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Decision Graphs / Influence Diagrams
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• A preference ordering � is a ranking of all possible states of affairs (worlds) S
◦ these could be outcomes of actions, truth assts, states in a search problem, etc.

◦ s � t: means that state s is at least as good as t

◦ s ≻ t: means that state s is strictly preferred to t

• We insist that � is
◦ reflexive: i.e., s � s for all states s

◦ transitive: i.e., if s � t and t � w, then s � w

◦ connected: for all states s,t, either s � t or t � s



Why Impose These Conditions?
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• Structure of preference ordering imposes certain “rationality requirements” (it is
a weak ordering)

• E.g., why transitivity?
◦ Suppose you (strictly) prefer coffee to tea, tea to OJ, OJ to coffee

◦ If you prefer X to Y, you will trade me Y plus $1 for X

◦ I can construct a “money pump” and extract arbitrary amounts of money from
you



Utilities
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• Rather than just ranking outcomes, we must quantify our degree of preference
◦ e.g., how much more important is chc than ∼mess

• A utility function U : S → R associates a realvalued utility with each outcome.
◦ U(s) measures your degree of preference for s

• Note: U induces a preference ordering �U over S defined as: s �U t iff U(s) ≥
U(t)
◦ obviously �U will be reflexive, transitive, connected



Expected Utility
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• Under conditions of uncertainty, each decision d induces a distribution Prd over
possible outcomes
◦ Prd(s) is probability of outcome s under decision d

• The expected utility of decision d is defined

• The principle of maximum expected utility (MEU) states that the optimal de-
cision under conditions of uncertainty is that with the greatest expected utility.

EU(d) =
∑

s∈S

Prd(s)U(s)



Decision Problems: Uncertainty

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 366

• A decision problem under uncertainty is:
◦ a set of decisions D

◦ a set of outcomes or states S

◦ an outcome function Pr : D → ∆(S)
∗ ∆(S) is the set of distributions over S (e.g., Prd)

◦ a utility function U over S

• A solution to a decision problem under uncertainty is any d∗ ∈ D such that
EU(d∗) � EU(d) for all d ∈ D

• Again, for single-shot problems, this is trivial



Expected Utility: Notes
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• Note that this viewpoint accounts for both:
◦ uncertainty in action outcomes

◦ uncertainty in state of knowledge

◦ any combination of the two

Stochastic actions Uncertain knowledge



Expected Utility: Notes

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 368

• Why MEU? Where do utilities come from?
◦ underlying foundations of utility theory tightly couple utility with action/choice

◦ a utility function can be determined by asking someone about their preferences
for actions in specific scenarios (or “lotteries” over outcomes)

• Utility functions needn’t be unique
◦ if I multiply U by a positive constant, all decisions have same relative utility

◦ if I add a constant to U, same thing

◦ U is unique up to positive affine transformation



So What are the Complications?
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• Outcome space is large
◦ like all of our problems, states spaces can be huge

◦ don’t want to spell out distributions like Prd explicitly

◦ Solution: Bayes nets (or related: influence diagrams)

• Decision space is large
◦ usually our decisions are not one-shot actions

◦ rather they involve sequential choices (like plans)

◦ if we treat each plan as a distinct decision, decision space is too large to handle
directly

◦ Soln: use dynamic programming methods to construct optimal plans (actually
generalizations of plans, called policies. . . like in game trees)



So What are the Complications?
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• Decision networks (more commonly known as influence diagrams) provide a
way of representing sequential decision problems
◦ basic idea: represent the variables in the problem as you would in a BN

◦ add decision variables – variables that you “control”

◦ add utility variables – how good different states are



Sample Decision Network
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Decision Networks: Chance Nodes
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• Chance nodes
◦ random variables, denoted by circles

◦ as in a BN, probabilistic dependence on parents



Decision Networks: Decision Nodes
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• Decision nodes
◦ variables decision maker sets, denoted by squares

◦ parents reflect information available at time decision is to be made

• In example decision node: the actual values of Ch and Fev will be observed before
the decision to take test must be made
◦ agent can make different decisions for each instantiation of parents (i.e., poli-

cies)



Decision Networks: Decision Nodes
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• Value node
◦ specifies utility of a state, denoted by a diamond

◦ utility depends only on state of parents of value node

◦ generally: only one value node in a decision network

• Utility depends only on disease and drug



Decision Networks: Assumptions
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• Decision nodes are totally ordered
◦ decision variables D1, D2, . . . , Dn

◦ decisions are made in sequence

◦ e.g., BloodTst (yes,no) decided before Drug (fd,md,no)

• No-forgetting property
◦ any information available when decision Di is made is available when decision
Dj is made (for i < j)

◦ thus all parents of Di are parents of Dj



Policies
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• Let Par(Di) be the parents of decision node Di
◦ Dom(Par(Di)) is the set of assignments to parents

• A policy δ is a set of mappings δi, one for each decision node Di
◦ δi : Dom(Par(Di))→ (Di)

◦ δi associates a decision with each parent asst for Di

• For example, a policy for BT might be:

δBT (c, f ) = bt

δBT (c,∼ f ) =∼ bt

δBT (∼ c, f ) = bt

δBT (∼ c,∼ f ) =∼ bt



Value of a Policy
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• Value of a policy δ is the expected utility given that decision nodes are executed
according to δ

• Given associates x to the set X of all chance variables, let δ(x) denote the asst
to decision variables dictated by δ
◦ e.g., asst to D1 determined by it’s parents’ asst in x

◦ e.g., asst to D2 determined by it’s parents’ asst in x along with whatever was
assigned to D1

◦ etc.

• Value of δ:

EU(δ) =
∑

X

P (X, δ(X)U(X, δ(X))



Optimal Policies
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• An optimal policy is a policy δ∗ such that EU(δ∗) ≥ EU(δ) for all policies δ

• We can use the dynamic programming principle yet again to avoid enumerating
all policies

• We can also use the structure of the decision network to use variable elimination
to aid in the computation



Computing the Best Policy
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• We can work backwards as follows

• First compute optimal policy for Drug (last dec’n)
◦ for each asst to parents (C,F,BT,TR) and for each decision value (D = md,fd,none),
compute the expected value of choosing that value of D

◦ set policy choice for each value of parents to be the value of D that has max
value

◦ eg: δD(c, f, bt, pos) = md



Computing the Best Policy
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• Next compute policy for BT given policy δD(C,F,BT, TR) just determined for
Drug
◦ since δD(C, F,BT, TR) is fixed, we can treat Drug as a normal random vari-

able with deterministic probabilities

◦ i.e., for any instantiation of parents, value of Drug is fixed by policy δD

◦ this means we can solve for optimal policy for BT just as before

◦ only uninstantiated vars are random vars (once we fix its parents)



Computing the Best Policy
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• How do we compute these expected values?
◦ suppose we have asst < c, f, bt, pos > to parents of Drug

◦ we want to compute EU of deciding to set Drug = md

◦ we can run variable elimination!

• Treat C,F,BT, TR,Dr as evidence
◦ this reduces factors (e.g., U restricted to bt,md: depends on Dis)

◦ eliminate remaining variables (e.g., only Disease left)

◦ left with factor: U() =
∑
Dis P (Dis|c, f, bt, pos,md)U(Dis)

• We now know EU of doing Dr = md when c, f, bt, pos true

• Can do same for fd, no to decide which is best



Computing Expected Utilities
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• The preceding illustrates a general phenomenon
◦ computing expected utilities with BNs is quite easy

◦ utility nodes are just factors that can be dealt with using variable elimination

EU =
∑

A,B,C

P (A,B,C)U(B,C)

=
∑

A,B,C

P (C|B)P (B|A)P (A)U(B,C)

• Just eliminate variables in the usual way



Optimizing Policies: Key Points
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• If a decision node D has no decisions that follow it, we can find its policy by
instantiating each of its parents and computing the expected utility of each decision
for each parent instantiation
◦ no-forgetting means that all other decisions are instantiated (they must be

parents)

◦ its easy to compute the expected utility using VE

◦ the number of computations is quite large: we run expected utility calculations
(VE) for each parent instantiation together with each possible decision D might
allow

◦ policy: choose max decision for each parent instant’n



Optimizing Policies: Key Points
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• When a decision D node is optimized, it can be treated as a random variable
◦ for each instantiation of its parents we now know what value the decision

should take

◦ just treat policy as a new CPT: for a given parent instantiation x, D gets δ(x)
with probability 1 (all other decisions get probability zero)

• If we optimize from last decision to first, at each point we can optimize a specific
decision by (a bunch of) simple VE calculations
◦ it’s successor decisions (optimized) are just normal nodes in the BNs (with

CPTs)



Decision Network Notes
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• Decision networks commonly used by decision analysts to help structure decision
problems

• Much work put into computationally effective techniques to solve these
◦ common trick: replace the decision nodes with random variables at outset and

solve a plain Bayes net (a subtle but useful transformation)

• Complexity much greater than BN inference
◦ we need to solve a number of BN inference problems

◦ one BN problem for each setting of decision node parents and decision node
value



DBN-Decision Nets for Planning
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Decision Network Notes
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• In example on previous slide:
◦ we assume the state (of the variables at any stage) is fully observable
∗ hence all time t vars point to time t decision

◦ this means the state at time t d-separates the decision at time t-1 from the
decision at time t-2

◦ so we ignore “no-forgetting” arcs between decisions
∗ once you know the state at time t, what you did at time t-1 to get there is

irrelevant to the decision at time t-1

• If the state were not fully observable, we could not ignore the “no-forgetting” arcs



A Detailed Decision Net Example
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• Setting: you want to buy a used car, but there’s a good chance it is a “lemon” (i.e.,
prone to breakdown). Before deciding to buy it, you can take it to a mechanic
for inspection. S/he will give you a report on the car, labelling it either “good”
or “bad”. A good report is positively correlated with the car being sound, while
a bad report is positively correlated with the car being a lemon.

• The report costs $50 however. So you could risk it, and buy the car without the
report.

• Owning a sound car is better than having no car, which is better than owning a
lemon.



Car Buyer’s Network
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Evaluate Last Decision: Buy (1)
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• EU(B|I, R) =
∑
L P (L|I, R,B)U(L,B)

• I = i, R = g:

EU(buy) = P (l|i, g)U(l, buy) + P (∼ l|i, g)U(∼ l, buy)− 50

= .18 · −600 + .82 · 1000− 50 = 662

EU(∼ buy) = P (l|i, g)U(l,∼ buy) + P (∼ l|i, g)U(∼ l,∼ buy)− 50

= −300− 50 = −350(−300 indep. of lemon)
• So optimal δBuy(i, g) = buy



Evaluate Last Decision: Buy (2)
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• I = i, R = b:

EU(buy) = P (l|i, b)U(l, buy) + P (∼ l|i, b)U(∼ l, buy)− 50

= .89 · −600 + .11 · 1000− 50 = −474

EU(∼ buy) = P (l|i, b)U(l,∼ buy) + P (∼ l|i, b)U(∼ l,∼ buy)− 50

= −300− 50 = −350(−300 indep. of lemon)
• So optimal δBuy(i, b) =∼ buy



Evaluate Last Decision: Buy (3)
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• I =∼ i, R = g (note: no inspection cost subtracted):

EU(buy) = P (l| ∼ i, g)U(l, buy) + P (∼ l| ∼ i, g)U(∼ l, buy)

= .5 · −600 + .5 · 1000 = 200

EU(∼ buy) = P (l| ∼ i, g)U(l,∼ buy) + P (∼ l| ∼ i, g)U(∼ l,∼ buy)− 50

= −300− 50 = −350(−300 indep. of lemon)
• So optimal δBuy(∼ i, g) =∼ buy

• So optimal policy for Buy is:
◦ δBuy(i, g) = buy; δBuy(i, b) =∼ buy; δBuy(∼ i, n) = buy

• Note: we don’t bother computing policy for (i,∼ n), (∼ i, g), or (∼ i, b), since
these occur with probability 0



Evaluate First Decision: Inspect
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• EU(I) =
∑
L,R P (L,R|I)U(L, δBuy(I,R))

◦ where P (R,L|I) = P (R|L, I)P (L|I)

EU(i) = .1 · −600 + .4 · −300 + .45 · 1000 + .05 · −300− 50

= 237.5− 50 = 187.5

EU(∼ i) = P (l| ∼ i, n)U(l, buy) + P (∼ l| ∼ i, n)U(∼ l, buy)

= .5 · −600 + .5 · 1000 = 200
• So optimal δInspect(∼ i) = buy

P (R,L|I) δBuy U(L, δBuy)

g, l 0.1 buy −600− 50 = −650
g,∼ l 0.45 buy 1000− 50 = 950
b, l 0.4 ∼ buy −300− 50 = −350
b,∼ l 0.05 ∼ buy −300− 50 = −350



Value of Information
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• So optimal policy is: don’t inspect, buy the car
◦ EU = 200

◦ Notice that the EU of inspecting the car, then buying it iff you get a good
report, is 237.5 less the cost of the inspection (50). So inspection not worth
the improvement in EU.

◦ But suppose inspection cost $25: then it would be worth it (EU = 237.5−25 =
212.5 > EU(∼ i))

◦ The expected value of information associated with inspection is 37.5 (it im-
proves expected utility by this amount ignoring cost of inspection). How?
Gives opportunity to change decision (∼ buy if bad).

◦ You should be willing to pay up to $37.5 for the report

Slide of this section were taken from CSC 384 Lecture Slides c©2002-2003, C. Boutilier and P. Poupart



Influence Diagrams
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Up to now, we used Bayesian networks for

• modeling (in)dependence relations between random/chance variables

• quantifying the strength of these relations by assigning (conditional) probabilities

• update these probabilities after evidence observations

However, in practical, this is only a part of a more complex task: decision making
under uncertainty.

If a set of actions solves a problem, we have to choose one particular action based on
predefined criteria, e. g. costs and/or gains.

Therefore, we will now augment the current framework with special nodes that serve
these purposes.



Example: Observations and Actions
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Flu Fever Sleepy

A

T

T . . . Temperature

A. . . Aspirine

• Rectangular nodes: intervening actions/decisions

• Triangular nodes: test actions/observations

• Observations may change probabilities of nodes
that are causes:

Observing T = 37◦C decreases probability of
Fever and Flu (and, of course, Sleepy).

• The impact of intervening actions can only follow
the direction of the (causal) edges:

Taking Aspirine (A) decreases the probability of
Fever and Sleepy and may result in an alike ob-
servation for T . However, it cannot change the
state for Flu since Aspirine only eases the pain
and does not kill viruses.



Example: Utilities
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Mildew Fungus Infestation (dt. Mehltau-Befall)

Before the harvest, a farmer checks the state of his crop and decides whether to apply
a fungi treatment or not.

• Q — Quality of the crop

• M — Mildew infestation severity

• H — Harvest quality

• A — Action to be taken

• M∗ — Mildew infestation after action A

• U — Utility function of the harvest (i. e. the benefit)

• C — Utility functon of the action (i. e. the treatment costs)

edges leading to chance nodes

edges leading to decision nodes

edges leading to utility nodes



Example: Utilities (2)
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Q M

M∗ A

H

U C

• Diamond-shaped nodes: utility functions
(costs/benefits)

• Given the quality of the crops and the mildew state,
which action maximizes the benefit?

• C(A) < 0

• U(H) ≥ 0

• Expected total utility of action A = a:

E(U(a | q,m)) = C(a) +
∑

h

U(h) · P (h | a, q,m)



Single-Action Models
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A single-action model consists of

• a Bayesian network representing the chance nodes

• one decision (action) node

• a set of utility nodes

• decision nodes can affect chance and utility nodes

• utility nodes can be affected by chance and decision nodes

D



Single-Action Models (2)
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Given n utility nodes U1, . . . , Un and assuming they all depend on only one respective
chance node Xi, the total expected utility given a decision D = d and (chance node)
evidence e is defined as:
vskip-2mm

E(U(d | e)) =
n∑

i=1

∑

x∈dom(Xi)

U1(x1) · P (x1 | d, e)

The optimal decision d∗ is then chosen:

d∗ = arg max
d∈dom(D)

E(U(d | e))



Influence Diagrams
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An influence diagram consists of a directed acyclic graph over chance nodes, decision
nodes and utility nodes that obey the following structural properties:

• there is a directed path comprising all decision nodes

• utility nodes cannot have children

• decision and chance nodes are discrete

• utility nodes do not have states

• chance nodes are assigned potential tables given their parents (including decision
nodes)

• each utility node U gets assigned a real-valued utility function over its parents

U : ×
X∈parents(U)

dom(X)→ R



Influence Diagrams (2)
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• Links into decision nodes carry no quantitative information, they only introduce
a temporal ordering.

• The required path between the decision nodes induces a temporal partition of the
chance nodes:

If there are n decision nodes, then for 1 ≤ i < n the set Ii represents all chance
nodes that have to be observed after decision Di but before decision Di+1.

• I0 is the set of chance nodes to be observed before any decision.

• In is the set of chance nodes that are not observed.



Influence Diagrams (3)
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A

B

C

D

E

F

G

I

H

L

J

K



Influence Diagrams (3)
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A

B

D1

V1

C

D

E

F

G

D2

D4

I

H

D3

L

J

K

V4

V2

V3



Influence Diagrams (3)
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Influence Diagrams (3)
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Influence Diagrams (3)
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Influence Diagrams (3)
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I0 I1

I3

I4

I2 = ∅

A

B

D1

V1

C

D

E

F

G

D2

D4

I

H

D3

L

J

K

V4

V2

V3



d-Separation in Influence Diagrams
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To be able to use the d-separation, we need to preprocess the graphical structure of an
influence diagram as follows:

• remove all utility nodes (and the edges towards them)

• remove edges that point to decision nodes

D1

A

V1

B

T

D2

C V2

D1

A B

T

D2

C

⇒

For example: C ⊥⊥ T | B or {A, T}⊥⊥D2 | ∅.



Chain Rule
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The semantics of an influence diagram disallow some probabilities:

• P (D) for a decision node D has no meaning

• P (A | D) has no meaning unless a decision d ∈ dom(D) has been chosen

Given an influence diagram G with UC being the set of chance nodes and UD being
the set of decision nodes, we can factorize P as follows:

P (UC | UD) =
∏

X∈UC

P (X | parents(X))



Solutions to Influence Diagrams
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• Given: an influence diagram

• Desired: a strategy which decision(s) to make

Policy

A policy for decision Di is a mapping σi, which for any configuration of the past of
Di yields a decision for Di, i. e.

σi(I0, D1, I1, . . . , Di−1, Ii−1) ∈ dom(Di)

Strategy

A strategy for an influence diagram is a set of policies, one for each decision node.

Solution

A solution to an influence diagram is a strategy maximizing the expected utility.



Solutions to Influence Diagrams (2)

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 412

Assume, we are given an influence diagram G over U = UC ∪ UD and UV .

• UC . . . set of chance nodes

• UD . . . set of decision nodes and

• UV = {Vi} . . . set of utility nodes

Further, we know the following temporal order:

I0 ≺ D1 ≺ I1 ≺ · · · ≺ Dn ≺ In

The total utility V be defined as the sum of all utility nodes: V =
∑
i Vi



Solutions to Influence Diagrams (3)
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• An optimal policy for Di is

σi(I0, D1, . . . , Ii−1) = arg max
di

∑

Ii

max
di+1

· · ·max
dn

∑

In

P (UC | UD) · V

where dx ∈ dom(Dx).

• The expected utility from following policy σi (and acting optimally in the future)
is

ρi(I0, D1, . . . , Ii−1) =
maxdi

∑
Ii maxdi+1

· · ·maxdn
∑
In P (UC | UD) · V

P (I0, . . . , Ii−1 | D1, . . . , Di−1)

where dx ∈ dom(Dx).



Solutions to Influence Diagrams (4)
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• An optimal strategy yields the maximum expected utility of

MEU(G) =
∑

I0

max
d1

∑

I1

max
d2
· · ·max

dn

∑

In

P (UC | UD) · V

•
∑

Ii

means (sum-)marginalizing over all nodes in Ii

• max
di

means taking the maximum over all di ∈ dom(Di) and thus (max-)marginalizing

over Di

• Everytime Ii is marginalized out, the result is used to determine a policy for Di.

• Marginalization in reverse temporal order

• ⇒ use simplification techniques from the Bayesian network realm to simplify the
joint probability distribution P (UC | UD)
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D1

A

V1

B

T

D2

C V2

P (A | D1) d
(1)
1 d

(2)
1

y 0.2 0.8
n 0.8 0.2

P (B | A) y n
y 0.8 0.2
n 0.2 0.8

P (T | A,B) y, y y, n n, y n, n
y 0.9 0.5 0.5 0.1
n 0.1 0.5 0.5 0.9

P (C | B,D2) y, d
(1)
2 y, d

(2)
2 n, d

(1)
2 n, d

(2)
2

y 0.9 0.5 0.5 0.9
n 0.1 0.5 0.5 0.1

Chance potentials

V1(A,D2) d
(1)
2 d

(2)
2

y 3 0
n 0 2

V2(C)
y 10
n 0

Utility functions
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For D2 we can read from the graph:

I0 = ∅ I1 = {T} I2 = {A,B,C}

Thus, σ2 can be solved to the following strategy:

σ2(∅, D1, {T}) d
(1)
1 d

(2)
1

y d
(1)
2 d

(1)
2

n d
(2)
2 d

(2)
2

ρ2(∅, D1, {T}) d
(1)
1 d

(2)
1

y 9.51 11.29
n 10.34 8.97

Finally, σ1 = d
(2)
1 and MEU(G) = 10.58.


