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Learning Graphical Models



Prerequisites: Structure vs. Parameters
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• V = {G,M, F}
• dom(G) = {g, g}
• dom(M) = {m,m}
• dom(F) = {f, f}

• The potential tables’ layout is determined by the graph structure.

• The parameters (i. e. the table entries) can be easily estimated from
the database, e. g.:

P̂ (f | g,m) =
#(F = f,G = g,M = m)

#(G = g,M = m)



Prerequisites: Likelihood of a Database
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Flu G g g g g g g g g
Malaria M m m m m m m m m
Fever F f f f f f f f f
# 34 6 2 8 16 24 0 10

Database D with 100 en-
tries for 3 attributes.

P (D | G) =
100∏
h=1

P (ch | G)

=

Case 1︷ ︸︸ ︷
P (g,m, f) · · · · ·

Case 10︷ ︸︸ ︷
P (g,m, f)︸ ︷︷ ︸

10 times

· · ·
Case 51︷ ︸︸ ︷

P (g,m, f) · · · · ·
Case 58︷ ︸︸ ︷

P (g,m, f)︸ ︷︷ ︸
8 times

· · ·
Case 67︷ ︸︸ ︷

P (g,m, f) · · · · ·
Case 100︷ ︸︸ ︷
P (g,m, f)︸ ︷︷ ︸

34 times

=

‖︷ ︸︸ ︷
P (g,m, f)10︸ ︷︷ ︸

‖
· · ·

‖︷ ︸︸ ︷
P (g,m, f)8︸ ︷︷ ︸

‖
· · ·

‖︷ ︸︸ ︷
P (g,m, f)34︸ ︷︷ ︸

‖

=
︷ ︸︸ ︷
P (f | g,m)10P (g)10P (m)10 · · ·

︷ ︸︸ ︷
P (f | g,m)8P (g)8P (m)8 · · ·

︷ ︸︸ ︷
P (f | g,m)34P (g)34P (m)34



Prerequisites: Likelihood of a Database (2)
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P (D | G) =
100∏
h=1

P (ch | G)

= P (f | g,m)10P (f | g,m)0P (f | g,m)24P (f | g,m)16

· P (f | g,m)8P (f | g,m)2P (f | g,m)6P (f | g,m)34

· P (g)50P (g)50P (m)20P (m)80

The last equation shows the principle of reordering the factors:

• First, we sort by attributes (here: F, G then M).

• Within the same attributes, factors are grouped by the parent attributes’ values
combinations (here: for F: (g,m), (g,m), (g,m) and (g,m)).

• Finally, it is sorted by attribute values (here: for F: first f, then f).



Prerequisites: Likelihood of a Database (3)
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General likelihood of a database D given a DAG G:

P (D | G) =
n∏
i=1

qi∏
j=1

ri∏
k=1

θ
αijk
ijk

General potential table:

P (Ai = aik | parents(Ai) = Qij) = θijk

ri∑
k=1

θijk = 1



Learning the Structure of Graphical Models from Data
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(A) Test whether a distribution is decomposable w. r. t. a given graph.

This is the most direct approach. It is not bound to a graphical representation,
but can also be carried out w.r.t. other representations of the set of subspaces to
be used to compute the (candidate) decomposition of the given distribution.

(B) Find a suitable graph by measuring the strength of dependences.

This is a heuristic, but often highly successful approach, which is based on the
frequently valid assumption that in a conditional independence graph an attribute
is more strongly dependent on adjacent attributes than on attributes that are not
directly connected to them.

(C) Find an independence map by conditional independence tests.

This approach exploits the theorems that connect conditional independence graphs
and graphs that represent decompositions. It has the advantage that a single
conditional independence test, if it fails, can exclude several candidate graphs.
However, wrong test results can thus have severe consequences.



Evaluation Measures and Search Methods
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• All learning algorithms for graphical models consist of

an evaluation measure or scoring function
and a (heuristic) search method, e. g.

◦ conditional independence search

◦ greedy search (spanning tree or K2 algorithm)

◦ guided random search (simulated annealing, genetic algorithms)

• An exhaustive search over all graphs is too expensive:

◦ 2(n2) possible undirected graphs for n attributes.

◦ f(n) =
n∑
i=1

(−1)i+1

(
n
i

)
2i(n−i)f(n− i) possible directed acyclic graphs.

8 possible undirected graphs with 3 nodes



Evaluation Measures / Scoring Functions
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Relational Networks

• Hartley Information Gain

• Conditional Hartley Information Gain

Probabilistic Networks

• χ2-Measure

• Mutual Information / Cross Entropy / Information Gain

• (Symmetric) Information Gain Ratio

• (Symmetric/Modified) Gini Index

• Bayesian Measures (K2 metric, BDeu metric)

• Measures based on the Minimum Description Length Principle

• Other measures that are known from Decision Tree Induction



Learning the Structure of Graphical Models from Data
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(A) Test whether a distribution is decomposable w. r. t. a given graph.

This is the most direct approach. It is not bound to a graphical representation,
but can also be carried out w.r.t. other representations of the set of subspaces to
be used to compute the (candidate) decomposition of the given distribution.

(B) Find a suitable graph by measuring the strength of dependences.

This is a heuristic, but often highly successful approach, which is based on the
frequently valid assumption that in a conditional independence graph an attribute
is more strongly dependent on adjacent attributes than on attributes that are not
directly connected to them.

(C) Find an independence map by conditional independence tests.

This approach exploits the theorems that connect conditional independence graphs
and graphs that represent decompositions. It has the advantage that a single
conditional independence test, if it fails, can exclude several candidate graphs.
However, wrong test results can thus have severe consequences.



Testing for Decomposability: Comparing Relations
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• In order to evaluate a graph structure, we need a measure that compares the actual
relation to the relation represented by the graph.

• For arbitrary R, E1, and E2 it is

R(E1 ∩ E2) ≤ min{R(E1), R(E2)}.
• This relation entails that for any family M of subsets of U it is always:

∀a1 ∈ dom(A1) : . . . ∀an ∈ dom(An) :

rU

⎛⎝ ∧
Ai∈U

Ai = ai

⎞⎠ ≤ min
M∈M

⎧⎨⎩rM
⎛⎝ ∧
Ai∈M

Ai = ai

⎞⎠⎫⎬⎭.
• Therefore: Measure the quality of a family M as:

∑
a1∈dom(A1)

· · · ∑
an∈dom(An)

⎛⎝ min
M∈M

⎧⎨⎩rM
⎛⎝ ∧
Ai∈M

Ai = ai

⎞⎠⎫⎬⎭−rU
⎛⎝ ∧
Ai∈U

Ai = ai

⎞⎠⎞⎠
Intuitively: Count the number of additional tuples.



Direct Test for Decomposability: Relational
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Comparing Probability Distributions
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Definition: Let P1 and P2 be two strictly positive probability distributions on the
same set E of events. Then

IKLdiv(P1, P2) =
∑
F∈E

P1(F ) log2
P1(F )

P2(F )

is called the Kullback-Leibler information divergence of P1 and P2.

• The Kullback-Leibler information divergence is non-negative.

• It is zero if and only if P1 ≡ P2.

• Therefore it is plausible that this measure can be used to assess the quality of the
approximation of a given multi-dimensional distribution P1 by the distribution P2
that is represented by a given graph:

The smaller the value of this measure, the better the approximation.



Excursus: Shannon Entropy
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Let X be a random variable with domain dom(X) = {x1, . . . , xn}. Then,

H(Shannon)(X) = −
n∑
i=1

P (xi) log2P (xi)

is called the Shannon entropy of (the probability distribution of) X ,
where 0 · log2 0 = 0 is assumed.

Intuitively: Expected number of yes/no questions that have to be asked
in order to determine the obtaining value of X.

◦ Suppose there is an oracle, which knows the obtaining value,
but responds only if the question can be answered with “yes” or “no”.

◦ A better question scheme than asking for one alternative after the other can easily
be found: Divide the set into two subsets of about equal size.

◦ Ask for containment in an arbitrarily chosen subset.

◦ Apply this scheme recursively → number of questions bounded by #log2 n$.



Question/Coding Schemes
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P (x1) = 0.10, P (x2) = 0.15, P (x3) = 0.16, P (x4) = 0.19, P (x5) = 0.40

Shannon entropy: −∑i P (xi) log2P (xi) = 2.15 bit/symbol

Linear Traversal

x4, x5

x3, x4, x5

x2, x3, x4, x5

x1, x2, x3, x4, x5

0.10 0.15 0.16 0.19 0.40
x1 x2 x3 x4 x5
1 2 3 4 4

Code length: 3.24 bit/symbol
Code efficiency: 0.664

Equal Size Subsets

x1, x2, x3, x4, x5

0.25 0.75
x1, x2 x3, x4, x5

0.59
x4, x5

0.10 0.15 0.16 0.19 0.40
x1 x2 x3 x4 x5
2 2 2 3 3

Code length: 2.59 bit/symbol
Code efficiency: 0.830



Question/Coding Schemes
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• Splitting into subsets of about equal size can lead to a bad arrangement of the
alternatives into subsets → high expected number of questions.

• Good question schemes take the probability of the alternatives into account.

• Shannon-Fano Coding (1948)

◦ Build the question/coding scheme top-down.

◦ Sort the alternatives w.r.t. their probabilities.

◦ Split the set so that the subsets have about equal probability
(splits must respect the probability order of the alternatives).

• Huffman Coding (1952)

◦ Build the question/coding scheme bottom-up.

◦ Start with one element sets.

◦ Always combine those two sets that have the smallest probabilities.



Question/Coding Schemes
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P (x1) = 0.10, P (x2) = 0.15, P (x3) = 0.16, P (x4) = 0.19, P (x5) = 0.40

Shannon entropy: −∑i P (xi) log2P (xi) = 2.15 bit/symbol

Shannon–Fano Coding (1948)

x1, x2, x3, x4, x5

0.25

0.41

x1, x2

x1, x2, x3
0.59
x4, x5

0.10 0.15 0.16 0.19 0.40
x1 x2 x3 x4 x5
3 3 2 2 2

Code length: 2.25 bit/symbol
Code efficiency: 0.955

Huffman Coding (1952)

x1, x2, x3, x4, x5

0.60
x1, x2, x3, x4

0.25 0.35
x1, x2 x3, x4

0.10 0.15 0.16 0.19 0.40
x1 x2 x3 x4 x5
3 3 3 3 1

Code length: 2.20 bit/symbol
Code efficiency: 0.977



Question/Coding Schemes
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• It can be shown that Huffman coding is optimal if we have to determine the
obtaining alternative in a single instance.
(No question/coding scheme has a smaller expected number of questions.)

• Only if the obtaining alternative has to be determined in a sequence of (indepen-
dent) situations, this scheme can be improved upon.

• Idea: Process the sequence not instance by instance, but combine two, three
or more consecutive instances and ask directly for the obtaining combination of
alternatives.

• Although this enlarges the question/coding scheme, the expected number of ques-
tions per identification is reduced (because each interrogation identifies the ob-
taining alternative for several situations).

• However, the expected number of questions per identification cannot be made ar-
bitrarily small. Shannon showed that there is a lower bound, namely the Shannon
entropy.



Interpretation of Shannon Entropy
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P (x1) = 1
2, P (x2) = 1

4, P (x3) = 1
8, P (x4) = 1

16, P (x5) = 1
16

Shannon entropy: −∑i P (xi) log2 P (xi) = 1.875 bit/symbol

If the probability distribution allows for a
perfect Huffman code (code efficiency 1),
the Shannon entropy can easily be inter-
preted as follows:

−∑
i

P (xi) log2P (xi)

=
∑
i

P (xi)︸ ︷︷ ︸
occurrence
probability

· log2
1

P (xi)︸ ︷︷ ︸
path length

in tree

.

In other words, it is the expected number
of needed yes/no questions.

Perfect Question Scheme

x4, x5

x3, x4, x5

x2, x3, x4, x5

x1, x2, x3, x4, x5

1
2

1
4

1
8

1
16

1
16

x1 x2 x3 x4 x5
1 2 3 4 4

Code length: 1.875 bit/symbol
Code efficiency: 1



Reference to Kullback-Leibler Information Divergence
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Information Content

The information content of an event F ∈ E that occurs with
probability P (F ) is defined as

InfP (F ) = − log2 P (F ).

Intention:

• Neglect all subjective references to F and let the information content
be determined by P (F ) only.

• The information of a certain message (P (Ω) = 1) is zero.

• The less frequent a message occurs (i. e., the less probable it is), the more inter-
esting is the fact of its occurrence:

P (F1) < P (F2) ⇒ InfP (F1) > InfP (F2)

• We only use one bit to encode the occurrence of a message with probability 1
2.



Excursus: Information Content
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The function Inf fulfills all these requirements:

Inf

P (F )

1

2

1

• The expected value (w. r. t. to a probability distri-
bution P1) of InfP2 can be written as follows:

EP1(InfP2) = − ∑
F∈E

P1(F ) · log2P2(F )

• H(Shannon)(P ) is the expected value (in bits) of
the information content that is related to the oc-
currence of the events F ∈ E :

H(P ) = EP (InfP )

H(Shannon)(P ) =
∑
F∈E

P (F )︸ ︷︷ ︸
Probability of F

· (− log2 P (F ))︸ ︷︷ ︸
Information content of F



Excursus: Approximation Measure
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• Let P ∗ be a hypothetical probability distribution and P a (given or known) prob-
ability distribution that acts as a reference.

• We can compare both P ∗ and P by computing the difference of the expected
information contents:

EP (InfP ∗)− EP (InfP ) = − ∑
F∈E

P (F ) log2 P
∗(F ) +

∑
F∈E

P (F ) log2 P (F )

=
∑
F∈E

(
P (F ) log2P (F )− P (F ) log2 P

∗(F )
)

=
∑
F∈E

P (F )
(

log2P (F )− log2P
∗(F )

)

IKLdiv(P, P ∗) =
∑
F∈E

P (F ) log2
P (F )

P ∗(F )



Direct Test for Decomposability: Probabilistic
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Upper numbers: The Kullback-Leibler information divergence of the original
distribution and its approximation.

Lower numbers: The binary logarithms of the probability of an example database
(log-likelihood of data).
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(A) Test whether a distribution is decomposable w. r. t. a given graph.

This is the most direct approach. It is not bound to a graphical representation,
but can also be carried out w.r.t. other representations of the set of subspaces to
be used to compute the (candidate) decomposition of the given distribution.

(B) Find a suitable graph by measuring the strength of dependences.

This is a heuristic, but often highly successful approach, which is based on the
frequently valid assumption that in a conditional independence graph an attribute
is more strongly dependent on adjacent attributes than on attributes that are not
directly connected to them.

(C) Find an independence map by conditional independence tests.

This approach exploits the theorems that connect conditional independence graphs
and graphs that represent decompositions. It has the advantage that a single
conditional independence test, if it fails, can exclude several candidate graphs.
However, wrong test results can thus have severe consequences.



Strength of Marginal Dependences: Relational
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• Learning a relational network consists in finding those subspace, for which the
intersection of the cylindrical extensions of the projections to these subspaces
approximates best the set of possible world states, i. e. contains as few additional
tuples as possible.

• Since computing explicitly the intersection of the cylindrical extensions of the pro-
jections and comparing it to the original relation is too expensive, local evaluation
functions are used, for instance:

subspace color × shape shape × size size × color

possible combinations 12 9 12
occurring combinations 6 5 8
relative number 50% 56% 67%

• The relational network can be obtained by interpreting the relative numbers as
edge weights and constructing the minimum weight spanning tree.



Strength of Marginal Dependences: Relational
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Hartley information needed to determine

coordinates: log2 4 + log2 3 = log2 12 ≈ 3.58
coordinate pair: log2 6 ≈ 2.58

gain: log2 12− log2 6 = log2 2 = 1

Definition: Let A and B be two attributes and R a discrete possibility measure with
∃a ∈ dom(A) : ∃b ∈ dom(B) : R(A = a,B = b) = 1. Then

I
(Hartley)
gain (A,B) = log2

⎛⎝∑
a∈dom(A)R(A = a)

⎞⎠ + log2

⎛⎝∑
b∈dom(B)R(B = b)

⎞⎠
− log2

⎛⎝∑
a∈dom(A)

∑
b∈dom(B)R(A = a,B = b)

⎞⎠

= log2

(∑
a∈dom(A)R(A = a)

)
·
(∑

b∈dom(B)R(B = b)
)

∑
a∈dom(A)

∑
b∈dom(B)R(A = a,B = b)

,

is called the Hartley information gain of A and B w.r.t. R.



Strength of Marginal Dependences: Simple Example
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• Intuitive interpretation of Hartley information gain:
The binary logarithm measures the number of questions to find the obtaining value
with a scheme like a binary search. Thus Hartley information gain measures the
reduction in the number of necessary questions.

• Results for the simple example:

I
(Hartley)
gain (color, shape) = 1.00 bit

I
(Hartley)
gain (shape, size) ≈ 0.86 bit

I
(Hartley)
gain (color, size) ≈ 0.58 bit

• Applying the Kruskal algorithm yields as a learning result:
�
�

�
�color

�
�

�
�shape

�
�

�
�size

As we know, this graph describes indeed a decomposition of the relation.



Strength of Marginal Dependences: Probabilistic
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Mutual Information / Cross Entropy / Information Gain

Based on Shannon Entropy H = −
n∑
i=1

pi log2 pi (Shannon 1948)

Igain(A,B) = H(A) − H(A | B)

=

︷ ︸︸ ︷
−∑
∀a
P (a) log2 P (a) −

︷ ︸︸ ︷∑
∀b
P (b)

⎛⎝−∑
∀a
P (a|b) log2P (a|b)

⎞⎠

H(A) Entropy of the distribution on attribute A

H(A|B) Expected entropy of the distribution on attribute A
if the value of attribute B becomes known

H(A)−H(A|B) Expected reduction in entropy or information gain



Strength of Marginal Dependences: Probabilistic
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Igain(A,B) = −∑
∀a
P (a) log2 P (a)−∑

∀b
P (b)

⎛⎝−∑
∀a
P (a|b) log2 P (a|b)

⎞⎠
= −∑

∀a

∑
∀b
P (a, b) log2 P (a) +

∑
∀b

∑
∀a
P (a|b)P (b) log2 P (a|b)

=
∑
∀a

∑
∀b
P (a, b)

(
log2

P (a, b)

P (b)
− log2 P (a)

)

=
∑
∀a

∑
∀b
P (a, b) log2

P (a, b)

P (a)P (b)

The information gain equals the Kullback-Leibler information divergence between the
actual distribution P (A,B) and a hypothetical distribution P ∗ in which A and B are
marginal independent:

P ∗(A,B) = P (A) · P (B)

Igain(A,B) = IKLdiv(P, P ∗)



Information Gain: Simple Example
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projection to
subspace

product of
marginals

s m l s m l

small
medium

large

small
medium

large

information
gain

0.429 bit
40 180 20 160
12 6 120 102
168 144 30 18

88 132 68 112
53 79 41 67
79 119 61 101

0.211 bit
20 180 200
40 160 40
180 120 60

96 184 120
58 110 72
86 166 108

0.050 bit
50 115 35 100
82 133 99 146
88 82 36 34

66 99 51 84
101 152 78 129
53 79 41 67



Strength of Marginal Dependences: Simple Example
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• Results for the simple example:

Igain(color, shape) = 0.429 bit

Igain(shape, size) = 0.211 bit

Igain(color, size) = 0.050 bit

• Applying the Kruskal algorithm yields as a learning result:
�
�

�
�color

�
�

�
�shape

�
�

�
�size

• It can be shown that this approach always yields the best possible spanning tree
w.r.t. Kullback-Leibler information divergence (Chow and Liu 1968).

• In an extended form this also holds for certain classes of graphs
(for example, tree-augmented naive Bayes classifiers).

• For more complex graphs, the best graph need not be found
(there are counterexamples, see below).
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medium

small

large
medium

small

large
medium

small

large
medium

small
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A

C D

B

pA a1 a2

0.5 0.5

pB b1 b2
0.5 0.5

pC|AB a1b1 a1b2 a2b1 a2b2

c1 0.9 0.3 0.3 0.5
c2 0.1 0.7 0.7 0.5

pD|AB a1b1 a1b2 a2b1 a2b2

d1 0.9 0.3 0.3 0.5
d2 0.1 0.7 0.7 0.5

pAD a1 a2

d1 0.3 0.2
d2 0.2 0.3

pBD b1 b2
d1 0.3 0.2
d2 0.2 0.3

pCD c1 c2

d1 0.31 0.19
d2 0.19 0.31

• Greedy parent selection can lead to suboptimal results
if there is more than one path connecting two attributes.

• Here: the edge C → D is selected first.
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• Optimum Weight Spanning Tree Construction

◦ Compute an evaluation measure on all possible edges
(two-dimensional subspaces).

◦ Use the Kruskal algorithm to determine an optimum weight spanning tree.

• Greedy Parent Selection (for directed graphs)

◦ Define a topological order of the attributes (to restrict the search space).

◦ Compute an evaluation measure on all single attribute hyperedges.

◦ For each preceding attribute (w.r.t. the topological order):
add it as a candidate parent to the hyperedge and
compute the evaluation measure again.

◦ Greedily select a parent according to the evaluation measure.

◦ Repeat the previous two steps until no improvement results from them.
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• Idea: Compute the probability of a directed graph �G given the database D
(Bayesian approach by [Cooper and Herskovits 1992])

�Gopt = arg max
�G

P (�G | D) = arg max
�G

P (�G,D)

P (D)

= arg max
�G

P (�G,D)

⇒ Find an equation for P (�G,D).

• In order to compare two graphs, it is sufficient to compute the Bayes factor

P (�G1 | D)

P (�G2 | D)
=
P (�G1, D)

P (�G2, D)

In both ways one can avoid computing the probability P (D).
Assuming equal probability of all graphs simplifies further.
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Model Averaging

We first consider P (�G,D) to be the marginalization of P (�G,Θ, D)
over all possible parameters Θ.

P (�G,D) =
∫

Θ
P (�G,Θ, D) dΘ

=
∫

Θ
P (D | �G,Θ)P (�G,Θ) dΘ

=
∫

Θ
P (D | �G,Θ) f(Θ | �G)P (�G) dΘ

= P (�G)︸ ︷︷ ︸
A priori prob.

∫
Θ
P (D | �G,Θ)︸ ︷︷ ︸
Likelihood of D

f(Θ | �G)︸ ︷︷ ︸
Parameter densities

dΘ
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• The a priori distribution P (�G) can be used to bias the evaluation measure towards
user-specific network structures.

• Substitute the likelihood P (D | �G,Θ) for its specific form:

P (�G,D) = P (�G)
∫

Θ

⎡⎣ n∏
i=1

qi∏
j=1

ri∏
k=1

θ
αijk
ijk

⎤⎦
︸ ︷︷ ︸

P (D| �G,Θ)

f(Θ | �G) dΘ

• See slide 300 for the derivation of the likelihood term.
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• The parameter densities f(Θ | �G) describe the probabilities of the parameters
given a network structure.

• They are densities of second order (distribution over distributions)

• For fixed i and j, a vector (θij1, . . . , θijri) represents a probability distribution,
namely the j-th column of the i-th potential table.

• Assuming mutual independence between the potential tables, we arrive
for f(Θ | �G) at the following:

f(Θ | �G) =
n∏
i=1

qi∏
j=1

f(θij1, . . . , θijri)
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• Thus, we can further concretize the equation for P (�G,D):

P (�G,D) = P (�G)
∫
· · ·
∫

θijk

⎡⎣ n∏
i=1

qi∏
j=1

ri∏
k=1

θ
αijk
ijk

⎤⎦ ·
⎡⎣ n∏
i=1

qi∏
j=1

f(θij1, . . . , θijri)

⎤⎦ dθ111, . . . , dθnqnrn

= P (�G)
n∏
i=1

qi∏
j=1

∫
· · ·
∫

θijk

⎡⎣ ri∏
k=1

θ
αijk
ijk

⎤⎦ · f(θij1, . . . , θijri) dθij1, . . . , dθijri
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• A last assumption: For fixed i and j the density f(θij1, . . . , θijri) is uniform:

f(θij1, . . . , θijri) = (ri − 1)!

• It simplifies P (�G,D) further:

P (�G,D) = P (�G)
n∏
i=1

qi∏
j=1

∫
· · ·
∫

θijk

⎡⎣ ri∏
k=1

θ
αijk
ijk

⎤⎦ · (ri − 1)! dθij1, . . . , dθijri

= P (�G)
n∏
i=1

qi∏
j=1

(ri − 1)!
∫
· · ·
∫

θijk

ri∏
k=1

θ
αijk
ijk dθij1, . . . , dθijri

︸ ︷︷ ︸
Dirichlet’s integral =

∏ri
k=1 αijk!

(
∑ri
k=1 αijk + ri − 1)!
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• We finally arrive at an expression for P (�G,D):

P (�G,D) = K2(�G | D) = P (�G)
n∏
i=1

qi∏
j=1

⎡⎣ (ri − 1)!

(Nij + ri − 1)!

ri∏
k=1

αijk!

⎤⎦

n number of attributes describing the domain under consideration

ri number of values of the i-th attribute Ai, i. e., ri = |dom(Ai)|
qi number of instantiations of the parents of the i-th attribute in �G,

i. e., qi =
∏
Aj∈parents(Ai)

ri =
∏
Aj∈parents(Ai)

|dom(Ai)|
αijk number of sample cases in which the i-th attribute has its k-th value

and its parents in �G have their j-th instantiation

Nij =
ri∑
k=1

αijk
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• Global — Refers to the outer product: The total value of the K2 metric is the
product over all K2 values of attribute families.

• Local — The likelihood equation assumes that given a parents instantiation, the
probabilities for the respective child attribute values are mutual independent. This
is reflected in the product over all qi different parent attributes’ value combinations
of attribute Ai.

We exploit the global property to write the K2 metric as follows:

K2(�G | D) = P (�G)
n∏
i=1

K2local(Ai | D)

with

K2local(Ai | D) =
qi∏
j=1

⎡⎣ (ri − 1)!

(Nij + ri − 1)!

ri∏
k=1

αijk!

⎤⎦
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Prerequisites:

• Choose a topological order on the attributes (A1, . . . , An)

• Start out with a network that consists of n isolated nodes.

• Let ζi be the quality of the i-th attribute given the (tentative) set of parent
attributes M :

ζi(M) = K2local(Ai | D) with parents(Ai) = M
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Execution:

1. Determine for the parentless node Ai the quality measure ζi(∅)
2. Evaluate for every predecessor {A1, . . . , Ai−1} whether inserted as parent of Ai,

the quality measure would increase. Let Y be the node that yields the highest
quality (increase):

Y = arg max
1≤l≤i−1

ζi({Al})

This best quality measure be ζ = ζi({Y }).
3. If ζ is better than ζi(∅), Y is inserted permanently as a

parent node: parents(Ai) = parents(Ai) ∪ {Y }
4. Repeat steps 2 and 3 to increase the parent set until no quality increase can be

achieved or no nodes are left or a predefined maximum number of parent nodes
per node is reached.
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1: for i← 1 . . . n do // Initialization
2: parents(Ai) ← ∅
3: end for

4: for i← n, . . . , 1 do // Iteration
5: repeat

6: Select Y ∈ {A1, . . . , Ai−1} \ parents(Ai),
which maximizes ζ = ζi(parents(Ai) ∪ {Y })

7: δ ← ζ − ζi(parents(Ai))

8: if δ > 0 then

9: parents(Ai) ← parents(Ai) ∪ {Y }
10: end if

11: until δ ≤ 0 or parents(Ai) = {A1, . . . , Ai−1} or |parents(Ai)| = nmax

12: end for
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Step 1 – Edgeless
graph

Step 2 – Insert M
temporarily.

Step 3 – Insert KA
temporarily.

Step 4 – Node L
maximizes K2 value
and thus is added
permantently.
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Step 5 – Insert M
temporarily.

Step 6 – KA is
added as second par-
ent node of KV.

Step 7 – M does not
increase the quality
of the network if in-
sertes as third parent
node.

Step 8 – Insert KA
temporarily.
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Step 9 – Node L be-
comes perent node
of M.

Step 10 – Adding
KA does not in-
crease overall net-
work quaility.

Step 11 – Node L
becomes parent node
of KA.

Result
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(A) Test whether a distribution is decomposable w. r. t. a given graph.

This is the most direct approach. It is not bound to a graphical representation,
but can also be carried out w.r.t. other representations of the set of subspaces to
be used to compute the (candidate) decomposition of the given distribution.

(B) Find a suitable graph by measuring the strength of dependences.

This is a heuristic, but often highly successful approach, which is based on the
frequently valid assumption that in a conditional independence graph an attribute
is more strongly dependent on adjacent attributes than on attributes that are not
directly connected to them.

(C) Find an independence map by conditional independence tests.

This approach exploits the theorems that connect conditional independence graphs
and graphs that represent decompositions. It has the advantage that a single
conditional independence test, if it fails, can exclude several candidate graphs.
However, wrong test results can thus have severe consequences.
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General Idea: Exploit the theorems that connect conditional independence graphs
and graphs that represent decompositions.

In other words: we want a graph describing a decomposition,
but we search for a conditional independence graph.

This approach has the advantage that a single conditional independence test,
if it fails, can exclude several candidate graphs.

Assumptions:

• Faithfulness: The domain under consideration can be accurately described with
a graphical model (more precisely: there exists a perfect map).

• Reliability of Tests: The result of all conditional independence tests coincides
with the actual situation in the underlying distribution.

• Other assumptions that are specific to individual algorithms.
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• The Hartley information gain can be used directly to test for (approximate)
marginal independence.

attributes relative number of Hartley information gain
possible value combinations

color, shape 6
3·4 = 1

2 = 50% log2 3 + log2 4− log2 6 = 1

color, size 8
3·4 = 2

3 ≈ 67% log2 3 + log2 4− log2 8 ≈ 0.58

shape, size 5
3·3 = 5

9 ≈ 56% log2 3 + log2 3− log2 5 ≈ 0.85

• In order to test for (approximate) conditional independence:

◦ Compute the Hartley information gain for each possible instantiation of the
conditioning attributes.

◦ Aggregate the result over all possible instantiations, for instance, by simply
averaging them.
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large
medium

small

color Hartley information gain

log2 1 + log2 2− log2 2 = 0

log2 2 + log2 3− log2 4 ≈ 0.58
log2 1 + log2 1− log2 1 = 0

log2 2 + log2 2− log2 2 = 1

average: ≈ 0.40

shape Hartley information gain

log2 2 + log2 2− log2 4 = 0

log2 2 + log2 1− log2 2 = 0

log2 2 + log2 2− log2 4 = 0

average: = 0

size Hartley information gain

large log2 2 + log2 1− log2 2 = 0

medium log2 4 + log2 3− log2 6 = 1

small log2 2 + log2 1− log2 2 = 0

average: ≈ 0.33
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• The Shannon information gain can be used directly to test for (approximate)
marginal independence.

• Conditional independence tests may be carried out by summing the information
gain for all instantiations of the conditioning variables:

Igain(A,B | C)

=
∑

c∈dom(C)

P (c)
∑

a∈dom(A)

∑
b∈dom(B)

P (a, b | c) log2
P (a, b | c)

P (a | c) P (b | c),

where P (c) is an abbreviation of P (C = c) etc.

• Since Igain(color, size | shape) = 0 indicates the only conditional independence,
we get the following learning result:

�
�

�
�color

�
�

�
�shape

�
�

�
�size
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Algorithm: (conditional independence graph construction)

1. For each pair of attributes A and B, search for a set SAB ⊆ U\{A,B} such that
A⊥⊥B | SAB holds in P̂ , i.e., A and B are independent in P̂ conditioned on SAB.
If there is no such SAB, connect the attributes by an undirected edge.

2. For each pair of non-adjacent variables A and B with a common neighbour C (i.e.,
C is adjacent to A as well as to B), check whether C ∈ SAB.

• If it is, continue.

• If it is not, add arrow heads pointing to C, i.e., A→ C ← B.

3. Recursively direct all undirected edges according to the rules:

• If for two adjacent variables A and B there is a strictly directed path from A to
B not including A→ B, then direct the edge towards B.

• If there are three variables A, B, and C with A and B not adjacent, B−C, and
A→ C, then direct the edge C → B.
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Suppose that the following conditional independence statements hold:

A⊥⊥
P̂
B | ∅ B⊥⊥

P̂
A | ∅

A⊥⊥
P̂
D | C D⊥⊥

P̂
A | C

B⊥⊥
P̂
D | C D⊥⊥

P̂
B | C

All other possible conditional independence statements that can be formed with the
attributes A, B, C, and D (with single attributes on the left) do not hold.

• Step 1: Since there is no set rendering A and C, B and C and C and D
independent, the edges A− C, B − C, and C −D are inserted.

• Step 2: Since C is a common neighbor of A and B and we have A⊥⊥
P̂
B | ∅,

but A⊥�⊥
P̂
B | C, the first two edges must be directed A→ C ← B.

• Step 3: Since A and D are not adjacent, C −D and A→ C, the edge C −D
must be directed C → D.
(Otherwise step 2 would have already fixed the orientation C ← D.)
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• The conditional independence graph construction algorithm presupposes that there
is a perfect map. If there is no perfect map, the result may be invalid.

A

B D

C

A = a1 A = a2pABCD
B = b1 B = b2 B = b1 B = b2

D = d1
1/47

1/47
1/47

2/47
C = c1 D = d2

1/47
1/47

2/47
4/47

D = d1
1/47

2/47
1/47

4/47
C = c2 D = d2

2/47
4/47

4/47
16/47

• Independence tests of high order, i. e., with a large number of conditions,
may be necessary.

• There are approaches to mitigate these drawbacks.
(For example, the order is restricted and all tests of higher order are assumed to
fail, if all tests of lower order failed.)
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• Drafting: Build a so-called Chow–Liu tree as an initial graphical model.

◦ Evaluate all attribute pairs (candidate edges) with information gain.

◦ Discard edges with evaluation below independence threshold (∼0.1 bits).

◦ Build optimum (maximum) weight spanning tree.

• Thickening: Add necessary edges.

◦ Traverse remaining candidate edges in the order of decreasing evaluation.

◦ Test for conditional independence in order to determine
whether an edge is needed in the graphical model.

◦ Use local Markov property to select a condition set: an attribute is
conditionally independent of all non-descendants given its parents.

◦ Since the graph is undirected in this step,
the set of adjacent nodes is reduced iteratively and greedily
in order to remove possible children.
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• Thinning: Remove superfluous edges.

◦ In the thickening phase a conditional independence test may have failed,
because the graph was still too sparse.

◦ Traverse all edges that have been added to the current graphical model
and test for conditional independence.

◦ Remove unnecessary edges.
(two phases/approaches: heuristic test/strict test)

• Orienting: Direct the edges of the graphical model.

◦ Identify the v-structures (converging directed edges).
(Markov equivalence: same skeleton and same set of v-structures.)

◦ Traverse all pairs of attributes with common neighbors and check which com-
mon neighbors are in the (maximally) reduced set of conditions.

◦ Direct remaining edges by extending chains and avoiding cycles.
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• Drafting: Build a Chow–Liu tree as an initial graphical model

◦ Evaluate all attribute pairs (candidate edges) with specificity gain.

◦ Discard edges with evaluation below independence threshold (∼0.015).

◦ Build optimum (maximum) weight spanning tree.

• Thickening: Add necessary edges.

◦ Traverse remaining candidate edges in the order of decreasing evaluation.

◦ Test for conditional independence in order to determine
whether an edge is needed in the graphical model.

◦ Use local Markov property to select a condition set: an attribute is
conditionally independent of any non-neighbor given its neighbors.

◦ Since the graphical model to be learned is undirected,
no (iterative) reduction of the condition set is needed
(decisive difference to Cheng–Bell–Liu Algorithm).
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• Moralizing: Take care of possible v-structures.

◦ If one assumes a perfect undirected map, this step is unnecessary.
However, v-structures are too common and cannot be represented
without loss in an undirected graphical model.

◦ Possible v-structures can be taken care of by connecting the parents.

◦ Traverse all edges with an evaluation below the independence threshold
that have a common neighbor in the graph.

◦ Add edge if conditional independence given the neighbors does not hold.

• Thinning: Remove superfluous edges.

◦ In the thickening phase a conditional independence test may have failed,
because the graph was still too sparse.

◦ Traverse all edges that have been added to the current graphical model
and test for conditional independence.
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• Improving the Product Quality by Detecting Weaknesses

◦ Learn a decision tree or inference network
for vehicle properties and failures.

◦ Look for suspicious conditional failure rates.

◦ Find causes of these suspicious rates.

◦ Optimize design of vehicle.

• Improve the Error Diagnosis in Service Garages

◦ Learn a decision tree or inference network
for vehicle properties and failures.

◦ Record new faults.

◦ Test for most probable errors.
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• Database: approx. 18500 vehicles with more than 100 attributes

• Analysis of dependencies between specific equipment and failure.

• Results are used as a starting point for technical investigation.

electrical
sliding roof

air condition engine type tire type
acceleration
skid control

battery
failure

compressor
failure

brakes
failure

Fictitious example: There are significantly more battery failures, if an aircondition and
an electrical sliding roof are installed.
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Influence of specific equipment on battery failure:

(fictitious) battery failure rate Aircondition
with without

elec. sliding roof
with 8% 3%
without 3% 2%

• Significant deviation from independent distribution.

• Hint for possible causes.

• Here: Larger battery might be required if both aircondition
and electrical sliding roof are installed.
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