
Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 361

Decision Graphs / Influence Diagrams

Preference Orderings

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 362

• A preference ordering � is a ranking of all possible states of affairs (worlds) S
◦ these could be outcomes of actions, truth assts, states in a search problem, etc.

◦ s � t: means that state s is at least as good as t

◦ s ≻ t: means that state s is strictly preferred to t

• We insist that � is
◦ reflexive: i.e., s � s for all states s

◦ transitive: i.e., if s � t and t � w, then s � w

◦ connected: for all states s,t, either s � t or t � s

Why Impose These Conditions?

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 363

• Structure of preference ordering imposes certain “rationality requirements” (it is
a weak ordering)

• E.g., why transitivity?
◦ Suppose you (strictly) prefer coffee to tea, tea to OJ, OJ to coffee

◦ If you prefer X to Y, you will trade me Y plus $1 for X

◦ I can construct a “money pump” and extract arbitrary amounts of money from
you

Utilities

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 364

• Rather than just ranking outcomes, we must quantify our degree of preference
◦ e.g., how much more important is chc than ∼mess

• A utility function U : S → R associates a realvalued utility with each outcome.
◦ U(s) measures your degree of preference for s

• Note: U induces a preference ordering �U over S defined as: s �U t iff U(s) ≥
U(t)
◦ obviously �U will be reflexive, transitive, connected

Expected Utility

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 365

• Under conditions of uncertainty, each decision d induces a distribution Prd over
possible outcomes
◦ Prd(s) is probability of outcome s under decision d

• The expected utility of decision d is defined

• The principle of maximum expected utility (MEU) states that the optimal de-
cision under conditions of uncertainty is that with the greatest expected utility.

EU(d) =
∑

s∈S

Prd(s)U(s)

Decision Problems: Uncertainty

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 366

• A decision problem under uncertainty is:
◦ a set of decisions D

◦ a set of outcomes or states S

◦ an outcome function Pr : D → ∆(S)
∗ ∆(S) is the set of distributions over S (e.g., Prd)

◦ a utility function U over S

• A solution to a decision problem under uncertainty is any d∗ ∈ D such that
EU(d∗) � EU(d) for all d ∈ D

• Again, for single-shot problems, this is trivial

Expected Utility: Notes

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 367

• Note that this viewpoint accounts for both:
◦ uncertainty in action outcomes

◦ uncertainty in state of knowledge

◦ any combination of the two

Stochastic actions Uncertain knowledge

Expected Utility: Notes

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 368

• Why MEU? Where do utilities come from?
◦ underlying foundations of utility theory tightly couple utility with action/choice

◦ a utility function can be determined by asking someone about their preferences
for actions in specific scenarios (or “lotteries” over outcomes)

• Utility functions needn’t be unique
◦ if I multiply U by a positive constant, all decisions have same relative utility

◦ if I add a constant to U, same thing

◦ U is unique up to positive affine transformation

So What are the Complications?

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 369

• Outcome space is large
◦ like all of our problems, states spaces can be huge

◦ don’t want to spell out distributions like Prd explicitly

◦ Solution: Bayes nets (or related: influence diagrams)

• Decision space is large
◦ usually our decisions are not one-shot actions

◦ rather they involve sequential choices (like plans)

◦ if we treat each plan as a distinct decision, decision space is too large to handle
directly

◦ Soln: use dynamic programming methods to construct optimal plans (actually
generalizations of plans, called policies. . . like in game trees)

So What are the Complications?

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 370

• Decision networks (more commonly known as influence diagrams) provide a
way of representing sequential decision problems
◦ basic idea: represent the variables in the problem as you would in a BN

◦ add decision variables – variables that you “control”

◦ add utility variables – how good different states are

Sample Decision Network

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 371

Decision Networks: Chance Nodes

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 372

• Chance nodes
◦ random variables, denoted by circles

◦ as in a BN, probabilistic dependence on parents

Decision Networks: Decision Nodes

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 373

• Decision nodes
◦ variables decision maker sets, denoted by squares

◦ parents reflect information available at time decision is to be made

• In example decision node: the actual values of Ch and Fev will be observed before
the decision to take test must be made
◦ agent can make different decisions for each instantiation of parents (i.e., poli-

cies)

Decision Networks: Decision Nodes

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 374

• Value node
◦ specifies utility of a state, denoted by a diamond

◦ utility depends only on state of parents of value node

◦ generally: only one value node in a decision network

• Utility depends only on disease and drug

Decision Networks: Assumptions

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 375

• Decision nodes are totally ordered
◦ decision variables D1, D2, . . . , Dn

◦ decisions are made in sequence

◦ e.g., BloodTst (yes,no) decided before Drug (fd,md,no)

• No-forgetting property
◦ any information available when decision Di is made is available when decision
Dj is made (for i < j)

◦ thus all parents of Di are parents of Dj

Policies

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 376

• Let Par(Di) be the parents of decision node Di
◦ Dom(Par(Di)) is the set of assignments to parents

• A policy δ is a set of mappings δi, one for each decision node Di
◦ δi : Dom(Par(Di))→ (Di)

◦ δi associates a decision with each parent asst for Di

• For example, a policy for BT might be:

δBT (c, f) = bt

δBT (c,∼ f) =∼ bt

δBT (∼ c, f) = bt

δBT (∼ c,∼ f) =∼ bt

Value of a Policy

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 377

• Value of a policy δ is the expected utility given that decision nodes are executed
according to δ

• Given associates x to the set X of all chance variables, let δ(x) denote the asst
to decision variables dictated by δ
◦ e.g., asst to D1 determined by it’s parents’ asst in x

◦ e.g., asst to D2 determined by it’s parents’ asst in x along with whatever was
assigned to D1

◦ etc.

• Value of δ:

EU(δ) =
∑

X

P (X, δ(X)U(X, δ(X))

Optimal Policies

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 378

• An optimal policy is a policy δ∗ such that EU(δ∗) ≥ EU(δ) for all policies δ

• We can use the dynamic programming principle yet again to avoid enumerating
all policies

• We can also use the structure of the decision network to use variable elimination
to aid in the computation

Computing the Best Policy

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 379

• We can work backwards as follows

• First compute optimal policy for Drug (last dec’n)
◦ for each asst to parents (C,F,BT,TR) and for each decision value (D = md,fd,none),
compute the expected value of choosing that value of D

◦ set policy choice for each value of parents to be the value of D that has max
value

◦ eg: δD(c, f, bt, pos) = md

Computing the Best Policy

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 380

• Next compute policy for BT given policy δD(C,F,BT, TR) just determined for
Drug
◦ since δD(C, F,BT, TR) is fixed, we can treat Drug as a normal random vari-

able with deterministic probabilities

◦ i.e., for any instantiation of parents, value of Drug is fixed by policy δD

◦ this means we can solve for optimal policy for BT just as before

◦ only uninstantiated vars are random vars (once we fix its parents)

Computing the Best Policy

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 381

• How do we compute these expected values?
◦ suppose we have asst < c, f, bt, pos > to parents of Drug

◦ we want to compute EU of deciding to set Drug = md

◦ we can run variable elimination!

• Treat C,F,BT, TR,Dr as evidence
◦ this reduces factors (e.g., U restricted to bt,md: depends on Dis)

◦ eliminate remaining variables (e.g., only Disease left)

◦ left with factor: U() =
∑
Dis P (Dis|c, f, bt, pos,md)U(Dis)

• We now know EU of doing Dr = md when c, f, bt, pos true

• Can do same for fd, no to decide which is best

Computing Expected Utilities

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 382

• The preceding illustrates a general phenomenon
◦ computing expected utilities with BNs is quite easy

◦ utility nodes are just factors that can be dealt with using variable elimination

EU =
∑

A,B,C

P (A,B,C)U(B,C)

=
∑

A,B,C

P (C|B)P (B|A)P (A)U(B,C)

• Just eliminate variables in the usual way

Optimizing Policies: Key Points

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 383

• If a decision node D has no decisions that follow it, we can find its policy by
instantiating each of its parents and computing the expected utility of each decision
for each parent instantiation
◦ no-forgetting means that all other decisions are instantiated (they must be

parents)

◦ its easy to compute the expected utility using VE

◦ the number of computations is quite large: we run expected utility calculations
(VE) for each parent instantiation together with each possible decision D might
allow

◦ policy: choose max decision for each parent instant’n

Optimizing Policies: Key Points

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 384

• When a decision D node is optimized, it can be treated as a random variable
◦ for each instantiation of its parents we now know what value the decision

should take

◦ just treat policy as a new CPT: for a given parent instantiation x, D gets δ(x)
with probability 1 (all other decisions get probability zero)

• If we optimize from last decision to first, at each point we can optimize a specific
decision by (a bunch of) simple VE calculations
◦ it’s successor decisions (optimized) are just normal nodes in the BNs (with

CPTs)

Decision Network Notes

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 385

• Decision networks commonly used by decision analysts to help structure decision
problems

• Much work put into computationally effective techniques to solve these
◦ common trick: replace the decision nodes with random variables at outset and

solve a plain Bayes net (a subtle but useful transformation)

• Complexity much greater than BN inference
◦ we need to solve a number of BN inference problems

◦ one BN problem for each setting of decision node parents and decision node
value

DBN-Decision Nets for Planning

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 386

Decision Network Notes

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 387

• In example on previous slide:
◦ we assume the state (of the variables at any stage) is fully observable
∗ hence all time t vars point to time t decision

◦ this means the state at time t d-separates the decision at time t-1 from the
decision at time t-2

◦ so we ignore “no-forgetting” arcs between decisions
∗ once you know the state at time t, what you did at time t-1 to get there is

irrelevant to the decision at time t-1

• If the state were not fully observable, we could not ignore the “no-forgetting” arcs

A Detailed Decision Net Example

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 388

• Setting: you want to buy a used car, but there’s a good chance it is a “lemon” (i.e.,
prone to breakdown). Before deciding to buy it, you can take it to a mechanic
for inspection. S/he will give you a report on the car, labelling it either “good”
or “bad”. A good report is positively correlated with the car being sound, while
a bad report is positively correlated with the car being a lemon.

• The report costs $50 however. So you could risk it, and buy the car without the
report.

• Owning a sound car is better than having no car, which is better than owning a
lemon.

Car Buyer’s Network

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 389

Evaluate Last Decision: Buy (1)

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 390

• EU(B|I, R) =
∑
L P (L|I, R,B)U(L,B)

• I = i, R = g:

EU(buy) = P (l|i, g)U(l, buy) + P (∼ l|i, g)U(∼ l, buy)− 50

= .18 · −600 + .82 · 1000− 50 = 662

EU(∼ buy) = P (l|i, g)U(l,∼ buy) + P (∼ l|i, g)U(∼ l,∼ buy)− 50

= −300− 50 = −350(−300 indep. of lemon)
• So optimal δBuy(i, g) = buy

Evaluate Last Decision: Buy (2)

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 391

• I = i, R = b:

EU(buy) = P (l|i, b)U(l, buy) + P (∼ l|i, b)U(∼ l, buy)− 50

= .89 · −600 + .11 · 1000− 50 = −474

EU(∼ buy) = P (l|i, b)U(l,∼ buy) + P (∼ l|i, b)U(∼ l,∼ buy)− 50

= −300− 50 = −350(−300 indep. of lemon)
• So optimal δBuy(i, b) =∼ buy

Evaluate Last Decision: Buy (3)

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 392

• I =∼ i, R = g (note: no inspection cost subtracted):

EU(buy) = P (l| ∼ i, g)U(l, buy) + P (∼ l| ∼ i, g)U(∼ l, buy)

= .5 · −600 + .5 · 1000 = 200

EU(∼ buy) = P (l| ∼ i, g)U(l,∼ buy) + P (∼ l| ∼ i, g)U(∼ l,∼ buy)− 50

= −300− 50 = −350(−300 indep. of lemon)
• So optimal δBuy(∼ i, g) =∼ buy

• So optimal policy for Buy is:
◦ δBuy(i, g) = buy; δBuy(i, b) =∼ buy; δBuy(∼ i, n) = buy

• Note: we don’t bother computing policy for (i,∼ n), (∼ i, g), or (∼ i, b), since
these occur with probability 0

Evaluate First Decision: Inspect

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 393

• EU(I) =
∑
L,R P (L,R|I)U(L, δBuy(I,R))

◦ where P (R,L|I) = P (R|L, I)P (L|I)

EU(i) = .1 · −600 + .4 · −300 + .45 · 1000 + .05 · −300− 50

= 237.5− 50 = 187.5

EU(∼ i) = P (l| ∼ i, n)U(l, buy) + P (∼ l| ∼ i, n)U(∼ l, buy)

= .5 · −600 + .5 · 1000 = 200
• So optimal δInspect(∼ i) = buy

P (R,L|I) δBuy U(L, δBuy)

g, l 0.1 buy −600− 50 = −650
g,∼ l 0.45 buy 1000− 50 = 950
b, l 0.4 ∼ buy −300− 50 = −350
b,∼ l 0.05 ∼ buy −300− 50 = −350

Value of Information

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 394

• So optimal policy is: don’t inspect, buy the car
◦ EU = 200

◦ Notice that the EU of inspecting the car, then buying it iff you get a good
report, is 237.5 less the cost of the inspection (50). So inspection not worth
the improvement in EU.

◦ But suppose inspection cost $25: then it would be worth it (EU = 237.5−25 =
212.5 > EU(∼ i))

◦ The expected value of information associated with inspection is 37.5 (it im-
proves expected utility by this amount ignoring cost of inspection). How?
Gives opportunity to change decision (∼ buy if bad).

◦ You should be willing to pay up to $37.5 for the report

Slide of this section were taken from CSC 384 Lecture Slides c©2002-2003, C. Boutilier and P. Poupart

Influence Diagrams

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 395

Up to now, we used Bayesian networks for

• modeling (in)dependence relations between random/chance variables

• quantifying the strength of these relations by assigning (conditional) probabilities

• update these probabilities after evidence observations

However, in practical, this is only a part of a more complex task: decision making
under uncertainty.

If a set of actions solves a problem, we have to choose one particular action based on
predefined criteria, e. g. costs and/or gains.

Therefore, we will now augment the current framework with special nodes that serve
these purposes.

Example: Observations and Actions

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 396

Flu Fever Sleepy

A

T

T . . . Temperature

A. . . Aspirine

• Rectangular nodes: intervening actions/decisions

• Triangular nodes: test actions/observations

• Observations may change probabilities of nodes
that are causes:

Observing T = 37◦C decreases probability of
Fever and Flu (and, of course, Sleepy).

• The impact of intervening actions can only follow
the direction of the (causal) edges:

Taking Aspirine (A) decreases the probability of
Fever and Sleepy and may result in an alike ob-
servation for T . However, it cannot change the
state for Flu since Aspirine only eases the pain
and does not kill viruses.

Example: Utilities

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 397

Mildew Fungus Infestation (dt. Mehltau-Befall)

Before the harvest, a farmer checks the state of his crop and decides whether to apply
a fungi treatment or not.

• Q — Quality of the crop

• M — Mildew infestation severity

• H — Harvest quality

• A — Action to be taken

• M∗ — Mildew infestation after action A

• U — Utility function of the harvest (i. e. the benefit)

• C — Utility functon of the action (i. e. the treatment costs)

edges leading to chance nodes

edges leading to decision nodes

edges leading to utility nodes

Example: Utilities (2)

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 398

Q M

M∗ A

H

U C

• Diamond-shaped nodes: utility functions
(costs/benefits)

• Given the quality of the crops and the mildew state,
which action maximizes the benefit?

• C(A) < 0

• U(H) ≥ 0

• Expected total utility of action A = a:

E(U(a | q,m)) = C(a) +
∑

h

U(h) · P (h | a, q,m)

Single-Action Models

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 399

A single-action model consists of

• a Bayesian network representing the chance nodes

• one decision (action) node

• a set of utility nodes

• decision nodes can affect chance and utility nodes

• utility nodes can be affected by chance and decision nodes

D

Single-Action Models (2)

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 400

Given n utility nodes U1, . . . , Un and assuming they all depend on only one respective
chance node Xi, the total expected utility given a decision D = d and (chance node)
evidence e is defined as:
vskip-2mm

E(U(d | e)) =
n∑

i=1

∑

x∈dom(Xi)

U1(x1) · P (x1 | d, e)

The optimal decision d∗ is then chosen:

d∗ = arg max
d∈dom(D)

E(U(d | e))

Influence Diagrams

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 401

An influence diagram consists of a directed acyclic graph over chance nodes, decision
nodes and utility nodes that obey the following structural properties:

• there is a directed path comprising all decision nodes

• utility nodes cannot have children

• decision and chance nodes are discrete

• utility nodes do not have states

• chance nodes are assigned potential tables given their parents (including decision
nodes)

• each utility node U gets assigned a real-valued utility function over its parents

U : ×
X∈parents(U)

dom(X)→ R

Influence Diagrams (2)

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 402

• Links into decision nodes carry no quantitative information, they only introduce
a temporal ordering.

• The required path between the decision nodes induces a temporal partition of the
chance nodes:

If there are n decision nodes, then for 1 ≤ i < n the set Ii represents all chance
nodes that have to be observed after decision Di but before decision Di+1.

• I0 is the set of chance nodes to be observed before any decision.

• In is the set of chance nodes that are not observed.

Influence Diagrams (3)

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 403

A

B

C

D

E

F

G

I

H

L

J

K

Influence Diagrams (3)

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 404

A

B

D1

V1

C

D

E

F

G

D2

D4

I

H

D3

L

J

K

V4

V2

V3

Influence Diagrams (3)

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 405

A

B

D1

V1

C

D

E

F

G

D2

D4

I

H

D3

L

J

K

V4

V2

V3

Influence Diagrams (3)

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 406

A

B

D1

V1

C

D

E

F

G

D2

D4

I

H

D3

L

J

K

V4

V2

V3

Influence Diagrams (3)

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 407

A

B

D1

V1

C

D

E

F

G

D2

D4

I

H

D3

L

J

K

V4

V2

V3

Influence Diagrams (3)

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 408

I0 I1

I3

I4

I2 = ∅

A

B

D1

V1

C

D

E

F

G

D2

D4

I

H

D3

L

J

K

V4

V2

V3

d-Separation in Influence Diagrams

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 409

To be able to use the d-separation, we need to preprocess the graphical structure of an
influence diagram as follows:

• remove all utility nodes (and the edges towards them)

• remove edges that point to decision nodes

D1

A

V1

B

T

D2

C V2

D1

A B

T

D2

C

⇒

For example: C ⊥⊥ T | B or {A, T}⊥⊥D2 | ∅.

Chain Rule

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 410

The semantics of an influence diagram disallow some probabilities:

• P (D) for a decision node D has no meaning

• P (A | D) has no meaning unless a decision d ∈ dom(D) has been chosen

Given an influence diagram G with UC being the set of chance nodes and UD being
the set of decision nodes, we can factorize P as follows:

P (UC | UD) =
∏

X∈UC

P (X | parents(X))

Solutions to Influence Diagrams

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 411

• Given: an influence diagram

• Desired: a strategy which decision(s) to make

Policy

A policy for decision Di is a mapping σi, which for any configuration of the past of
Di yields a decision for Di, i. e.

σi(I0, D1, I1, . . . , Di−1, Ii−1) ∈ dom(Di)

Strategy

A strategy for an influence diagram is a set of policies, one for each decision node.

Solution

A solution to an influence diagram is a strategy maximizing the expected utility.

Solutions to Influence Diagrams (2)

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 412

Assume, we are given an influence diagram G over U = UC ∪ UD and UV .

• UC . . . set of chance nodes

• UD . . . set of decision nodes and

• UV = {Vi} . . . set of utility nodes

Further, we know the following temporal order:

I0 ≺ D1 ≺ I1 ≺ · · · ≺ Dn ≺ In

The total utility V be defined as the sum of all utility nodes: V =
∑
i Vi

Solutions to Influence Diagrams (3)

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 413

• An optimal policy for Di is

σi(I0, D1, . . . , Ii−1) = arg max
di

∑

Ii

max
di+1

· · ·max
dn

∑

In

P (UC | UD) · V

where dx ∈ dom(Dx).

• The expected utility from following policy σi (and acting optimally in the future)
is

ρi(I0, D1, . . . , Ii−1) =
maxdi

∑
Ii maxdi+1

· · ·maxdn
∑
In P (UC | UD) · V

P (I0, . . . , Ii−1 | D1, . . . , Di−1)

where dx ∈ dom(Dx).

Solutions to Influence Diagrams (4)

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 414

• An optimal strategy yields the maximum expected utility of

MEU(G) =
∑

I0

max
d1

∑

I1

max
d2
· · ·max

dn

∑

In

P (UC | UD) · V

•
∑

Ii

means (sum-)marginalizing over all nodes in Ii

• max
di

means taking the maximum over all di ∈ dom(Di) and thus (max-)marginalizing

over Di

• Everytime Ii is marginalized out, the result is used to determine a policy for Di.

• Marginalization in reverse temporal order

• ⇒ use simplification techniques from the Bayesian network realm to simplify the
joint probability distribution P (UC | UD)

Example

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 415

D1

A

V1

B

T

D2

C V2

P (A | D1) d
(1)
1 d

(2)
1

y 0.2 0.8
n 0.8 0.2

P (B | A) y n
y 0.8 0.2
n 0.2 0.8

P (T | A,B) y, y y, n n, y n, n
y 0.9 0.5 0.5 0.1
n 0.1 0.5 0.5 0.9

P (C | B,D2) y, d
(1)
2 y, d

(2)
2 n, d

(1)
2 n, d

(2)
2

y 0.9 0.5 0.5 0.9
n 0.1 0.5 0.5 0.1

Chance potentials

V1(A,D2) d
(1)
2 d

(2)
2

y 3 0
n 0 2

V2(C)
y 10
n 0

Utility functions

Example (2)

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 416

For D2 we can read from the graph:

I0 = ∅ I1 = {T} I2 = {A,B,C}

Thus, σ2 can be solved to the following strategy:

σ2(∅, D1, {T}) d
(1)
1 d

(2)
1

y d
(1)
2 d

(1)
2

n d
(2)
2 d

(2)
2

ρ2(∅, D1, {T}) d
(1)
1 d

(2)
1

y 9.51 11.29
n 10.34 8.97

Finally, σ1 = d
(2)
1 and MEU(G) = 10.58.

