R}^n \mid \exists P \colon \forall A \subseteq \Omega : \\ (P_{\mathcal{L}})_*(A) \le P(A) \le (P_{\mathcal{L}})^*(A) \\ \text{and} \quad r_i = P(\{\omega_i\}), \ i = 1, \dots, n \right\}$$

Example

$$\Omega = \{\omega_1, \omega_2, \omega_3\}$$

$$\mathcal{L} = \{P \mid \frac{1}{2} \le P(\{\omega_1, \omega_2\}) \le 1, \quad \frac{1}{2} \le P(\{\omega_2, \omega_3\}) \le 1, \quad \frac{1}{2} \le P(\{\omega_1, \omega_3\}) \le 1\}$$

Let
$$A_1 = \{\omega_1, \omega_2\}, A_2 = \{\omega_2, \omega_3\}, A_3 = \{\omega_1, \omega_3\}$$

 $P_*(A_1) + P_*(A_2) + P_*(A_3) - P_*(A_1 \cap A_2) - P_*(A_2 \cap A_3) - P_*(A_1 \cap A_3) + P_*(A_1 \cap A_2 \cap A_3)$
 $= \frac{1}{2} + \frac{1}{2} + \frac{1}{2} - 0 - 0 - 0 + 0 = \frac{3}{2} > 1 = P(A_1 \cup A_2 \cup A_3)$

Rudolf Kruse, Matthias Steinbrecher, Pascal Held

Belief Revision (3)

If \mathcal{L} is type 1 and $(P_{\mathcal{L}})^*(A \cup B) \ge (P_{\mathcal{L}})^*(A) + (P_{\mathcal{L}})^*(B) - (P_{\mathcal{L}})^*(A \cap B)$, then

$$(P_{\mathcal{L}})^*(A \mid B) = \frac{(P_{\mathcal{L}})^*(A \cap B)}{(P_{\mathcal{L}})^*(A \cap B) + (P_{\mathcal{L}})_*(B \cap \overline{A})}$$

and

$$(P_{\mathcal{L}})_*(A \mid B) = \frac{(P_{\mathcal{L}})_*(A \cap B)}{(P_{\mathcal{L}})_*(A \cap B) + (P_{\mathcal{L}})^*(B \cap \overline{A})}$$

Let \mathcal{L} be a class of type 1. \mathcal{L} is of type 2, iff

$$(P_{\mathcal{L}})_*(A_1 \cup \dots \cup A_n) \ge \sum_{I: \emptyset \neq I \subseteq \{1, \dots, n\}} (-1)^{|I|+1} \cdot (P_{\mathcal{L}})_*(\bigcap_{i \in I} A_i)$$

Belief Functions

Motivation

(Θ,Q)	Sensors
--------------	---------

- $\Omega \qquad \text{possible results, } \Gamma: \Theta \to 2^{\Omega}$
- Γ, Q induce a probability m on 2^{Ω}
- $m: \qquad A\mapsto Q(\{\theta\in\Theta\mid \Gamma(\theta)=A\})$
- Bel : $A \mapsto \sum_{B:B \subseteq A} m(B)$
- Pl: $A \mapsto \sum_{B:B \cap A \neq \emptyset} m(B)$
 - Random sets: Dempster (1968)
 - Belief functions: Shafer (1974) Development of a completely new uncertainty calculus
- mass distributionBelief (lower probability)Plausibility (upper probability)

Belief Functions (2)

The function Bel : $2^{\Omega} \rightarrow [0, 1]$ is called *belief function*, if it possesses the following properties:

- $\operatorname{Bel}(\emptyset) = 0$
- $\operatorname{Bel}(\Omega) = 1$
- $\forall n \in \mathbb{N}: \ \forall A_1, \dots, A_n \in 2^{\Omega}:$ $\operatorname{Bel}(A_1 \cup \dots \cup A_n) \ge \sum_{\emptyset \neq I \subseteq \{1, \dots, n\}} (-1)^{|I|+1} \cdot \operatorname{Bel}(\bigcap_{i \in I} A_i)$

If Bel is a belief function then for $m : 2^{\Omega} \to \mathbb{R}$ with $m(A) = \sum_{B:B \subseteq A} (-1)^{|A \setminus B|}$. Bel(B) the following properties hold:

- $0 \le m(A) \le 1$
- $m(\emptyset) = 0$
- $\sum_{A \subseteq \Omega} m(A) = 1$

Belief Functions (3)

Let $|\Omega| < \infty$ and $f, g : 2^{\Omega} \to [0, 1]$.

$$\begin{aligned} \forall A \subseteq \Omega \colon (f(A) &= \sum_{B:B \subseteq A} g(B)) \\ \Leftrightarrow \\ \forall A \subseteq \Omega \colon (g(A) &= \sum_{B:B \subseteq A} (-1)^{|A \setminus B|} \cdot f(B) \end{aligned}$$

 $(g \text{ is called the } M\"obius \ transformed \ of \ f)$

The mapping $m: 2^{\Omega} \to [0, 1]$ is called a *mass distribution*, if the following properties hold:

- $m(\emptyset) = 0$
- $\sum_{A \subseteq \Omega} m(A) = 1$

A	Ø	{1}	$\{2\}$	$\{3\}$	$\{1, 2\}$	$\{2,3\}$	$\{1, 3\}$	$\{1, 2, 3\}$
m(A)	0	$^{1}/_{4}$	$^{1}/_{4}$	0	0	0	$^{2}/_{4}$	0
$\operatorname{Bel}(A)$	0	$^{1}/_{4}$	$^{1}/_{4}$	0	$^{2}/_{4}$	$^{1}/_{4}$	3/4	1

Belief $\widehat{=}$ lower probability with modified semantic

$$Bel(\{1,3\}) = m(\emptyset) + m(\{1\}) + m(\{3\}) + m(\{1,3\})$$
$$m(\{1,3\}) = Bel(\{1,3\}) - Bel(\{1\}) - Bel(\{3\})$$

m(A)measure of the trust/belief that exactly A occurs $Bel_m(A)$ measure of total belief that A occurs $Pl_m(A)$ measure of not being able to disprove A (plausibility)

$$\operatorname{Pl}_{m}(A) = \sum_{B:A\cap B \neq \emptyset} m(B) = 1 - \operatorname{Bel}(\overline{A})$$

Given one of m, Bel or Pl, the other two can be efficiently computed.

Knowledge Representation

 $m(\Omega) = 1, \ m(A) = 0 \text{ else}$ $m(\{\omega_0\}) = 1, \ m(A) = 0 \text{ else}$ $m(\{\omega_i\}) = p_i, \sum_{i=1}^n p_i = 1$

total ignorance value (ω_0) known Bayesian analysis

Further intermediate steps can be modeled.

Belief Revision

- Data Revision:
 - Mass of A flows onto $A \cap B$.
 - Masses are normalized to 1 (\emptyset -mass is destroyed)
- Geometric Conditioning:
 - $\circ\,$ Masses that do not lie completely inside B, flow off
 - Normalize

There is a mass flow from t to s (written: $s \sqsubseteq t$) iff for every $A \subseteq \Omega$ there exist functions $h_A : 2^{\Omega} \to [0, 1]$ such that the following properties hold:

- $\sum_{B:B\subseteq\Omega} h_A(B) = t(A)$ for all A
- $h(A(B) \neq 0 \implies B \subseteq A \text{ for all } A, B$
- $s(B) = \frac{\sum_{A:A \subseteq \Omega} h_A(B)}{1 \sum_{A:A \subseteq \Omega} h_A(\emptyset)}$

Example

A	s(A)	t(A)	u(A)
Ø	0	0	0
{1}	0	0	0.1
$\{2\}$	0.4	0.4	0
{3}	0.1	0	0
$\{1, 2\}$	0.2	0.5	0.1
$\{1, 3\}$	0	0	0.4
$\{2,3\}$	0.3	0.1	0.4
Ω	0	0	0

The following relations hold: $s \sqsubseteq t, t \sqsubseteq s, s \sqsubseteq u, t \sqsubseteq u, t \sqsubseteq t, u \not\sqsubseteq s$ Let $(\Omega, 2^{\Omega})$ be a space of events. Further be $(O_1, 2^{O_1}, \lambda_1)$ and $(O_2, 2^{O_2}, \lambda_2)$ spaces of independent observers.

We call $(O_1 \times O_2, \lambda_1 \cdot \lambda_2)$ the product space of observers and

$$\Gamma: O_1 \times O_2 \to 2^{\Omega}, \Gamma(x_1, x_2) = \Gamma_1(x_1) \cap \Gamma_2(x_2)$$

the combined observer function.

We obtain with

$$(P_L)_*(A) = \frac{(\lambda_1 \cdot \lambda_2)(\{(x_1, x_2) \mid \Gamma(x_1, x_2) \neq \emptyset \land \Gamma(x_1, x_2) \sqsubseteq A\})}{(\lambda_1 \cdot \lambda_2)(\{(x_1, x_2 \mid \Gamma(x_1, x_2) \neq \emptyset)\})}$$

the lower probability of A that respects both observations.

Example

$$\Omega = \{1, 2, 3\} \qquad \lambda_1 \colon \{a\} \mapsto \frac{1}{3} \qquad \lambda_2 \colon \{c\} \mapsto \frac{1}{2} \\ \{b\} \mapsto \frac{2}{3} \qquad \lambda_2 \colon \{d\} \mapsto \frac{1}{2} \\ \lambda_2 \colon \{d\} \mapsto \frac{1}{2} \\ 0_1 = \{a, b\} \qquad \Gamma_1 \colon a \mapsto \{1, 2\} \qquad \Gamma_2 \colon c \mapsto \{1\} \\ 0_2 = \{c, d\} \qquad b \mapsto \{2, 3\} \qquad d \mapsto \{2, 3\}$$

Combination:

$$O_1 \times O_2 = \{\overline{ac}, \overline{bc}, \overline{ad}, \overline{bd}\}$$

$$\begin{array}{lll} \lambda \colon \{\overline{ac}\} \mapsto \frac{1}{6} & \Gamma \colon \overline{ac} \mapsto \{1\} & \Gamma_*(\Omega) = \{(x_1, x_2) \mid \Gamma(x_1, x_2) \neq \emptyset\} \\ \{\overline{ad}\} \mapsto \frac{1}{6} & \overline{ad} \mapsto \{2\} & = \{\overline{ac}, \overline{ad}, \overline{bd}\} \\ \{\overline{bc}\} \mapsto \frac{2}{6} & \overline{bc} \mapsto \emptyset \\ \{\overline{bd}\} \mapsto \frac{2}{6} & \overline{bd} \mapsto \{2, 3\} & \lambda(\Gamma_*(\Omega)) = \frac{4}{6} \end{array}$$

Example (2)

A	$m_1(A)$	$(P_*)_{\Gamma_1}(A)$	$m_2(A)$	$(P_*)_{\Gamma_2}(A)$	m(A)	$(P_*)_{\Gamma}(A)$
Ø	0	0	0	0	0	0
{1}	0	0	$^{1}/_{2}$	$^{1}/_{2}$	$1/_4 = 1/_6/_{4/_6}$	$^{1}/_{4}$
$\{2\}$	0	0	0	0	1/4	$^{1}/_{4}$
{3}	0	0	0	0	0	0
$\{1, 2\}$	$1/_{3}$	$1/_{3}$	0	$^{1}/_{2}$	0	$^{1}/_{2}$
$\{1, 3\}$	0	0	0	1/2	0	$^{1}/_{4}$
$\{2,3\}$	$^{2}/_{3}$	$^{2}/_{3}$	$^{1}/_{2}$	$1/_{2}$	$^{1}/_{2}$	$^{3}/_{4}$
$\{1, 2, 3\}$	0	1	0	1	0	1

Combinations of Mass Distributions

Motivation: Combination of m_1 and m_2 $m_1(A_i) \cdot m_2(B_j)$:

Mass attached to $A_i \cap B_j$, if only A_i or B_j are concerned Mass attached to A (after combination)

 $\sum_{i,j:A_i \cap B_j = A} m_1(A_i) \cdot m_2(B_j)$:

This consideration only leads to a mass distribution, if $\sum_{i,j:A_i \cap B_j = \emptyset} m_1(A_i) \cdot m_2(B_j) = 0.$

If this sum is > 0 normalization takes place.

Combination Rule

If m_1 and m_2 are mass distributions over Ω with belief functions Bel₁ and Bel₂ and does further hold $\sum_{i,j:A_i \cap B_j = \emptyset} m_1(A_i) \cdot m_2(B_j) < 1$, then the function $m: 2^{\Omega} \to [0, 1], m(\emptyset) = 0$

$$m(A) = \frac{\sum_{B,C:B\cap C=A} m_1(B) \cdot m_2(C)}{1 - \sum_{B,C:B\cap C=\emptyset} m_1(B) \cdot m_2(C)}$$

is a mass distribution. The belief function of m is denoted as $comb(Bel_1, Bel_2)$ or $Bel_1 \oplus Bel_2$. The above formula is called the combination rule.

Example

$$m_1(\{1,2\}) = \frac{1}{3} \qquad m_2(\{1\}) = \frac{1}{2} m_1(\{2,3\}) = \frac{2}{3} \qquad m_2(\{2,3\}) = \frac{1}{2}$$

$$m = m_1 \oplus m_2 :$$

$$\{1\} \mapsto \frac{1/6}{4/6} = 1/4$$

$$\{2\} \mapsto \frac{1/6}{4/6} = 1/4$$

$$\emptyset \mapsto 0$$

$$\{2,3\} \mapsto \frac{2/6}{4/6} = 1/2$$

Combination Rule (2)

Remarks:

- a) The result from the combination rule and the analysis of random sets is identical
- b) There are more efficient ways of combination
- c) $\operatorname{Bel}_1 \oplus \operatorname{Bel}_2 = \operatorname{Bel}_2 \oplus \operatorname{Bel}_1$
- d) \oplus is associative
- e) $\operatorname{Bel}_1 \oplus \operatorname{Bel}_1 \neq \operatorname{Bel}_1$ (in general) f) $\operatorname{Bel}_2 : 2^{\Omega} \to [0, 1], m_2(B) = 1$ $\operatorname{Bel}_2(A) = \begin{cases} 1 & \text{if } B \subseteq A \\ 0 & \text{otherwise} \end{cases}$

The combination of Bel_1 and Bel_2 yields the data revision of m_1 with B.

Possibility Theory

- The best-known calculus for handling uncertainty is, of course, **probability theory**. [Laplace 1812]
- An less well-known, but noteworthy alternative is possibility theory. [Dubois and Prade 1988]
- In the interpretation we consider here, possibility theory can handle **uncertain and imprecise information**, while probability theory, at least in its basic form, was only designed to handle *uncertain information*.
- Types of **imperfect information**:
 - **Imprecision:** disjunctive or set-valued information about the obtaining state, which is certain: the true state is contained in the disjunction or set.
 - **Uncertainty:** precise information about the obtaining state (single case), which is not certain: the true state may differ from the stated one.
 - **Vagueness:** meaning of the information is in doubt: the interpretation of the given statements about the obtaining state may depend on the user.

Possibility Theory: Axiomatic Approach

Definition: Let Ω be a (finite) sample space. A **possibility measure** Π on Ω is a function $\Pi : 2^{\Omega} \to [0, 1]$ satisfying

- 1. $\Pi(\emptyset) = 0$ and
- 2. $\forall E_1, E_2 \subseteq \Omega : \Pi(E_1 \cup E_2) = \max\{\Pi(E_1), \Pi(E_2)\}.$
- Similar to Kolmogorov's axioms of probability theory.
- From the axioms follows $\Pi(E_1 \cap E_2) \le \min\{\Pi(E_1), \Pi(E_2)\}.$
- Attributes are introduced as random variables (as in probability theory).
- $\Pi(A = a)$ is an abbreviation of $\Pi(\{\omega \in \Omega \mid A(\omega) = a\})$
- If an event E is possible without restriction, then $\Pi(E) = 1$. If an event E is impossible, then $\Pi(E) = 0$.

Interpretation of Degrees of Possibility

[Gebhardt and Kruse 1993]

- Let Ω be the (nonempty) set of all possible states of the world, ω_0 the actual (but unknown) state.
- Let $C = \{c_1, \ldots, c_n\}$ be a set of contexts (observers, frame conditions etc.) and $(C, 2^C, P)$ a finite probability space (context weights).
- Let $\Gamma: C \to 2^{\Omega}$ be a set-valued mapping, which assigns to each context the **most specific correct set-valued specification of** ω_0 . The sets $\Gamma(c)$ are called the **focal sets** of Γ .
- Γ is a random set (i.e., a set-valued random variable) [Nguyen 1978].
 The basic possibility assignment induced by Γ is the mapping

$$\begin{aligned} \pi : \Omega &\to & [0,1] \\ \pi(\omega) &\mapsto & P(\{c \in C \mid \omega \in \Gamma(c)\}). \end{aligned}$$

Example: Dice and Shakers

numbers	degree of possil	oility
1 - 4	$\frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5}$	= 1
5 - 6	$\frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5}$	$=\frac{4}{5}$
7-8	$\frac{1}{5} + \frac{1}{5} + \frac{1}{5}$	$=\frac{3}{5}$
9 - 10	$\frac{1}{5} + \frac{1}{5}$	$=\frac{2}{5}$
11 - 12	$\frac{1}{5}$	$=\frac{1}{5}$

Definition: Let $\Gamma : C \to 2^{\Omega}$ be a random set. The **possibility measure** induced by Γ is the mapping

$$\begin{aligned} \Pi : 2^{\Omega} &\to & [0,1], \\ E &\mapsto & P(\{c \in C \mid E \cap \Gamma(c) \neq \emptyset\}). \end{aligned}$$

Problem: From the given interpretation it follows only:

$$\forall E \subseteq \Omega: \quad \max_{\omega \in E} \pi(\omega) \leq \Pi(E) \leq \min \left\{ 1, \sum_{\omega \in E} \pi(\omega) \right\}.$$

	1	2	3	4	5
$c_1:\frac{1}{2}$			•		
$c_2:\frac{1}{4}$		•	•	•	
$c_3:\frac{1}{4}$	•	•	•	•	•
π	0	$\frac{1}{2}$	1	$\frac{1}{2}$	$\frac{1}{4}$

	1	2	3	4	5
$c_1:\frac{1}{2}$			•		
$c_2:\frac{1}{4}$	•	•			
$c_3:\frac{1}{4}$				•	•
π	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$

Attempts to solve the indicated problem:

• Require the focal sets to be **consonant**: **Definition:** Let $\Gamma : C \to 2^{\Omega}$ be a random set with $C = \{c_1, \ldots, c_n\}$. The focal sets $\Gamma(c_i)$, $1 \leq i \leq n$, are called **consonant**, iff there exists a sequence $c_{i_1}, c_{i_2}, \ldots, c_{i_n}, 1 \leq i_1, \ldots, i_n \leq n, \forall 1 \leq j < k \leq n : i_j \neq i_k$, so that

$$\Gamma(c_{i_1}) \subseteq \Gamma(c_{i_2}) \subseteq \ldots \subseteq \Gamma(c_{i_n}).$$

 \rightarrow mass assignment theory [Baldwin *et al.* 1995]

Problem: The "voting model" is not sufficient to justify consonance.

- Use the lower bound as the "most pessimistic" choice. [Gebhardt 1997]
 Problem: Basic possibility assignments represent negative information, the lower bound is actually the most optimistic choice.
- Justify the lower bound from decision making purposes.

- Assume that in the end we have to decide on a single event.
- Each event is described by the values of a set of attributes.
- Then it can be useful to assign to a set of events the degree of possibility of the "most possible" event in the set.

Example:

Possibility Distributions

Definition: Let $X = \{A_1, \ldots, A_n\}$ be a set of attributes defined on a (finite) sample space Ω with respective domains dom (A_i) , $i = 1, \ldots, n$. A **possibility distribution** π_X over X is the restriction of a possibility measure Π on Ω to the set of all events that can be defined by stating values for all attributes in X. That is, $\pi_X = \Pi|_{\mathcal{E}_X}$, where

$$\mathcal{E}_X = \left\{ E \in 2^{\Omega} \mid \exists a_1 \in \operatorname{dom}(A_1) : \dots \exists a_n \in \operatorname{dom}(A_n) : \\ E \stackrel{\frown}{=} \bigwedge_{A_j \in X} A_j = a_j \right\}$$
$$= \left\{ E \in 2^{\Omega} \mid \exists a_1 \in \operatorname{dom}(A_1) : \dots \exists a_n \in \operatorname{dom}(A_n) : \\ E = \left\{ \omega \in \Omega \mid \bigwedge_{A_j \in X} A_j(\omega) = a_j \right\} \right\}.$$

- Corresponds to the notion of a probability distribution.
- Advantage of this formalization: No index transformation functions are needed for projections, there are just fewer terms in the conjunctions.

A Possibility Distribution

• The numbers state the degrees of possibility of the corresp. value combination.

Reasoning

• Using the information that the given object is green.

Possibilistic Decomposition

- As for relational and probabilistic networks, the three-dimensional possibility distribution can be decomposed into projections to subspaces, namely:
 - the maximum projection to the subspace color \times shape and
 - the maximum projection to the subspace shape \times size.
- It can be reconstructed using the following formula:

• Note the analogy to the probabilistic reconstruction formulas.

Reasoning with Projections

Again the same result can be obtained using only projections to subspaces (maximal degrees of possibility):

This justifies a graph representation:

Definition: Let Ω be a (finite) sample space, Π a possibility measure on Ω , and $E_1, E_2 \subseteq \Omega$ events. Then

 $\Pi(E_1 \mid E_2) = \Pi(E_1 \cap E_2)$

is called the **conditional possibility** of E_1 given E_2 .

Definition: Let Ω be a (finite) sample space, Π a possibility measure on Ω , and A, B, and C attributes with respective domains dom(A), dom(B), and dom(C). A and B are called **conditionally possibilistically independent** given C, written $A \perp_{\Pi} B \mid C$, iff

$$\forall a \in \operatorname{dom}(A) : \forall b \in \operatorname{dom}(B) : \forall c \in \operatorname{dom}(C) : \\ \Pi(A = a, B = b \mid C = c) = \min\{\Pi(A = a \mid C = c), \Pi(B = b \mid C = c)\}.$$

• Similar to the corresponding notions of probability theory.

Possibilistic Evidence Propagation

$$\begin{aligned} \pi(B = b \mid A = a_{obs}) &= \pi \left(\bigvee_{a \in dom(A)} A = a, B = b, \bigvee_{c \in dom(C)} C = c \mid A = a_{obs} \right) & \begin{array}{c} A: \text{ color} \\ B: \text{ shape} \\ C: \text{ size} \end{array} \\ & \begin{array}{c} (1) \\ = \\ a \in dom(A) \\ c \in dom(C) \end{array} \{ \pi(A = a, B = b, C = c \mid A = a_{obs}) \} \} \\ & \begin{array}{c} (2) \\ = \\ a \in dom(A) \\ c \in dom(C) \end{array} \{ \min\{\pi(A = a, B = b, C = c), \pi(A = a \mid A = a_{obs}) \} \} \\ & \begin{array}{c} (3) \\ = \\ a \in dom(A) \\ c \in dom(C) \end{array} \{ \min\{\pi(A = a, B = b), \pi(B = b, C = c), \\ \pi(A = a \mid A = a_{obs}) \} \} \} \\ & = \\ \max_{a \in dom(A)} \{ \min\{\pi(A = a, B = b), \pi(A = a \mid A = a_{obs}) \} \} \\ & = \\ \max_{a \in dom(A)} \{ \min\{\pi(A = a, B = b), \pi(A = a \mid A = a_{obs}), \\ \underbrace{c \in dom(C)}_{=\pi(B = b) \ge \pi(A = a, B = b)} \\ & = \\ \max_{a \in dom(A)} \{ \min\{\pi(A = a, B = b), \pi(A = a \mid A = a_{obs}) \} \} \end{aligned}$$

Rudolf Kruse, Matthias Steinbrecher, Pascal Held

References

[Baldwin et. al 1995]
J.F. Baldwin, T.P. Martin, and B.W. Pilsworth.
FRIL — Fuzzy and Evidential Reasoning in Artificial Intelligence. Research Studies Press/J. Wiley & Sons, Taunton/Chichester, United Kingdom, 1995

[Borgelt et al. 2009] Christian Borgelt, Matthias Steinbrecher and Rudolf Kruse. Graphical Models — Representations for Learning, Reasoning and Data Mining, 2nd edition, John Wiley & Sons Ltd, United Kingdom, 2009

[Castillo et al. 1997]
 Enrique Castillo, José Manuel Gutiérrez and Ali S. Hadi.
 Expert Systems and Probabilistic Network Models, Springer Verlag, 1997

[Cooper and Herskovits 1992]
 Gregory F. Cooper and Edward Herskovits.
 A Bayesian Method for the Induction of Probabilistic Networks from

Data, Machine Learning, Volume 9, pp. 309–347, 1992

[Dubois and Prade 1988]
 D. Dubois and H. Prade.
 Possibility Theory. Plenum Press, New York, NY, USA, 1988

[Gebhardt 1997]

J. Gebhardt.

Learning from Data: Possibilistic Graphical Models. Habilitation Thesis, University of Braunschweig, Germany, 1997

[Gebhardt and Kruse 1993]

J. Gebhardt and R. Kruse.

The Context Model — An Integrating View of Vagueness and Uncertainty. Int. Journal of Approximate Reasoning 9:283–314, North-Holland, Amsterdam, Netherlands, 1993

References

[Kruse et. al 1991] Rudolf Kruse, Erhard Schwecke and Jochen Heinsohn. Uncertainty and Vagueness in Knowledge Based Systems, Springer Verlag, 1991

[Laplace 1812]

P.S. Laplace

Théorie analytique des probabilités. Paris: Veuve Courcier, 1812

[Nguyen 1978]

H.T. Nguyen.

On Random Sets and Belief Functions. Journal of Mathematical Analysis and Applications 65:531–542. Academic Press, San Diego, CA, USA, 1978

Homepages

- Otto-von-Guericke-University of Magdeburg http://www.uni-magdeburg.de/
- School of Computer Science
 http://www.cs.uni-magdeburg.de/
- Computational Intelligence Group http://fuzzy.cs.uni-magdeburg.de/