## Frameworks of Imprecision and Uncertainty

## Problems with Probability Theory

Representation of Ignorance (dt. Unwissen)

- We are given a die with faces $1, \ldots, 6$

What is the certainty of showing up face $i$ ?

- Conduct a statistical survey (roll the die 10000 times) and estimate the relative frequency: $P(\{i\})=\frac{1}{6}$
- Use subjective probabilities (which is often the normal case): We do not know anything (especially and explicitly we do not have any reason to assign unequal probabilities), so the most plausible distribution is a uniform one.
$\Rightarrow$ Problem: Uniform distribution because of ignorance or extensive statistical tests
- Experts analyze aircraft shapes: 3 aircraft types $A, B, C$ "It is type $A$ or $B$ with $90 \%$ certainty. About $C$, I don't have any clue and I do not want to commit myself. No preferences for $A$ or $B$."
$\Rightarrow$ Problem: Propositions hard to handle with Bayesian theory


## Modeling Imprecise Data

" $A \subseteq X$ being an imprecise date" means: the true value $x_{0}$ lies in $A$ but there are no preferences on $A$.
$\Omega \quad$ set of possible elementary events
$\Theta=\{\xi\} \quad$ set of observers
$\lambda(\xi) \quad$ importance of observer $\xi$
Some elementary event from $\Omega$ occurs and every observer $\xi \in O$ shall announce which elementary events she personally considers possible. This set is denoted by $\Gamma(\xi) \subseteq \Omega$. $\Gamma(\xi)$ is then an imprecise date.
$\lambda: 2^{\Theta} \rightarrow[0,1] \quad$ probability measure (interpreted as importance measure)
$\left(\Theta, 2^{\Theta}, \lambda\right) \quad$ probability space
$\Gamma: \Theta \rightarrow 2^{\Omega} \quad$ set-valued mapping

## Imprecise Data (2)

Let $A \subseteq \Omega$ :
a) $\Gamma^{*}(A) \stackrel{\text { Def }}{=}\{\xi \in \Theta \mid \Gamma(\xi) \cap A \neq \emptyset\}$
b) $\Gamma_{*}(A) \stackrel{\text { Def }}{=}\{\xi \in \Theta \mid \Gamma(\xi) \neq \emptyset$ and $\Gamma(\xi) \subseteq A\}$

Remarks:
a) If $\xi \in \Gamma^{*}(A)$, then it is plausible for $\xi$ that the occurred elementary event lies in $A$.
b) If $\xi \in \Gamma_{*}(A)$, then it is certain for $\xi$ that the event lies in $A$.
c) $\{\xi \mid \Gamma(\xi) \neq \emptyset\}=\Gamma^{*}(\Omega)=\Gamma_{*}(\Omega)$

Let $\lambda\left(\Gamma^{*}(\Omega)\right)>0$. Then we call

$$
P^{*}(A)=\frac{\lambda\left(\Gamma^{*}(A)\right)}{\lambda\left(\Gamma^{*}(\Omega)\right)} \quad \text { the upper, and } \quad P_{*}(A)=\frac{\lambda\left(\Gamma_{*}(A)\right)}{\lambda\left(\Gamma_{*}(\Omega)\right)} \quad \text { the lower }
$$

probability w.r.t. $\lambda$ and $\Gamma$.

## Example

$$
\begin{array}{rlrlr}
\Theta & =\{a, b, c, d\} & \lambda: a \mapsto 1 / 6 & \Gamma: a \mapsto\{1\} \\
\Omega & =\{1,2,3\} & & b \mapsto 1 / 6 & \\
\Gamma^{*}(\Omega) & =\{a, b, d\} & & p \mapsto 2 / 6 & c \mapsto \emptyset \\
\lambda\left(\Gamma^{*}(\Omega)\right) & =4 / 6 & & d \mapsto 2 / 6 & \\
\hline
\end{array}
$$

| $A$ | $\Gamma^{*}(A)$ | $\Gamma_{*}(A)$ | $P^{*}(A)$ | $P_{*}(A)$ |
| :---: | :---: | :---: | :---: | :---: |
| $\emptyset$ | $\emptyset$ | $\emptyset$ | 0 | 0 |
| $\{1\}$ | $\{a\}$ | $\{a\}$ | $\frac{1}{4}$ | $\frac{1}{4}$ |
| $\{2\}$ | $\{b, d\}$ | $\{b\}$ | $\frac{3}{4}$ | $\frac{1}{4}$ |
| $\{3\}$ | $\{d\}$ | $\emptyset$ | $\frac{1}{2}$ | 0 |
| $\{1,2\}$ | $\{a, b, d\}$ | $\{a, b\}$ | 1 | $\frac{1}{2}$ |
| $\{1,3\}$ | $\{a, d\}$ | $\{a\}$ | $\frac{3}{4}$ | $\frac{1}{4}$ |
| $\{2,3\}$ | $\{b, d\}$ | $\{b, d\}$ | $\frac{3}{4}$ | $\frac{3}{4}$ |
| $\{1,2,3\}$ | $\{a, b, d\}$ | $\{a, b, d\}$ | 1 | 1 |

One can consider $P^{*}(A)$ and $P_{*}(A)$ as upper and lower probability bounds.

## Imprecise Data (3)

Some properties of probability bounds:
a) $P^{*}: 2^{\Omega} \rightarrow[0,1]$
b) $0 \leq P_{*} \leq P^{*} \leq 1, \quad P_{*}(\emptyset)=P^{*}(\emptyset)=0, \quad P_{*}(\Omega)=P^{*}(\Omega)=1$
c) $A \subseteq B \quad \Rightarrow \quad P^{*}(A) \leq P^{*}(B) \quad$ and $\quad P_{*}(A) \leq P_{*}(B)$
d) $A \cap B=\emptyset \quad \nRightarrow \quad P^{*}(A)+P^{*}(B)=P^{*}(A \cup B)$
e) $P_{*}(A \cup B) \geq P_{*}(A)+P_{*}(B)-P_{*}(A \cap B)$
f) $P^{*}(A \cup B) \leq P^{*}(A)+P^{*}(B)-P^{*}(A \cap B)$
g) $P_{*}(A)=1-P^{*}(\Omega \backslash A)$

## Imprecise Data (4)

One can prove the following generalized equation:

$$
P_{*}\left(\bigcup_{i=1}^{n} A_{i}\right) \geq \sum_{\emptyset \neq I: I \subseteq\{1, \ldots, n\}}(-1)^{|I|+1} \cdot P_{*}\left(\bigcap_{i \in I} A_{i}\right)
$$

These set functions also play an important role in theoretical physics (capacities, Choquet, 1955). Shafer did generalize these thoughts and developed a theory of belief functions.

## Belief Revision

How is new knowledge incoporated?
Every observer announces the location of the ship in form of a subset of all possible ship locations. Given these set-valued mappings, we can derive upper and lower probabilities with the help of the observer importance measure. Let us assume the ship is certainly at sea.

How do the upper/lower probabilities change?

## Example

a) Geometric Conditioning
(observers that give partial or full wrong information are discarded)

$$
\begin{aligned}
& P_{*}(A \mid B)=\frac{\lambda(\{\xi \in \Theta \mid \Gamma(\xi) \subseteq A \text { and } \Gamma(\xi) \subseteq B\})}{\lambda(\{\xi \in \Theta \mid \Gamma(\xi) \subseteq B\})}=\frac{P_{*}(A \cap B)}{P_{*}(B)} \\
& P^{*}(A \mid B)=\frac{\lambda(\{\xi \in \Theta \mid \Gamma(\xi) \subseteq B \text { and } \Gamma(\xi) \cap A \neq \emptyset\})}{\lambda(\{\xi \in \Theta \mid \Gamma(\xi) \subseteq B\})}=\frac{P^{*}(A \cup \bar{B})-P^{*}(\bar{B})}{1-P^{*}(\bar{B})}
\end{aligned}
$$



## Belief Revision (2)

b) Data Revision
(the observed data is modified such that they fit the certain information)

$$
\begin{aligned}
\left(P_{*}\right)_{B}(A) & =\frac{P_{*}(A \cup \bar{B})-P_{*}(\bar{B})}{1-P_{*}(B)} \\
\left(P^{*}\right)_{B}(A) & =\frac{P^{*}(A \cap B)}{P^{*}(B)}
\end{aligned}
$$



These two concepts have different semantics. There are several more belief revision concepts.

## Imprecise Probabilities

Let $x_{0}$ be the true value but assume there is no information about $P(A)$ to decide whether $x_{0} \in A$. There are only probability boundaries.

Let $\mathcal{L}$ be a set of probability measures. Then we call

$$
\begin{array}{ll}
\left(P_{\mathcal{L}}\right)_{*}: 2^{\Omega} \rightarrow[0,1], A \mapsto \inf \{P(A) \mid P \in \mathcal{L}\} & \text { the lower and } \\
\left(P_{\mathcal{L}}\right)^{*}: 2^{\Omega} \rightarrow[0,1], A \mapsto \sup \{P(A) \mid P \in \mathcal{L}\} & \text { the upper }
\end{array}
$$

probability of $A$ w.r.t. $\mathcal{L}$.
a) $\left(P_{\mathcal{L}}\right)_{*}(\emptyset)=\left(P_{\mathcal{L}}\right)^{*}(\emptyset)=0 ; \quad\left(P_{\mathcal{L}}\right)_{*}(\Omega)=\left(P_{\mathcal{L}}\right)^{*}(\Omega)=1$
b) $0 \leq\left(P_{\mathcal{L}}\right)_{*}(A) \leq\left(P_{\mathcal{L}}\right)^{*}(A) \leq 1$
c) $\left(P_{\mathcal{L}}\right)^{*}(A)=1-\left(P_{\mathcal{L}}\right)_{*}(\bar{A})$
d) $\left(P_{\mathcal{L}}\right)_{*}(A)+\left(P_{\mathcal{L}}\right)_{*}(B) \leq\left(P_{\mathcal{L}}\right)_{*}(A \cup B)$
e) $\left(P_{\mathcal{L}}\right) *(A \cap B)+\left(P_{\mathcal{L}}\right)_{*}(A \cup B) \nsupseteq\left(P_{\mathcal{L}}\right)_{*}(A)+\left(P_{\mathcal{L}}\right)_{*}(B)$

## Belief Revision

Let $B \subseteq \Omega$ and $\mathcal{L}$ a class of probabilities. The we call

$$
\begin{array}{ll}
A \subseteq \Omega:\left(P_{\mathcal{L}}\right)_{*}(A \mid B)=\inf \{P(A \mid B) \mid P \in \mathcal{L} \wedge P(B)>0\} & \text { the lower and } \\
A \subseteq \Omega:\left(P_{\mathcal{L}}\right)^{*}(A \mid B)=\sup \{P(A \mid B) \mid P \in \mathcal{L} \wedge P(B)>0\} & \text { the upper }
\end{array}
$$

conditional probability of $A$ given $B$.
A class $\mathcal{L}$ of probability measures on $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is of type 1 , iff there exist functions $R_{1}$ and $R_{2}$ from $2^{\Omega}$ into [0, 1] with:

$$
\mathcal{L}=\left\{P \mid \forall A \subseteq \Omega: R_{1}(A) \leq P(A) \leq R_{2}(A)\right\}
$$

## Belief Revision (2)

Intuition: $P$ is determined by $P\left(\left\{\omega_{i}\right\}\right), i=1, \ldots, n$ which corresponds to a point in $\mathbb{R}^{n}$ with coordinates $\left(P\left(\left\{\omega_{1}\right\}\right), \ldots, P\left(\left\{\omega_{n}\right\}\right)\right)$.

If $\mathcal{L}$ is type 1 , it holds true that:

$$
\begin{aligned}
& \mathcal{L} \Leftrightarrow\left\{\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{R}^{n} \mid \exists P: \forall A \subseteq \Omega:\right. \\
& \qquad \quad\left(P_{\mathcal{L}}\right)_{*}(A) \leq P(A) \leq\left(P_{\mathcal{L}}\right)^{*}(A) \\
& \left.\quad \text { and } r_{i}=P\left(\left\{\omega_{i}\right\}\right), i=1, \ldots, n\right\}
\end{aligned}
$$

## Example

$$
\begin{aligned}
& \Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\} \\
& \mathcal{L}=\left\{P \left\lvert\, \frac{1}{2} \leq P\left(\left\{\omega_{1}, \omega_{2}\right\}\right) \leq 1\right., \quad \frac{1}{2} \leq P\left(\left\{\omega_{2}, \omega_{3}\right\}\right) \leq 1, \quad \frac{1}{2} \leq P\left(\left\{\omega_{1}, \omega_{3}\right\}\right) \leq 1\right\}
\end{aligned}
$$


general restriction:

$$
0 \leq P\left(\left\{\omega_{i}\right\}\right) \leq 1
$$



$$
\left\{P \left\lvert\, \frac{1}{2} \leq P\left(\left\{\omega_{1}, \omega_{2}\right\}\right) \leq 1\right.\right\}
$$



Let $A_{1}=\left\{\omega_{1}, \omega_{2}\right\}, A_{2}=\left\{\omega_{2}, \omega_{3}\right\}, A_{3}=\left\{\omega_{1}, \omega_{3}\right\}$

$$
\begin{array}{r}
P_{*}\left(A_{1}\right)+P_{*}\left(A_{2}\right)+P_{*}\left(A_{3}\right)-P_{*}\left(A_{1} \cap A_{2}\right)-P_{*}\left(A_{2} \cap A_{3}\right)-P_{*}\left(A_{1} \cap A_{3}\right)+P_{*}\left(A_{1} \cap A_{2} \cap A_{3}\right) \\
=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}-0-0-0+0=\frac{3}{2}>1=P\left(A_{1} \cup A_{2} \cup A_{3}\right)
\end{array}
$$

## Belief Revision (3)

If $\mathcal{L}$ is type 1 and $\left(P_{\mathcal{L}}\right)^{*}(A \cup B) \geq\left(P_{\mathcal{L}}\right)^{*}(A)+\left(P_{\mathcal{L}}\right)^{*}(B)-\left(P_{\mathcal{L}}\right)^{*}(A \cap B)$, then

$$
\left(P_{\mathcal{L}}\right)^{*}(A \mid B)=\frac{\left(P_{\mathcal{L}}\right)^{*}(A \cap B)}{\left(P_{\mathcal{L}}\right)^{*}(A \cap B)+\left(P_{\mathcal{L}}\right)_{*}(B \cap \bar{A})}
$$

and

$$
\left(P_{\mathcal{L}}\right)_{*}(A \mid B)=\frac{\left(P_{\mathcal{L}}\right)_{*}(A \cap B)}{\left(P_{\mathcal{L}}\right) *(A \cap B)+\left(P_{\mathcal{L}}\right)^{*}(B \cap \bar{A})}
$$

Let $\mathcal{L}$ be a class of type 1 . $\mathcal{L}$ is of type 2 , iff

$$
\left(P_{\mathcal{L}}\right) *\left(A_{1} \cup \cdots \cup A_{n}\right) \geq \sum_{I: \emptyset \neq I \subseteq\{1, \ldots, n\}}(-1)^{|I|+1} \cdot\left(P_{\mathcal{L}}\right)_{*}\left(\bigcap_{i \in I} A_{i}\right)
$$

## Belief Functions

Motivation
$(\Theta, Q) \quad$ Sensors
$\Omega \quad$ possible results, $\Gamma: \Theta \rightarrow 2^{\Omega}$
$\Gamma, Q \quad$ induce a probability $m$ on $2^{\Omega}$
$m: \quad A \mapsto Q(\{\theta \in \Theta \mid \Gamma(\theta)=A\})$
Bel : $\quad A \mapsto \sum_{B: B \subseteq A} m(B)$
$\mathrm{Pl}: \quad A \mapsto \sum_{B: B \cap A \neq \emptyset} m(B)$
mass distribution
Belief (lower probability)
Plausibility (upper probability)

- Random sets: Dempster (1968)
- Belief functions: Shafer (1974) Development of a completely new uncertainty calculus


## Belief Functions (2)

The function Bel : $2^{\Omega} \rightarrow[0,1]$ is called belief function, if it possesses the following properties:

- $\operatorname{Bel}(\emptyset)=0$
- $\operatorname{Bel}(\Omega)=1$
- $\forall n \in \mathbb{N}: \forall A_{1}, \ldots, A_{n} \in 2^{\Omega}$ :
$\operatorname{Bel}\left(A_{1} \cup \cdots \cup A_{n}\right) \geq \sum_{\emptyset \neq I \subseteq\{1, \ldots, n\}}(-1)^{|I|+1} \cdot \operatorname{Bel}\left(\cap_{i \in I} A_{i}\right)$
If Bel is a belief function then for $m: 2^{\Omega} \rightarrow \mathbb{R}$ with $m(A)=\sum_{B: B \subseteq A(-1)^{|A \backslash B|} \text {. } . ~ . ~}^{\text {. }}$. $\operatorname{Bel}(B)$ the following properties hold:
- $0 \leq m(A) \leq 1$
- $m(\emptyset)=0$
- $\sum_{A \subseteq \Omega} m(A)=1$


## Belief Functions (3)

Let $|\Omega|<\infty$ and $f, g: 2^{\Omega} \rightarrow[0,1]$.

$$
\begin{aligned}
& \forall A \subseteq \Omega:\left(f(A)=\sum_{B: B \subseteq A} g(B)\right) \\
& \quad \Leftrightarrow \\
& \forall A \subseteq \Omega:\left(g(A)=\sum_{B: B \subseteq A}(-1)^{|A \backslash B|} \cdot f(B)\right)
\end{aligned}
$$

( $g$ is called the Möbius transformed of $f$ )
The mapping $m: 2^{\Omega} \rightarrow[0,1]$ is called a mass distribution, if the following properties hold:

- $m(\emptyset)=0$
- $\sum_{A \subseteq \Omega} m(A)=1$


## Example

| $A$ | $\emptyset$ | $\{1\}$ | $\{2\}$ | $\{3\}$ | $\{1,2\}$ | $\{2,3\}$ | $\{1,3\}$ | $\{1,2,3\}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m(A)$ | 0 | $1 / 4$ | $1 / 4$ | 0 | 0 | 0 | $2 / 4$ | 0 |
| $\operatorname{Bel}(A)$ | 0 | $1 / 4$ | $1 / 4$ | 0 | $2 / 4$ | $1 / 4$ | $3 / 4$ | 1 |

Belief $\widehat{=}$ lower probability with modified semantic

$$
\begin{aligned}
\operatorname{Bel}(\{1,3\}) & =m(\emptyset)+m(\{1\})+m(\{3\})+m(\{1,3\}) \\
m(\{1,3\}) & =\operatorname{Bel}(\{1,3\})-\operatorname{Bel}(\{1\})-\operatorname{Bel}(\{3\})
\end{aligned}
$$

$m(A) \quad$ measure of the trust/belief that exactly $A$ occurs
$\operatorname{Bel}_{m}(A) \quad$ measure of total belief that $A$ occurs
$\mathrm{Pl}_{m}(A) \quad$ measure of not being able to disprove $A$ (plausibility)

$$
\mathrm{Pl}_{m}(A)=\sum_{B: A \cap B \neq \emptyset} m(B)=1-\operatorname{Bel}(\bar{A})
$$

Given one of $m, \mathrm{Bel}$ or Pl , the other two can be efficiently computed.

## Knowledge Representation

$$
\begin{aligned}
& m(\Omega)=1, m(A)=0 \text { else } \\
& m\left(\left\{\omega_{0}\right\}\right)=1, m(A)=0 \text { else } \\
& m\left(\left\{\omega_{i}\right\}\right)=p_{i}, \sum_{i=1}^{n} p_{i}=1
\end{aligned}
$$

total ignorance
value $\left(\omega_{0}\right)$ known
Bayesian analysis

Further intermediate steps can be modeled.

## Belief Revision

- Data Revision:
- Mass of $A$ flows onto $A \cap B$.
- Masses are normalized to 1 ( $\emptyset$-mass is destroyed)
- Geometric Conditioning:
- Masses that do not lie completely inside $B$, flow off
- Normalize

There is a mass flow from $t$ to $s$ (written: $s \sqsubseteq t$ ) iff for every $A \subseteq \Omega$ there exist functions $h_{A}: 2^{\Omega} \rightarrow[0,1]$ such that the following properties hold:

- $\sum_{B: B \subseteq \Omega} h_{A}(B)=t(A)$ for all $A$
- $h(A(B) \neq 0 \Rightarrow B \subseteq A$ for all $A, B$
- $s(B)=\frac{\sum_{A: A \subseteq \Omega} h_{A}(B)}{1-\sum_{A: A \subseteq \Omega} h_{A}(\emptyset)}$


## Example

| $A$ | $s(A)$ | $t(A)$ | $u(A)$ |
| :---: | :---: | :---: | :---: |
| $\emptyset$ | 0 | 0 | 0 |
| $\{1\}$ | 0 | 0 | 0.1 |
| $\{2\}$ | 0.4 | 0.4 | 0 |
| $\{3\}$ | 0.1 | 0 | 0 |
| $\{1,2\}$ | 0.2 | 0.5 | 0.1 |
| $\{1,3\}$ | 0 | 0 | 0.4 |
| $\{2,3\}$ | 0.3 | 0.1 | 0.4 |
| $\Omega$ | 0 | 0 | 0 |

The following relations hold:
$s \sqsubseteq t, t \sqsubseteq s, s \sqsubseteq u, t \sqsubseteq u, t \sqsubseteq t, u \nsubseteq s$

## Combination of Random Sets

Let $\left(\Omega, 2^{\Omega}\right)$ be a space of events. Further be $\left(O_{1}, 2^{O_{1}}, \lambda_{1}\right)$ and $\left(O_{2}, 2^{O_{2}}, \lambda_{2}\right)$ spaces of independent observers.

We call $\left(O_{1} \times O_{2}, \lambda_{1} \cdot \lambda_{2}\right)$ the product space of observers and

$$
\Gamma: O_{1} \times O_{2} \rightarrow 2^{\Omega}, \Gamma\left(x_{1}, x_{2}\right)=\Gamma_{1}\left(x_{1}\right) \cap \Gamma_{2}\left(x_{2}\right)
$$

the combined observer function.
We obtain with

$$
\left(P_{L}\right)_{*}(A)=\frac{\left(\lambda_{1} \cdot \lambda_{2}\right)\left(\left\{\left(x_{1}, x_{2}\right) \mid \Gamma\left(x_{1}, x_{2}\right) \neq \emptyset \wedge \Gamma\left(x_{1}, x_{2}\right) \sqsubseteq A\right\}\right)}{\left(\lambda_{1} \cdot \lambda_{2}\right)\left(\left\{\left(x_{1}, x_{2} \mid \Gamma\left(x_{1}, x_{2}\right) \neq \emptyset\right)\right\}\right)}
$$

the lower probability of $A$ that respects both observations.

## Example

$$
\begin{aligned}
& \Omega=\{1,2,3\} \\
& \lambda_{1}:\{a\} \mapsto 1 / 3 \\
& \lambda_{2}:\{c\} \mapsto{ }^{1 / 2} \\
& \{b\} \mapsto{ }^{2} / 3 \\
& \lambda_{2}:\{d\} \mapsto 1 / 2 \\
& O_{1}=\{a, b\} \\
& O_{2}=\{c, d\} \\
& \Gamma_{1}: \quad a \mapsto\{1,2\} \\
& \Gamma_{2}: \quad c \mapsto\{1\} \\
& b \mapsto\{2,3\} \\
& d \mapsto\{2,3\}
\end{aligned}
$$

Combination:

$$
O_{1} \times O_{2}=\{\overline{a c}, \overline{b c}, \overline{a d}, \overline{b d}\}
$$

$$
\begin{aligned}
\lambda: & \{\overline{a c}\} & \mapsto 1 / 6 & \Gamma: \overline{a c} \mapsto\{1\} \\
& \{\overline{a d}\} & \mapsto 1 / 6 & \overline{a d}
\end{aligned}>\{2\} \quad \Gamma_{*}(\Omega)=\left\{\left(x_{1}, x_{2}\right) \mid \Gamma\left(x_{1}, x_{2}\right) \neq \emptyset\right\}
$$

## Example (2)

| $A$ | $m_{1}(A)$ | $\left(P_{*}\right)_{\Gamma_{1}}(A)$ | $m_{2}(A)$ | $\left(P_{*}\right)_{\Gamma_{2}}(A)$ | $m(A)$ | $\left(P_{*}\right)_{\Gamma}(A)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\emptyset$ | 0 | 0 | 0 | 0 | 0 | 0 |
| $\{1\}$ | 0 | 0 | $1 / 2$ | $1 / 2$ | $1 / 4=1 / 6 / 4 / 6$ | $1 / 4$ |
| $\{2\}$ | 0 | 0 | 0 | 0 | $1 / 4$ | $1 / 4$ |
| $\{3\}$ | 0 | 0 | 0 | 0 | 0 | 0 |
| $\{1,2\}$ | $1 / 3$ | $1 / 3$ | 0 | $1 / 2$ | 0 | $1 / 2$ |
| $\{1,3\}$ | 0 | 0 | 0 | $1 / 2$ | 0 | $1 / 4$ |
| $\{2,3\}$ | $2 / 3$ | $2 / 3$ | $1 / 2$ | $1 / 2$ | $1 / 2$ | $3 / 4$ |
| $\{1,2,3\}$ | 0 | 1 | 0 | 1 | 0 | 1 |

## Combinations of Mass Distributions

Motivation: Combination of $m_{1}$ and $m_{2}$ $m_{1}\left(A_{i}\right) \cdot m_{2}\left(B_{j}\right):$

Mass attached to $A_{i} \cap B_{j}$, if only $A_{i}$ or $B_{j}$ are concerned
Mass attached to $A$ (after combination)

This consideration only leads to a mass distribution, if $\sum_{i, j: A_{i} \cap B_{j}=\emptyset} m_{1}\left(A_{i}\right) \cdot m_{2}\left(B_{j}\right)=0$.
If this sum is $>0$ normalization takes place.

## Combination Rule

If $m_{1}$ and $m_{2}$ are mass distributions over $\Omega$ with belief functions $\mathrm{Bel}_{1}$ and $\mathrm{Bel}_{2}$ and does further hold $\sum_{i, j: A_{i} \cap B_{j}=\emptyset} m_{1}\left(A_{i}\right) \cdot m_{2}\left(B_{j}\right)<1$, then the function $m: 2^{\Omega} \rightarrow[0,1], m(\emptyset)=0$

$$
m(A)=\frac{\sum_{B, C: B \cap C=A} m_{1}(B) \cdot m_{2}(C)}{1-\sum_{B, C: B \cap C=\emptyset} m_{1}(B) \cdot m_{2}(C)}
$$

is a mass distribution. The belief function of $m$ is denoted as $\operatorname{comb}\left(\mathrm{Bel}_{1}, \mathrm{Bel}_{2}\right)$ or $\mathrm{Bel}_{1} \oplus \mathrm{Bel}_{2}$. The above formula is called the combination rule.

## Example

$$
\begin{array}{lr}
m_{1}(\{1,2\})=1 / 3 & m_{2}(\{1\})=1 / 2 \\
m_{1}(\{2,3\})=2 / 3 & m_{2}(\{2,3\})=1 / 2
\end{array}
$$

$$
\begin{aligned}
m=m_{1} \oplus m_{2} & : \\
\{1\} & \mapsto \frac{1 / 6}{4 / 6}=1 / 4 \\
\{2\} & \mapsto \frac{1 / 6}{4 / 6}=1 / 4 \\
\emptyset & \mapsto 0 \\
\{2,3\} & \mapsto \frac{2 / 6}{4 / 6}=1 / 2
\end{aligned}
$$

## Combination Rule (2)

Remarks:
a) The result from the combination rule and the analysis of random sets is identical
b) There are more efficient ways of combination
c) $\mathrm{Bel}_{1} \oplus \mathrm{Bel}_{2}=\mathrm{Bel}_{2} \oplus \mathrm{Bel}_{1}$
d) $\oplus$ is associative
e) $\mathrm{Bel}_{1} \oplus \mathrm{Bel}_{1} \neq \mathrm{Bel}_{1}($ in general $)$
f) $\mathrm{Bel}_{2}: 2^{\Omega} \rightarrow[0,1], m_{2}(B)=1$

$$
\operatorname{Bel}_{2}(A)= \begin{cases}1 & \text { if } B \subseteq A \\ 0 & \text { otherwise }\end{cases}
$$

The combination of $\mathrm{Bel}_{1}$ and $\mathrm{Bel}_{2}$ yields the data revision of $m_{1}$ with $B$.

## Possibility Theory

- The best-known calculus for handling uncertainty is, of course, probability theory.
- An less well-known, but noteworthy alternative is possibility theory.
[Dubois and Prade 1988]
- In the interpretation we consider here, possibility theory can handle uncertain and imprecise information, while probability theory, at least in its basic form, was only designed to handle uncertain information.
- Types of imperfect information:
- Imprecision: disjunctive or set-valued information about the obtaining state, which is certain: the true state is contained in the disjunction or set.
- Uncertainty: precise information about the obtaining state (single case), which is not certain: the true state may differ from the stated one.
- Vagueness: meaning of the information is in doubt: the interpretation of the given statements about the obtaining state may depend on the user.


## Possibility Theory: Axiomatic Approach

Definition: Let $\Omega$ be a (finite) sample space.
A possibility measure $\Pi$ on $\Omega$ is a function $\Pi: 2^{\Omega} \rightarrow[0,1]$ satisfying

1. $\Pi(\emptyset)=0 \quad$ and
2. $\forall E_{1}, E_{2} \subseteq \Omega: \Pi\left(E_{1} \cup E_{2}\right)=\max \left\{\Pi\left(E_{1}\right), \Pi\left(E_{2}\right)\right\}$.

- Similar to Kolmogorov's axioms of probability theory.
- From the axioms follows $\Pi\left(E_{1} \cap E_{2}\right) \leq \min \left\{\Pi\left(E_{1}\right), \Pi\left(E_{2}\right)\right\}$.
- Attributes are introduced as random variables (as in probability theory).
- $\Pi(A=a)$ is an abbreviation of $\Pi(\{\omega \in \Omega \mid A(\omega)=a\})$
- If an event $E$ is possible without restriction, then $\Pi(E)=1$.

If an event $E$ is impossible, then $\Pi(E)=0$.

## Possibility Theory and the Context Model

## Interpretation of Degrees of Possibility

- Let $\Omega$ be the (nonempty) set of all possible states of the world, $\omega_{0}$ the actual (but unknown) state.
- Let $C=\left\{c_{1}, \ldots, c_{n}\right\}$ be a set of contexts (observers, frame conditions etc.) and $\left(C, 2^{C}, P\right)$ a finite probability space (context weights).
- Let $\Gamma: C \rightarrow 2^{\Omega}$ be a set-valued mapping, which assigns to each context the most specific correct set-valued specification of $\omega_{0}$. The sets $\Gamma(c)$ are called the focal sets of $\Gamma$.
- $\Gamma$ is a random set (i.e., a set-valued random variable) [Nguyen 1978]. The basic possibility assignment induced by $\Gamma$ is the mapping

$$
\begin{aligned}
\pi: \Omega & \rightarrow[0,1] \\
\pi(\omega) & \mapsto P(\{c \in C \mid \omega \in \Gamma(c)\})
\end{aligned}
$$

## Example: Dice and Shakers


tetrahedron $1-4$
$1-6$

octahedron
$1-8$
$1-10$
icosahedron dodecahedron

$1-12$

| numbers | degree of possibility |
| :---: | ---: |
| $1-4$ | $\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=1$ |
| $5-6$ | $\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=\frac{4}{5}$ |
| $7-8$ | $\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=\frac{3}{5}$ |
| $9-10$ | $\frac{1}{5}+\frac{1}{5}=\frac{2}{5}$ |
| $11-12$ | $\frac{1}{5}=\frac{1}{5}$ |

## From the Context Model to Possibility Measures

Definition: Let $\Gamma: C \rightarrow 2^{\Omega}$ be a random set.
The possibility measure induced by $\Gamma$ is the mapping

$$
\begin{aligned}
\Pi: 2^{\Omega} & \rightarrow[0,1], \\
E & \mapsto P(\{c \in C \mid E \cap \Gamma(c) \neq \emptyset\}) .
\end{aligned}
$$

Problem: From the given interpretation it follows only:

$$
\forall E \subseteq \Omega: \quad \max _{\omega \in E} \pi(\omega) \leq \Pi(E) \leq \min \left\{1, \sum_{\omega \in E} \pi(\omega)\right\} .
$$

|  | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $c_{1}: \frac{1}{2}$ |  |  | $\bullet$ |  |  |
| $c_{2}: \frac{1}{4}$ |  | $\bullet$ | $\bullet$ | $\bullet$ |  |
| $c_{3}: \frac{1}{4}$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
| $\pi$ | 0 | $\frac{1}{2}$ | 1 | $\frac{1}{2}$ | $\frac{1}{4}$ |


|  | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $c_{1}: \frac{1}{2}$ |  |  | $\bullet$ |  |  |
| $c_{2}: \frac{1}{4}$ | $\bullet$ | $\bullet$ |  |  |  |
| $c_{3}: \frac{1}{4}$ |  |  |  | $\bullet$ | $\bullet$ |
| $\pi$ | $\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{1}{2}$ | $\frac{1}{4}$ | $\frac{1}{4}$ |

## From the Context Model to Possibility Measures (cont.)

Attempts to solve the indicated problem:

- Require the focal sets to be consonant:

Definition: Let $\Gamma: C \rightarrow 2^{\Omega}$ be a random set with $C=\left\{c_{1}, \ldots, c_{n}\right\}$. The focal sets $\Gamma\left(c_{i}\right), 1 \leq i \leq n$, are called consonant, iff there exists a sequence $c_{i_{1}}, c_{i_{2}}, \ldots, c_{i_{n}}, 1 \leq i_{1}, \ldots, i_{n} \leq n, \forall 1 \leq j<k \leq n: i_{j} \neq i_{k}$, so that

$$
\Gamma\left(c_{i_{1}}\right) \subseteq \Gamma\left(c_{i_{2}}\right) \subseteq \ldots \subseteq \Gamma\left(c_{i_{n}}\right)
$$

$\rightarrow$ mass assignment theory [Baldwin et al. 1995]
Problem: The "voting model" is not sufficient to justify consonance.

- Use the lower bound as the "most pessimistic" choice. [Gebhardt 1997]

Problem: Basic possibility assignments represent negative information, the lower bound is actually the most optimistic choice.

- Justify the lower bound from decision making purposes.


## From the Context Model to Possibility Measures (cont.)

- Assume that in the end we have to decide on a single event.
- Each event is described by the values of a set of attributes.
- Then it can be useful to assign to a set of events the degree of possibility of the "most possible" event in the set.

Example:

| $\sum$ | 36 | 18 | 18 | 28 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 28 | 0 | 0 | 0 | 28 | 28 |
| 18 | 18 | 0 | 0 | 0 | 18 |
| 18 | 18 | 0 | 0 | 0 | 18 |
| 36 | 0 | 18 | 18 | 0 | 18 |


| 0 | 40 | 0 | 40 |
| :---: | :---: | :---: | :---: |
| 40 | 0 | 0 | 40 |
| 0 | 0 | 20 | 20 |
| 40 | 40 | 20 | max |


| 18 | 18 | 18 | 28 |
| :--- | :--- | :--- | :--- |
| $\max$ |  |  |  |

## Possibility Distributions

Definition: Let $X=\left\{A_{1}, \ldots, A_{n}\right\}$ be a set of attributes defined on a (finite) sample space $\Omega$ with respective domains $\operatorname{dom}\left(A_{i}\right), i=1, \ldots, n$. A possibility distribution $\pi_{X}$ over $X$ is the restriction of a possibility measure $\Pi$ on $\Omega$ to the set of all events that can be defined by stating values for all attributes in $X$. That is, $\pi_{X}=\left.\Pi\right|_{\mathcal{E}_{X}}$, where

$$
\begin{array}{r}
\mathcal{E}_{X}=\left\{E \in 2^{\Omega} \mid \exists a_{1} \in \operatorname{dom}\left(A_{1}\right): \ldots \exists a_{n} \in \operatorname{dom}\left(A_{n}\right):\right. \\
\left.E \hat{=} \bigwedge_{A_{j} \in X} A_{j}=a_{j}\right\} \\
=\left\{E \in 2^{\Omega} \mid \exists a_{1} \in \operatorname{dom}\left(A_{1}\right): \ldots \exists a_{n} \in \operatorname{dom}\left(A_{n}\right):\right. \\
\left.E=\left\{\omega \in \Omega \mid \bigwedge_{A_{j} \in X} A_{j}(\omega)=a_{j}\right\}\right\} .
\end{array}
$$

- Corresponds to the notion of a probability distribution.
- Advantage of this formalization: No index transformation functions are needed for projections, there are just fewer terms in the conjunctions.


## A Possibility Distribution


all numbers in parts per 1000

|  | s | m | $l$ |
| :--- | :---: | :---: | :---: |
| $\triangle$ | 20 | 80 | 70 |
| $\square$ | 40 | 70 | 20 |
|  | 90 | 60 | 30 |
|  |  |  |  |


|  | $\square \square \square \square$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| large | 40 | 70 | 20 | 70 |
| medium | 60 | 80 | 70 | 70 |
| small | 80 | 90 | 40 | 40 |

- The numbers state the degrees of possibility of the corresp. value combination.


## Reasoning


all numbers in parts per 1000

|  | s |  | m |
| :--- | :---: | :---: | :---: |
| l |  |  |  |
| $\triangle$ | 20 | 70 | 70 |
| $\square$ | 40 | 60 | 20 |
|  | 10 | 10 | 10 |
|  |  |  |  |


|  | $\square \square \square \square$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| large | 0 | 0 | 0 | 0 |
| medium | 0 | 0 | 0 | 70 |
| small | 0 | 0 | 0 | 40 |

- Using the information that the given object is green.


## Possibilistic Decomposition

- As for relational and probabilistic networks, the three-dimensional possibility distribution can be decomposed into projections to subspaces, namely:
- the maximum projection to the subspace color $\times$ shape and
- the maximum projection to the subspace shape $\times$ size.
- It can be reconstructed using the following formula:

$$
\begin{aligned}
\forall i, j, k: \pi & \left(a_{i}^{(\text {color })}, a_{j}^{(\text {shape })}, a_{k}^{(\text {size })}\right) \\
= & \min \left\{\pi\left(a_{i}^{(\text {color })}, a_{j}^{(\text {shape })}\right), \pi\left(a_{j}^{(\text {shape })}, a_{k}^{(\text {size })}\right)\right\} \\
= & \min \left\{\max _{k} \pi\left(a_{i}^{(\text {color })}, a_{j}^{(\text {shape })}, a_{k}^{(\text {size })}\right)\right. \\
& \left.\max _{i} \pi\left(a_{i}^{(\text {color })}, a_{j}^{(\text {shape })}, a_{k}^{(\text {size })}\right)\right\}
\end{aligned}
$$

- Note the analogy to the probabilistic reconstruction formulas.


## Reasoning with Projections

Again the same result can be obtained using only projections to subspaces (maximal degrees of possibility):



This justifies a graph representation:


## Conditional Possibility and Independence

Definition: Let $\Omega$ be a (finite) sample space, $\Pi$ a possibility measure on $\Omega$, and $E_{1}, E_{2} \subseteq \Omega$ events. Then

$$
\Pi\left(E_{1} \mid E_{2}\right)=\Pi\left(E_{1} \cap E_{2}\right)
$$

is called the conditional possibility of $E_{1}$ given $E_{2}$.

Definition: Let $\Omega$ be a (finite) sample space, $\Pi$ a possibility measure on $\Omega$, and $A, B$, and $C$ attributes with respective domains $\operatorname{dom}(A), \operatorname{dom}(B)$, and $\operatorname{dom}(C)$. $A$ and $B$ are called conditionally possibilistically independent given $C$, written $A \Perp_{\Pi} B \mid C$, iff

$$
\begin{aligned}
& \forall a \in \operatorname{dom}(A): \forall b \in \operatorname{dom}(B): \forall c \in \operatorname{dom}(C): \\
& \quad \Pi(A=a, B=b \mid C=c)=\min \{\Pi(A=a \mid C=c), \Pi(B=b \mid C=c)\} .
\end{aligned}
$$

- Similar to the corresponding notions of probability theory.


## Possibilistic Evidence Propagation

$$
\begin{aligned}
& \pi\left(B=b \mid A=a_{\text {obs }}\right) \\
& =\pi\left(\underset{a \in \operatorname{dom}(A)}{\bigvee} A=a, B=b, \bigvee_{c \in \operatorname{dom}(C)} C=c \mid A=a_{\mathrm{obs}}\right) \\
& \text { A: color } \\
& C \text { : size } \\
& \stackrel{(1)}{=} \max _{a \in \operatorname{dom}(A)}\left\{\max _{c \in \operatorname{dom}(C)}\left\{\pi\left(A=a, B=b, C=c \mid A=a_{\text {obs }}\right)\right\}\right\} \\
& \stackrel{(2)}{=} \max _{a \in \operatorname{dom}(A)}\left\{\max _{c \in \operatorname{dom}(C)}\left\{\min \left\{\pi(A=a, B=b, C=c), \pi\left(A=a \mid A=a_{\text {obs }}\right)\right\}\right\}\right\} \\
& \stackrel{(3)}{=} \max _{a \in \operatorname{dom}(A)}\left\{\max _{c \in \operatorname{dom}(C)}\{\min \{\pi(A=a, B=b), \pi(B=b, C=c) \text {, }\right. \\
& \left.\left.\left.\pi\left(A=a \mid A=a_{\text {obs }}\right)\right\}\right\}\right\} \\
& =\max _{a \in \operatorname{dom}(A)}\left\{\operatorname { m i n } \left\{\pi(A=a, B=b), \pi\left(A=a \mid A=a_{\text {obs }}\right)\right.\right. \text {, } \\
& =\max _{a \in \operatorname{dom}(A)}\left\{\min \left\{\pi(A=a, B=b), \pi\left(A=a \mid A=a_{\text {obs }}\right)\right\}\right\}
\end{aligned}
$$

## References

## References

[Baldwin et. al 1995]
J.F. Baldwin, T.P. Martin, and B.W. Pilsworth.

FRIL - Fuzzy and Evidential Reasoning in Artificial Intelligence. Research Studies Press/J. Wiley \& Sons, Taunton/Chichester, United Kingdom, 1995
[Borgelt et al. 2009]
Christian Borgelt, Matthias Steinbrecher and Rudolf Kruse.
Graphical Models - Representations for Learning, Reasoning and
Data Mining, 2nd edition, John Wiley \& Sons Ltd, United Kingdom, 2009
[Castillo et al. 1997]
Enrique Castillo, José Manuel Gutiérrez and Ali S. Hadi.
Expert Systems and Probabilistic Network Models, Springer Verlag, 1997
[Cooper and Herskovits 1992]
Gregory F. Cooper and Edward Herskovits.
A Bayesian Method for the Induction of Probabilistic Networks from Data, Machine Learning, Volume 9, pp. 309-347, 1992

## References

[Dubois and Prade 1988]
D. Dubois and H. Prade.

Possibility Theory. Plenum Press, New York, NY, USA, 1988
[Gebhardt 1997]
J. Gebhardt.

Learning from Data: Possibilistic Graphical Models. Habilitation Thesis, University of Braunschweig, Germany, 1997
[Gebhardt and Kruse 1993]
J. Gebhardt and R. Kruse.

The Context Model - An Integrating View of Vagueness and Uncertainty. Int. Journal of Approximate Reasoning 9:283-314, North-Holland, Amsterdam, Netherlands, 1993

## References

[Kruse et. al 1991]
Rudolf Kruse, Erhard Schwecke and Jochen Heinsohn.
Uncertainty and Vagueness in Knowledge Based Systems, Springer Verlag, 1991
[Laplace 1812]
P.S. Laplace

Théorie analytique des probabilités. Paris: Veuve Courcier, 1812
[Nguyen 1978]
H.T. Nguyen.

On Random Sets and Belief Functions. Journal of Mathematical Analysis and Applications 65:531-542. Academic Press, San Diego, CA, USA, 1978

## Homepages

- Otto-von-Guericke-University of Magdeburg http://www.uni-magdeburg.de/
- School of Computer Science http://www.cs.uni-magdeburg.de/
- Computational Intelligence Group http://fuzzy.cs.uni-magdeburg.de/

