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Probabilistic Causal Networks



The Big Objective(s)
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In a wide variety of application fields two main problems need to be addressed over
and over:

1. How can (expert) knowledge of complex domains be efficiently rep-
resented?

2. How can inferences be carried out within these representations?

3. How can such representations be (automatically) extracted from
collected data?

We will deal with all three questions during the lecture.



Example 1: Planning in car manufacturing
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Available information

• “Engine type e1 can only be combined with transmission t2 or t5.”

• “Transmission t5 requires crankshaft c2.”

• “Convertibles have the same set of radio options as SUVs.”

Possible questions/inferences:

• “Can a station wagon with engine e4 be equipped with tire set y6?”

• “Supplier S8 failed to deliver on time. What production line
has to be modified and how?”

• “Are there any peculiarities within the set of cars that suffered
an aircondition failure?”



Example 2: Medical reasoning

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 127

Available information:

• “Malaria is much less likely than flu.”

• “Flu causes cough and fever.”

• “Nausea can indicate malaria as well as flu.”

• “Nausea never indicated pneunomia before.”

Possible questions/inferences

• “The patient has fever. How likely is he to have malaria?”

• “How much more likely does flu become if we can exclude malaria?”



Common Problems
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Both scenarios share some severe problems:

• Large Data Space
It is intractable to store all value combinations, i. e. all car part combinations or
inter-disease dependencies.

(Example: VW Bora has 10200 theoretical value combinations∗)

• Sparse Data Space
Even if we could handle such a space, it would be extremely sparse, i. e. it would
be impossible to find good estimates for all the combinations.

(Example: with 100 diseases and 200 symptoms, there would be about 1062 dif-
ferent scenarios for which we had to estimate the probability.∗)

∗ The number of particles in the observable universe is estimated to be between 1078 and 1085.



Idea to Solve the Problems
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• Given: A large (high-dimensional) distribution δ representing the
domain knowledge.

• Desired: A set of smaller (lower-dimensional) distributions {δ1, . . . , δs}
(maybe overlapping) from which the original δ could be
reconstructed with no (or as few as possible) errors.

• With such a decomposition we can draw any conclusions from {δ1, . . . , δs} that
could be inferred from δ — without, however, actually reconstructing it.



Example: Car Manufacturing
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• Let us consider a car configuration is described by three attributes:

◦ Engine E, dom(E) = {e1, e2, e3}
◦ Breaks B, dom(B) = {b1, b2, b3}
◦ Tires T , dom(T ) = {t1, t2, t3, t4}

• Therefore the set of all (theoretically) possible car configurations is:

Ω = dom(E)× dom(B)× dom(T )

• Since not all combinations are technically possible (or wanted by marketing) a set
of rules is used to cancel out invalid combinations.



Example: Car Manufacturing
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Possible car configurations
• Every cube designates a valid

value combination.

• 10 car configurations in our model.

• Different colors are intended to
distinguish the cubes only.



Example
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2-D projections
• Is it possible to reconstruct δ from

the δi?



Example: Reconstruction of δ with δBE and δET
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Example: Reconstruction of δ with δBE and δET
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Example: Reconstruction of δ with δBE and δET
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Example — Qualitative Aspects
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• Lecture theatre in winter: Waiting for Mr. K and Mr. B.
Not clear whether there is ice on the roads.

• 3 variables:

◦ E road condition: dom(E) = {ice,¬ice}
◦ K K had an accident: dom(K) = {yes, no}
◦ B B had an accident: dom(B) = {yes, no}

• Ignorance about these states is modelled via the observer’s belief.

E

K B

� � ↓ E influences K and B
(the more ice the more accidents)

↑ Knowledge about accident increases belief in ice



Example
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A priori knowledge Evidence Inferences
E unknown B has accident ⇒ E = ice more likely

⇒ K has accident more likely
E = ¬ice B has accident ⇒ no change in belief about E

⇒ no change in belief about accident of K
E unknown K and B dependent
E known K and B independent

E

K B



Causal Dependence vs. Reasoning
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Rule: A entails B with certainty x: A
x→ B

• Deduction (→):
A and A

x→ B, therefore B more likely as effect (causality)

• Abduction (←):
B and A

x→ B, therefore A more likely as cause (no causality)

For this reason, the notion “dependency model” is to be preferred to “causal network”.



Objective
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Is it possible to exploit local constraints (wherever they may come from — both struc-
tural and expert knowledge-based) in a way that allows for a decomposition of the large
(intractable) distribution P (X1, . . . , Xn) into several sub-structures {C1, . . . , Cm}
such that:

• The collective size of those sub-structures is much smaller than that of the original
distribution P .

• The original distribution P is recomposable (with no or at least as few as possible
errors) from these sub-structures in the following way:

P (X1, . . . , Xn) =
m∏
i=1

Ψi(ci)

where ci is an instantiation of Ci and Ψi(ci) ∈ R
+ a factor potential.



The Big Picture / Lecture Roadmap
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Probabilistic Causal Networks
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Probabilistic causal networks are directed acyclic graphs (DAGs) where the nodes rep-
resent propositions or variables and the directed edges model a direct causal dependence
between the connected nodes. The strength of dependence is defined by conditional
probabilities.

X1

X2 X3

X4 X5

X6

In general (according chain rule):

P (X1, . . . , X6) = P (X6 | X5, . . . , X1)·
P (X5 | X4, . . . , X1)·
P (X4 | X3, X2, X1)·
P (X3 | X2, X1)·
P (X2 | X1)·
P (X1)



Probabilistic Causal Networks
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Probabilistic causal networks are directed acyclic graphs (DAGs) where the nodes rep-
resent propositions or variables and the directed edges model a direct causal dependence
between the connected nodes. The strength of dependence is defined by conditional
probabilities.

X1

X2 X3

X4 X5

X6

According graph (independence structure):

P (X1, . . . , X6) = P (X6 | X5)·
P (X5 | X2, X3)·
P (X4 | X2)·
P (X3 | X1)·
P (X2 | X1)·
P (X1)



Formal Framework
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Nomenclature for the next slides:

• X1, . . . , Xn Variables
(properties, attributes, random variables, propositions)

• Ω1, . . . ,Ωn respective finite domains
(also designated with dom(Xi))

• Ω =
n×
i=1

Ωi Universe of Discourse (tuples that characterize objects
described by X1, . . . , Xn)

• Ωi = {x(1)
i , . . . , x

(ni)
i } n = 1, . . . , n, ni ∈ N



Formal Framework
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• Let Ω∗ be the real universe of objects under consideration (e. g. population of
people, collection of cars, customer transactions, etc.). Then the random vector
�X = (X1, . . . , Xn) describes each element ω∗ ∈ Ω∗ in terms of the universe of
discourse Ω:

�X : Ω∗ → Ω with �X(ω∗) = (X1(ω∗), . . . , Xn(ω∗))

• If (Ω∗, E , Q) is an intrinsic probability space acting in the background, then it
induces — in combination with �X — a probability measure P over Ω:

∀(x1, . . . , xn) ∈ Ω :

P ({(x1, . . . , xn)}) = P (X1 = x1, . . . , Xn = xn)

= Q({ω∗ ∈ Ω∗ |
n∧
i=1

Xi = xi})



Formal Framework
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• The product space (Ω, 2Ω, P ) is unique iff P ({(x1, . . . , xn)}) is specified

for all xi ∈ {x(1)
i , . . . , x

(ni)
i }, i = 1, . . . , n.

• When the distribution P (X1, . . . , Xn) is given in tabular form, then
∏n
i=1 |Ωi|

entries are necessary.

• For variables with |Ωi| ≥ 2 at least 2n entries.

• The application of DAGs allows for the representation of existing (in)dependencies.



Constructing a DAG
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input P (X1, . . . , Xn)
output a unique DAG G

1: Set the nodes of G to {X1, . . . , Xn}.
2: Choose a total ordering on the set of variables

(e. g. X1 ≺ X2 ≺ · · · ≺ Xn)

3: For Xi find the smallest (uniquely determinable) set Si ⊆ {X1, . . . , Xn} sucht
that P (Xi | Si) = P (Xi | X1 . . . , Xi−1).

4: Connect all nodes in Si with Xi and store P (Xi | Si) as quantization of the
dependencies for that node Xi (given its parents).

5: return G



Belief Network
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• A Belief Network (V,E, P ) consists of a set V = {X1, . . . , Xn} of random
variables and a set E of directed edges between the variables.

• Each variable has a finite set of mutual exclusive and collectively exhaustive states.

• The variables in combination with the edges form a directed, acyclich graph.

• Each variable with parent nodes B1, . . . , Bm is assigned a
potential table P (A | B1, . . . , Bm).

• Note, that the connections between the nodes not necessarily express a causal
relationship.

• For every belief network, the following equation holds:

P (V ) =
∏

v∈V :P (c(v))>0

P (v | c(v))

with c(v) being the parent nodes of v.



Example
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• Let a1, a2, a3 be three blood groups and b1, b2, b3 three indications of a blood
group test.

Variables: A (blood group) B (indication)

Domains: ΩA = {a1, a2, a3} ΩB = {b1, b2, b3}
• It is conjectured that there is a causal relationship between the variables.

• A and B constitute random variables w. r. t. (Ω∗, E , Q).

Ω = ΩA × ΩB A : Ω∗ → ΩA, B : Ω∗ → ΩB

• A,B and (Ω∗, E , Q) induce the probability space (Ω, 2Ω, P ) with

P
(
{(a, b)}

)
= Q

(
{ω∗ ∈ Ω∗ | A(ω∗) = a ∧B(ω∗) = b}

)
:

P ({(ai, bj)}) b1 b2 b3
∑

a1 0.64 0.08 0.08 0.8
a2 0.01 0.08 0.01 0.1
a3 0.01 0.01 0.08 0.1∑

0.66 0.17 0.17 1

A B

P (A,B) = P (B | A) · P (A)

We are dealing with a belief net-
work.



Example
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Choice of universe of discourse

Variable Domain
A metastatic cancer {a1, a2}
B increased serum calcium {b1, b2}
C brain tumor {c1, c2}
D coma {d1, d2}
E headache {e1, e2}

(·1 — present,·2 — absent)

Ω = {a1, a2} × · · · × {e1, e2}
|Ω| = 32

Analysis of dependencies
A

B C

D E



Example
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Choice of probability parameters

P (a, b, c, d, e)
abbr.

= P (A = a,B = b, C = c,D = d,E = e)

= P (e | c)P (d | b, c)P (c | a)P (b | a)P (a)
�

Shorthand notation

• 11 values to store instead of 31

• Consult experts, textbooks, case studies, surveys, etc.

Calculation of conditional probabilities

Calculation of marginal probabilities



Crux of the Matter
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• Knowledge acquisition (Where do the numbers come from?)
→ learning strategies

• Computational complexities
→ exploit independencies

Problem:

• When does the independency of X and Y given Z hold in (V,E, P )?

• How can we determine P (X, Y | Z) = P (X | Z)P (Y | Z) solely using the graph
structure?



Dependencies
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Converging Connection

A B

C

Meal quality

A quality of ingredients

B cook’s skill

C meal quality

• If C is not instantiated (i. e., no value specified/observed), A and B are marginally
independent.

• After instantiation (observation) of C the variables A and B become conditionally
dependent given C.

• Evidence can only be transferred over a converging connection if the variable in
between (or one of its successors) is initialized.



Dependencies
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Converging Connection (cont.)

A B

C

D

Meal quality

A quality of ingredients

B cook’s skill

C meal quality

D restaurant success

• If nothing is known about the restaurant success or meal quality or both, the
cook’s skills and quality of the ingredients are unrelated, thas is, independent.

• However, if we observe that the restaurant has no success, we can infer that the
meal quality might be bad.

• If we further learn that the ingredients quality is high, we will conclude that the
cook’s skills must be low, thus rendering both variables dependent.



Dependencies
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Diverging Connection

A B

C

Diagnosis

A body temperature

B cough

C disease

• If C is unknown, knowledge about A ist relevant for B and vice versa, i. e. A and
B are marginally dependent.

• However, if C is observed, A and B become conditionally independent given C.

• A influences B via C. If C is known it in a way blocks the information from
flowing from A to B, thus rendering A and B (conditionally) independent.



Dependencies
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Serial Connection

A B

C

Accidents

A rain

B accident risk

C road conditions

• Analog scenario to case 2

• A influences C and C influences B. Thus, A influences B.
If C is known, it blocks the path between A and B.



Formal Representation
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A B

C

Converging Connection: Marginal Independence

• Decomposition according to graph:

P (A,B,C) = P (C | A,B) · P (A) · P (B)

• Embedded Independence:

P (A,B,C) =
P (A,B,C)

P (A,B)
· P (A) · P (B) with P (A,B) �= 0

P (A,B) = P (A) · P (B)

⇒ A⊥⊥B | ∅



Formal Representation
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A B

C

Diverging Connection: Conditional Independence

• Decomposition according to graph:

P (A,B,C) = P (A | C) · P (B | C) · P (C)

• Embedded Independence:

P (A,B | C) = P (A | C) · P (B | C)

⇒ A⊥⊥B | C

• Alternative derivation:

P (A,B,C) = P (A | C) · P (B,C)

P (A | B,C) = P (A | C)

⇒ A⊥⊥B | C



Formal Representation
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A B

C

Serial Connection: Conditional Independence

• Decomposition according to graph:

P (A,B,C) = P (B | C) · P (C | A) · P (A)

• Embedded Independence:

P (A,B,C) = P (B | C) · P (C,A)

P (B | C,A) = P (B | C)

⇒ A⊥⊥B | C



Formal Representation
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Trivial Cases:

• Marginal Independence:

A B P (A,B) = P (A) · P (B)

• Marginal Dependence:

A B P (A,B) = P (B | A) · P (A)



Question
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Question: Are X2 and X3 independent given X1?

X1

X2 X3

X4 X5

X6

evidence X1 = x1



d-Separation
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Let G = (V,E) a DAG and X, Y, Z ∈ V three nodes.

a) A set S ⊆ V \{X, Y } d-separates X and Y , if S blocks all
paths between X and Y . (paths may also route in opposite edge direction)

b) A path π is d-separated by S if at least one pair of consecutive edges along π is
blocked. There are the following blocking conditions:

1. X ← Y → Z tail-to-tail

2.
X ← Y ← Z

head-to-tail
X → Y → Z

3. X → Y ← Z head-to-head

c) Two edges that meet tail-to-tail or head-to-tail in node Y are blocked if Y ∈ S.

d) Two edges meeting head-to-head in Y are blocked if neither Y nor its successors
are in S.



Relation to Conditional independence
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If S ⊆ V \{X, Y } d-separates X and Y in a Belief network (V,E, P ) then X and Y
are conditionally independent given S:

P (X, Y | S) = P (X | S) · P (Y | S)

Application to the previous example:

X1

X2 X3

X4 X5

X6

Paths: π1 = 〈X2−X1−X3〉, π2 = 〈X2−X5−X3〉
π3 = 〈X2−X4−X1−X3〉, S = {X1}

π1 X2←X1→X3 tail-to-tail
X1 ∈ S ⇒ π1 is blocked by S

π2 X2→X5←X3 head-to-head
X5, X6 /∈ S ⇒ π2 is blocked by S

π3 X4←X1→X3 tail-to-tail
X2→X4←X1 head-to-head
both connections are blocked ⇒ π3 is blocked



Example (cont.)
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• Answer: X2 and X3 are d-separated via {X1}. Therefore X2 and X3 become
conditionally independent given X1.

S = {X1, X4} ⇒ X2 and X3 are d-separated by S

S = {X1, X6} ⇒ X2 and X3 are not d-separated by S



Another Example
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A B C

D E F G

H I J

K L

M

Are A and L conditionally independent given {B,M}?



Algebraic structure of CI statements
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Question: Is it possible to use a formal scheme to infer new
conditional independence (CI) statements from
a set of initial CIs?

Repetition

Let (Ω, E , P ) be a probability space and W,X, Y, Z disjoint subsets of variables. If X
and Y are conditionally independent given Z we write:

X ⊥⊥P Y | Z

Often, the following (equivalent) notation is used:

IP (X | Z | Y ) or IP (X, Y | Z)

If the underlying space is known the index P is omitted.



(Semi-)Graphoid-Axioms
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Let (Ω, E , P ) be a probability space andW, X, Y and Z four disjoint subsets of random
variables (over Ω). Then the propositions

a) Symmetry: (X ⊥⊥P Y | Z) ⇒ (Y ⊥⊥P X | Z)

b) Decomposition: (W ∪X ⊥⊥P Y | Z) ⇒ (W ⊥⊥P Y | Z) ∧ (X ⊥⊥P Y | Z)

c) Weak Union: (W ∪X ⊥⊥P Y | Z) ⇒ (X ⊥⊥P Y | Z ∪W )

d) Contraction: (X ⊥⊥P Y | Z ∪W ) ∧ (W ⊥⊥P Y | Z) ⇒ (W ∪X ⊥⊥P Y | Z)

are called the Semi-Graphoid Axioms. The above propositions and

e) Intersection: (W ⊥⊥P Y | Z∪X)∧(X ⊥⊥P Y | Z∪W ) ⇒ (W∪X ⊥⊥P Y | Z)

are called the Graphoid Axioms.



Decomposition
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Y

Z

W X

Y

Z

W X

Y

Z

W X

⇒ ∧

Drawings adapted from [Castillo et al. 1997].



Weak Union
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Y

Z

W X

Y

Z

W X

Y

Z

W X

⇒ ∧

Learning irrelevant information W cannot render ir-
relevant information X relevant.

Drawings adapted from [Castillo et al. 1997].



Contraction
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Y

Z

W X

Y

Z

W X

Y

Z

W X

∧ ⇒

If X is irrelevant (to Y) after having learnt some
irrelevant information W, then X must have been
irrelevant before.

Drawings adapted from [Castillo et al. 1997].



Intersection
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Y

Z

W X

Y

Z

W X

Y

Z

W X

∧ ⇒

Unless W affects Y when X is known or X affects
Y when W is known, neither X nor W nor their
combination can affect Y .

Drawings adapted from [Castillo et al. 1997].



Example
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Proposition: B⊥⊥C | A
Proof: D⊥⊥A,C | ∅ ∧ B⊥⊥C | A,D

w. union
=⇒ D⊥⊥C | A ∧ B⊥⊥C | A,D

symm.⇐⇒ C ⊥⊥D | A ∧ C ⊥⊥B | A,D
contr.

=⇒ C ⊥⊥B,D | A
decomp.

=⇒ C ⊥⊥B | A
symm.⇐⇒ B⊥⊥C | A

D

A

E

B

C



Conditional (In)Dependence Graphs
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Definition: Let (· ⊥⊥δ · | ·) be a three-place relation representing the set of conditional
independence statements that hold in a given distribution δ over a set U of attributes.
An undirected graph G = (U,E) over U is called a conditional dependence
graph or a dependence map w. r. t. δ, iff for all disjoint subsets X, Y, Z ⊆ U of
attributes

X ⊥⊥δ Y | Z ⇒ 〈X | Z | Y 〉G,
i. e., if G captures by u-separation all (conditional) independences that hold in δ and
thus represents only valid (conditional) dependences. Similarly, G is called a con-
ditional independence graph or an independence map w. r. t. δ, iff for all
disjoint subsets X,Y, Z ⊆ U of attributes

〈X | Z | Y 〉G ⇒ X ⊥⊥δ Y | Z,
i. e., if G captures by u-separation only (conditional) independences that are valid in δ.
G is said to be a perfect map of the conditional (in)dependences in δ, if it is both a
dependence map and an independence map.



Markov Properties of Undirected Graphs
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Definition: An undirected graph G = (U,E) over a set U of attributes is said to
have (w.r.t. a distribution δ) the

pairwise Markov property,

iff in δ any pair of attributes which are nonadjacent in the graph are conditionally
independent given all remaining attributes, i.e., iff

∀A,B ∈ U,A �= B : (A,B) /∈ E ⇒ A⊥⊥δ B | U − {A,B},
local Markov property,

iff in δ any attribute is conditionally independent of all remaining attributes given its
neighbors, i.e., iff

∀A ∈ U : A⊥⊥δ U − closure(A) | boundary(A),

global Markov property,

iff in δ any two sets of attributes which are u-separated by a third are conditionally
independent given the attributes in the third set, i.e., iff

∀X,Y, Z ⊆ U : 〈X | Z | Y 〉G ⇒ X ⊥⊥δ Y | Z.



Markov Properties of Directed Acyclic Graphs
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Definition: A directed acyclic graph �G = (U, �E) over a set U of attributes is said to
have (w.r.t. a distribution δ) the

pairwise Markov property,

iff in δ any attribute is conditionally independent of any non-descendant not among
its parents given all remaining non-descendants, i.e., iff

∀A,B ∈ U : B ∈ non-descs(A)− parents(A) ⇒ A⊥⊥δ B | non-descs(A)− {B},
local Markov property,

iff in δ any attribute is conditionally independent of all remaining non-descendants
given its parents, i.e., iff

∀A ∈ U : A⊥⊥δ non-descs(A)− parents(A) | parents(A),

global Markov property,

iff in δ any two sets of attributes which are d-separated by a third are conditionally
independent given the attributes in the third set, i.e., iff

∀X,Y, Z ⊆ U : 〈X | Z | Y 〉 �G ⇒ X ⊥⊥δ Y | Z.


