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Applied Probability Theory
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• If P models an objectively observable probability, these axioms
are obviously reasonable.

• However, why should an agent obey formal axioms when modeling
degrees of (subjective) belief?

• Objective vs. subjective probabilities

• Axioms constrain the set of beliefs an agent can abide.

• Finetti (1931) gave one of the most plausible arguments why
subjective beliefs should respect axioms:

“When using contradictory beliefs, the agent will eventually fail.”
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• P (A) designates the unconditioned or a priori probability
that A ⊆ Ω occurs if no other additional information is present.

For example:

P (cavity) = 0.1

Note: Here, cavity is a proposition.

• A formally different way to state the same would be via
a binary random variable Cavity:

P (Cavity = true) = 0.1

• A priori probabilities are derived from statistical surveys or general rules.
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• In general a random variable can assume more than two values:

P ( Weather = sunny ) = 0.7

P ( Weather = rainy ) = 0.2

P ( Weather = cloudy) = 0.02

P ( Weather = snowy ) = 0.08

P (Headache = true ) = 0.1

• P (X) designates the vector of probabilities for the
(ordered) domain of the random variable X :

P (Weather) = 〈0.7, 0.2, 0.02, 0.08〉
P (Headache) = 〈0.1, 0.9〉

• Both vectors define the respective probability distributions
of the two random variables.



Conditional Probabilities

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 92

• New evidence can alter the probability of an event.

• Example: The probability for cavity increases if information
about a toothache arises.

• With additional information present, the a priori knowledge
must not be used!

• P (A | B) designates the conditional or a posteriori probability
of A given the sole observation (evidence) B.

P (cavity | toothache) = 0.8

• For random variables X and Y P (X | Y ) represents the
set of conditional distributions for each possible value of Y .



Conditional Probabilities

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 93

• P (Weather | Headache) consists of the following table:

h =̂ Headache = true ¬h =̂ Headache = false

Weather = sunny P (W = sunny | h) P (W = sunny | ¬h)

Weather = rainy P (W = rainy | h) P (W = rainy | ¬h)

Weather = cloudy P (W = cloudy | h) P (W = cloudy | ¬h)

Weather = snowy P (W = snowy | h) P (W = snowy | ¬h)

• Note that we are dealing with two distributions now!
Therefore each column sums up to unity!

• Formal definition:

P (A | B) =
P (A ∧B)

P (B)
if P (B) > 0
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P (A | B) =
P (A ∧B)

P (B)

• Product Rule: P (A ∧B) = P (A | B) · P (B)

• Also: P (A ∧B) = P (B | A) · P (A)

• A and B are independent iff

P (A | B) = P (A) and P (B | A) = P (B)

• Equivalently, iff the following equation holds true:

P (A ∧B) = P (A) · P (B)
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Caution! Common misinterpretation:

“P (A | B) = 0.8 means, that P (A) = 0.8, given B holds.”

This statement is wrong due to (at least) two facts:

• P (A) is always the a-priori probability,
never the probability of A given that B holds!

• P (A | B) = 0.8 is only applicable as long as no other evidence except B is present.
If C becomes known, P (A | B ∧ C) has to be determined.

In general we have:

P (A | B ∧ C) �= P (A | B)

E. g. C → A might apply.
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• Let X1, . . . , Xn be random variables over the same framce of descernment Ω and
event algebra E . Then �X = (X1, . . . , Xn) is called a random vector with

�X(ω) = (X1(ω), . . . , Xn(ω))

• Shorthand notation:

P ( �X = (x1, . . . , xn)) = P (X1 = x1, . . . , Xn = xn) = P (x1, . . . , xn)

• Definition:

P (X1 = x1, . . . , Xn = xn) = P
({

ω ∈ Ω |
n∧
i=1

Xi(ω) = xi
})

= P
( n⋂
i=1

{Xi = xi}
)
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• Example: P (Headache,Weather) is the joint probability distribution of both
random variables and consists of the following table:

h =̂ Headache = true ¬h =̂ Headache = false

Weather = sunny P (W = sunny ∧ h) P (W = sunny ∧ ¬h)

Weather = rainy P (W = rainy ∧ h) P (W = rainy ∧ ¬h)

Weather = cloudy P (W = cloudy ∧ h) P (W = cloudy ∧ ¬h)

Weather = snowy P (W = snowy ∧ h) P (W = snowy ∧ ¬h)

• All table cells sum up to unity.



Calculating with Joint Probabilities

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 98

All desired probabilities can be computed from a joint probability distribution.

toothache ¬toothache
cavity 0.04 0.06

¬cavity 0.01 0.89

• Example: P (cavity ∨ toothache) = P ( cavity ∧ toothache)

+ P (¬cavity ∧ toothache)

+ P ( cavity ∧ ¬toothache) = 0.11

• Marginalizations: P(cavity) = P ( cavity ∧ toothache)

+ P ( cavity ∧ ¬toothache) = 0.10

• Conditioning:

P (cavity | toothache) =
P (cavity ∧ toothache)

P (toothache)
=

0.04

0.04 + 0.01
= 0.80
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• Easiness of computing all desired probabilities comes at an unaffordable price:

Given n random variables with k possible values each, the joint probability
distribution contains kn entries which is infeasible in practical applications.

• Hard to handle.

• Hard to estimate.

Therefore:

1. Is there a more dense representation of joint probability distributions?

2. Is there a more efficient way of processing this representation?

• The answer is no for the general case, however, certain dependencies and inde-
pendencies can be exploited to reduce the number of parameters to a practical
size.



Stochastic Independence
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• Two events A and B are stochastically independent iff

P (A ∧B) = P (A) · P (B)

⇔
P (A | B) = P (A) = P (A | B)

• Two random variables X and Y are stochastically independent iff

∀x ∈ dom(X) : ∀y ∈ dom(Y ) : P (X = x, Y = y) = P (X = x) · P (Y = y)

⇔
∀x ∈ dom(X) : ∀y ∈ dom(Y ) : P (X = x | Y = y) = P (X = x)

• Shorthand notation: P (X, Y ) = P (X) · P (Y ).

Note the formal difference between P (A) ∈ [0, 1] and P (X) ∈ [0, 1]|dom(X)|.
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• Let X , Y and Z be three random variables. We call X and Y conditionally
independent given Z, iff the following condition holds:

∀x ∈ dom(X) : ∀y ∈ dom(Y ) : ∀z ∈ dom(Z) :

P (X = x, Y = y | Z = z) = P (X = x | Z = z) · P (Y = y | Z = z)

• Shorthand notation: X ⊥⊥P Y | Z

• Let X = {A1, . . . , Ak}, Y = {B1, . . . , Bl} and Z = {C1, . . . , Cm} be three
disjoint sets of random variables. We call X and Y conditionally independent
given Z, iff

P (X,Y | Z) = P (X | Z) · P (Y | Z) ⇔ P (X | Y ,Z) = P (X | Z)

• Shorthand notation: X ⊥⊥P Y | Z
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• The complete condition for X ⊥⊥P Y | Z would read as follows:

∀a1 ∈ dom(A1) : · · · ∀ak ∈ dom(Ak) :

∀b1 ∈ dom(B1) : · · · ∀bl ∈ dom(Bl) :

∀c1 ∈ dom(C1) : · · · ∀cm ∈ dom(Cm) :

P (A1 = a1, . . . , Ak = ak,B1 = b1, . . . , Bl = bl | C1 = c1, . . . , Cm = cm)

= P (A1 = a1, . . . , Ak = ak | C1 = c1, . . . , Cm = cm)

· P (B1 = b1, . . . , Bl = bl | C1 = c1, . . . , Cm = cm)

• Remarks:

1. If Z = ∅ we get (unconditional) independence.

2. We do not use curly braces ({}) for the sets if the context is clear. Likewise,
we use X instead of X to denote sets.
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(Weak) Dependence in the entire dataset: X and Y dependent.
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No Dependence in Group 1: X and Y conditionally independent given Group 1.
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No Dependence in Group 2: X and Y conditionally independent given Group 2.
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• dom(G) = {mal, fem} Geschlecht (gender)
• dom(S) = {sm, sm} Raucher (smoker)
• dom(M) = {mar,mar} Verheiratet (married)
• dom(P ) = {preg, preg} Schwanger (pregnant)

pGSMP
G = mal G = fem

S = sm S = sm S = sm S = sm

M = mar
P = preg 0 0 0.01 0.05

P = preg 0.04 0.16 0.02 0.12

M = mar
P = preg 0 0 0.01 0.01

P = preg 0.10 0.20 0.07 0.21
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P (G= fem) = P (G=mal) = 0.5 P (P=preg) = 0.08

P (S= sm) = 0.25 P (M=mar) = 0.4

• Gender and Smoker are not independent:

P (G= fem | S= sm) = 0.44 �= 0.5 = P (G= fem)

• Gender and Marriage are marginally independent but
conditionally dependent given Pregnancy:

P (fem,mar | preg) ≈ 0.152 �= 0.169 ≈ P (fem | preg) · P (mar | preg)
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• Product Rule (for events A and B):

P (A ∩B) = P (A | B)P (B) and P (A ∩B) = P (B | A)P (A)

• Equating the right-hand sides:

P (A | B) =
P (B | A)P (A)

P (B)

• For random variables X and Y :

∀x∀y : P (Y =y | X=x) =
P (X=x | Y =y)P (Y =y)

P (X=x)

• Generalization concerning background knowledge/evidence E:

P (Y | X,E) =
P (X | Y,E)P (Y | E)

P (X | E)
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P (toothache | cavity) = 0.4

P (cavity) = 0.1 P (cavity | toothache) =
0.4 · 0.1

0.05
= 0.8

P (toothache) = 0.05

Why not estimate P (cavity | toothache) right from the start?

• Causal knowledge like P (toothache | cavity) is more robust than diagnostic
knowledge P (cavity | toothache).

• The causality P (toothache | cavity) is independent of the a priori
probabilities P (toothache) and P (cavity).

• If P (cavity) rose in a caries epidemic, the causality P (toothache | cavity) would
remain constant whereas both P (cavity | toothache) and P (toothache) would
increase according to P (cavity).

• A physician, after having estimated P (cavity | toothache), would not know a rule
for updating.
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Assumption:
We would like to consider the probability of the diagnosis GumDisease as well.

P (toothache | gumdisease) = 0.7

P (gumdisease) = 0.02

Which diagnosis is more probable?

If we are interested in relative probabilities only (which may be sufficient for some
decisions), P (toothache) needs not to be estimated:

P (C | T )

P (G | T )
=

P (T | C)P (C)

P (T )
· P (T )

P (T | G)P (G)

=
P (T | C)P (C)

P (T | G)P (G)
=

0.4 · 0.1
0.7 · 0.02

= 28.57
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If we are interested in the absolute probability of P (C | T ) but do not know P (T ),
we may conduct a complete case analysis (according C) and exploit the fact that
P (C | T ) + P (¬C | T ) = 1.

P (C | T ) =
P (T | C)P (C)

P (T )

P (¬C | T ) =
P (T | ¬C)P (¬C)

P (T )

1 = P (C | T ) + P (¬C | T ) =
P (T | C)P (C)

P (T )
+

P (T | ¬C)P (¬C)

P (T )

P (T ) = P (T | C)P (C) + P (T | ¬C)P (¬C)
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• Plugging into the equation for P (C | T ) yields:

P (C | T ) =
P (T | C)P (C)

P (T | C)P (C) + P (T | ¬C)P (¬C)

• For general random variables, the equation reads:

P (Y =y | X=x) =
P (X=x | Y =y)P (Y =y)∑

∀y′∈dom(Y )

P (X=x | Y =y′)P (Y =y′)

• Note the “loop variable” y′. Do not confuse with y.
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• The patient complains about a toothache. From this first evidence the dentist
infers:

P (cavity | toothache) = 0.8

• The dentist palpates the tooth with a metal probe which catches into a fracture:

P (cavity | fracture) = 0.95

• Both conclusions might be inferred via Bayes rule. But what does the combined
evidence yield? Using Bayes rule further, the dentist might want to determine:

P (cavity | toothache ∧ fracture) =
P (toothache ∧ fracture | cavity) · P (cavity)

P (toothache ∧ fracture)
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Problem:
He needs P (toothache∧catch | cavity), i. e. diagnostics knowledge for all combinations
of symptoms in general. Better incorporate evidences step-by-step:

P (Y | X,E) =
P (X | Y,E)P (Y | E)

P (X | E)

Abbreviations:

• C — cavity

• T — toothache

• F — fracture

C

T F

Objective:
Computing P (C | T, F ) with just causal statements of the form P ( · | C) and under
exploitation of independence relations among the variables.
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• A priori: P (C)

• Evidence toothache: P (C | T ) = P (C)
P (T | C)

P (T )

• Evidence fracture: P (C | T, F ) = P (C | T )
P (F | C, T )

P (F | T )

T ⊥⊥ F | C ⇔ P (F | C, T ) = P (F | C)

P (C | T, F ) = P (C)
P (T | C)

P (T )

P (F | C)

P (F | T )

Seems that we still have to cope with symptom inter-dependencies?!
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• Compound equation from last slide:

P (C | T, F ) = P (C)
P (T | C) P (F | C)

P (T ) P (F | T )

= P (C)
P (T | C) P (F | C)

P (F, T )

• P (F, T ) is a normalizing constant and can be computed
if P (F | ¬C) and P (T | ¬C) are known:

P (F, T ) = P (F, T | C)︸ ︷︷ ︸
P (F |C)P (T |C)

P (C) + P (F, T | ¬C)︸ ︷︷ ︸
P (F |¬C)P (T |¬C)

P (¬C)

• Therefore, we finally arrive at the following solution...
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P (C | F, T ) =
P (C) P (T | C) P (F | C)

P (F | C) P (T | C) P (C) + P (F | ¬C) P (T | ¬C) P (¬C)

Note that we only use causal probabilities P ( · | C) together with the a priori
(marginal) probabilities P (C) and P (¬C).
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Multiple evidences can be treated by reduction on

• a priori probabilities

• (causal) conditional probabilities for the evidence

• under assumption of conditional independence

General rule:

P (Z | X,Y ) = α P (Z) P (X | Z) P (Y | Z)

for X and Y conditionally independent given Z and with normalizing constant α.
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Marylin Vos Savant in her riddle column in the New York Times:

You are a candidate in a game show and have to choose between three doors. Behind
one of them is a Porsche, whereas behind the other two there are goats. After you chose
a door, the host Monty Hall (who knows what is behind each door) opens another (not
your chosen one) door with a goat. Now you have the choice between keeping your
chosen door or choose the remaining one.

Which decision yields the best chance of winning the Porsche?
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G You win the Porsche.

R You revise your decision.

A Behind your initially chosen door is (and remains) the Porsche.

P (G | R) = P (G,A | R) + P (G,A | R)

= P (G | A,R)P (A | R) + P (G | A,R)P (A | R)

= 0 · P (A | R) + 1 · P (A | R)

= P (A | R) = P (A) =
2

3

P (G | R) = P (G,A | R) + P (G,A | R)

= P (G | A,R)P (A | R) + P (G | A,R)P (A | R)

= 1 · P (A | R) + 0 · P (A | R)

= P (A | R) = P (A) =
1

3



Simpson’s Paradox
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Example: C = Patient takes medication, E = patient recovers

E ¬E ∑
Recovery rate

C 20 20 40 50%
¬C 16 24 40 40%∑

36 44 80

Men E ¬E ∑
Rec.rate Women E ¬E ∑

Rec.rate
C 18 12 30 60% C 2 8 10 20%
¬C 7 3 10 70% ¬C 9 21 30 30%

25 15 40 11 29 40

P (E | C) > P (E | ¬C)

but P (E | C,M) < P (E | ¬C,M)

P (E | C,W ) < P (E | ¬C,W )



Probabilistic Reasoning
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• Probabilistic reasoning is difficult and may be problematic:

◦ P (A ∧B) is not determined simply by P (A) and P (B):
P (A) = P (B) = 0.5 ⇒ P (A ∧B) ∈ [0, 0.5]

◦ P (C | A) = x, P (C | B) = y ⇒ P (C | A ∧B) ∈ [0, 1]
Probabilistic logic is not truth functional !

• Central problem: How does additional information affect the current knowledge?
I. e., if P (B | A) is known, what can be said about P (B | A ∧ C)?

• High complexity: n propositions → 2n full conjunctives

• Hard to specify these probabilities.



Summary
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• Uncertainty is inevitable in complex and dynamic scenarios
that force agents to cope with ignorance.

• Probabilities express the agent’s inability to vote for a
definitive decision. They model the degree of belief.

• If an agent violates the axioms of probability, it may exhibit
irrational behavior in certain circumstances.

• The Bayes rule is used to derive unknown probabilities from
present knowledge and new evidence.

• Multiple evidences can be effectively included into computations
exploiting conditional independencies.


