Applied Probability Theory

Why (Kolmogorov) Axioms?

- If P models an objectively observable probability, these axioms are obviously reasonable.
- However, why should an agent obey formal axioms when modeling degrees of (subjective) belief?
- Objective vs. subjective probabilities
- Axioms constrain the set of beliefs an agent can abide.
- Finetti (1931) gave one of the most plausible arguments why subjective beliefs should respect axioms:
"When using contradictory beliefs, the agent will eventually fail."

Unconditional Probabilities

- $P(A)$ designates the unconditioned or a priori probability that $A \subseteq \Omega$ occurs if no other additional information is present. For example:

$$
P(\text { cavity })=0.1
$$

Note: Here, cavity is a proposition.

- A formally different way to state the same would be via a binary random variable Cavity:

$$
P(\text { Cavity }=\text { true })=0.1
$$

- A priori probabilities are derived from statistical surveys or general rules.

Unconditional Probabilities

- In general a random variable can assume more than two values:

$$
\begin{aligned}
& P(\text { Weather }=\text { sunny })=0.7 \\
& P(\text { Weather }=\text { rainy })=0.2 \\
& P(\text { Weather }=\text { cloudy })=0.02 \\
& P(\text { Weather }=\text { snowy })=0.08 \\
& P(\text { Headache }=\text { true })=0.1
\end{aligned}
$$

- $P(X)$ designates the vector of probabilities for the (ordered) domain of the random variable X :

$$
\begin{aligned}
P(\text { Weather }) & =\langle 0.7,0.2,0.02,0.08\rangle \\
P(\text { Headache }) & =\langle 0.1,0.9\rangle
\end{aligned}
$$

- Both vectors define the respective probability distributions of the two random variables.

Conditional Probabilities

- New evidence can alter the probability of an event.
- Example: The probability for cavity increases if information about a toothache arises.
- With additional information present, the a priori knowledge must not be used!
- $P(A \mid B)$ designates the conditional or a posteriori probability of A given the sole observation (evidence) B.

$$
P(\text { cavity } \mid \text { toothache })=0.8
$$

- For random variables X and $Y P(X \mid Y)$ represents the set of conditional distributions for each possible value of Y.

Conditional Probabilities

- P (Weather \mid Headache $)$ consists of the following table:

	$\mathrm{h} \hat{=}$ Headache $=$ true	$\neg \mathrm{h} \hat{=}$ Headache $=$ false
Weather = sunny	$P(\mathrm{~W}=$ sunny $\mid \mathrm{h})$	$P(\mathrm{~W}=$ sunny $\mid \neg \mathrm{h})$
Weather = rainy	$P(\mathrm{~W}=$ rainy $\mid \mathrm{h})$	$P(\mathrm{~W}=$ rainy $\mid \neg \mathrm{h})$
Weather = cloudy	$P(\mathrm{~W}=$ cloudy $\mid \mathrm{h})$	$P(\mathrm{~W}=$ cloudy $\mid \neg \mathrm{h})$
Weather = snowy	$P(\mathrm{~W}=$ snowy $\mid \mathrm{h})$	$P(\mathrm{~W}=$ snowy $\mid \neg \mathrm{h})$

- Note that we are dealing with two distributions now!

Therefore each column sums up to unity!

- Formal definition:

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)} \quad \text { if } \quad P(B)>0
$$

Conditional Probabilities

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)}
$$

- Product Rule: $P(A \wedge B)=P(A \mid B) \cdot P(B)$
- Also: $P(A \wedge B)=P(B \mid A) \cdot P(A)$
- A and B are independent iff

$$
P(A \mid B)=P(A) \quad \text { and } \quad P(B \mid A)=P(B)
$$

- Equivalently, iff the following equation holds true:

$$
P(A \wedge B)=P(A) \cdot P(B)
$$

Interpretation of Conditional Probabilities

Caution! Common misinterpretation:

$$
" P(A \mid B)=0.8 \text { means, that } P(A)=0.8, \text { given } B \text { holds." }
$$

This statement is wrong due to (at least) two facts:

- $P(A)$ is always the a-priori probability, never the probability of A given that B holds!
- $P(A \mid B)=0.8$ is only applicable as long as no other evidence except B is present. If C becomes known, $P(A \mid B \wedge C)$ has to be determined.
In general we have:

$$
P(A \mid B \wedge C) \neq P(A \mid B)
$$

E. g. $C \rightarrow A$ might apply.

Joint Probabilities

- Let X_{1}, \ldots, X_{n} be random variables over the same framce of descernment Ω and event algebra \mathcal{E}. Then $\vec{X}=\left(X_{1}, \ldots, X_{n}\right)$ is called a random vector with

$$
\vec{X}(\omega)=\left(X_{1}(\omega), \ldots, X_{n}(\omega)\right)
$$

- Shorthand notation:

$$
P\left(\vec{X}=\left(x_{1}, \ldots, x_{n}\right)\right)=P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=P\left(x_{1}, \ldots, x_{n}\right)
$$

- Definition:

$$
\begin{aligned}
P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) & =P\left(\left\{\omega \in \Omega \mid \bigwedge_{i=1}^{n} X_{i}(\omega)=x_{i}\right\}\right) \\
& =P\left(\bigcap_{i=1}^{n}\left\{X_{i}=x_{i}\right\}\right)
\end{aligned}
$$

Joint Probabilities

- Example: P (Headache, Weather) is the joint probability distribution of both random variables and consists of the following table:

	$\mathrm{h} \hat{=}$ Headache $=$ true	$\neg \mathrm{h} \hat{=}$ Headache $=$ false
Weather = sunny	$P(\mathrm{~W}=$ sunny $\wedge \mathrm{h})$	$P(\mathrm{~W}=$ sunny $\wedge \neg \mathrm{h})$
Weather = rainy	$P(\mathrm{~W}=$ rainy $\wedge \mathrm{h})$	$P(\mathrm{~W}=$ rainy $\wedge \neg \mathrm{h})$
Weather = cloudy	$P(\mathrm{~W}=$ cloudy $\wedge \mathrm{h})$	$P(\mathrm{~W}=$ cloudy $\wedge \neg \mathrm{h})$
Weather = snowy	$P(\mathrm{~W}=$ snowy $\wedge \mathrm{h})$	$P(\mathrm{~W}=$ snowy $\wedge \neg \mathrm{h})$

- All table cells sum up to unity.

Calculating with Joint Probabilities

All desired probabilities can be computed from a joint probability distribution.

	toothache	ᄀtoothache
cavity	0.04	0.06
ᄀcavity	0.01	0.89

- Example: $P($ cavity \vee toothache $)=P($ cavity \wedge toothache $)$

$$
\begin{aligned}
& +P(\neg \text { cavity } \wedge \text { toothache }) \\
& +P(\text { cavity } \wedge \neg \text { toothache })=0.11
\end{aligned}
$$

- Marginalizations:

$$
\begin{aligned}
\mathrm{P}(\text { cavity }) & =P(\text { cavity } \wedge \text { toothache }) \\
& +P(\text { cavity } \wedge \neg \text { toothache })=0.10
\end{aligned}
$$

- Conditioning:

$$
P(\text { cavity } \mid \text { toothache })=\frac{P(\text { cavity } \wedge \text { toothache })}{P(\text { toothache })}=\frac{0.04}{0.04+0.01}=0.80
$$

Problems

- Easiness of computing all desired probabilities comes at an unaffordable price:

Given n random variables with k possible values each, the joint probability distribution contains k^{n} entries which is infeasible in practical applications.

- Hard to handle.
- Hard to estimate.

Therefore:

1. Is there a more dense representation of joint probability distributions?
2. Is there a more efficient way of processing this representation?

- The answer is no for the general case, however, certain dependencies and independencies can be exploited to reduce the number of parameters to a practical size.

Stochastic Independence

- Two events A and B are stochastically independent iff

$$
\begin{gathered}
P(A \wedge B)=P(A) \cdot P(B) \\
\Leftrightarrow \\
P(A \mid B)=P(A)=P(A \mid \bar{B})
\end{gathered}
$$

- Two random variables X and Y are stochastically independent iff
$\forall x \in \operatorname{dom}(X): \forall y \in \operatorname{dom}(Y): \quad P(X=x, Y=y)=P(X=x) \cdot P(Y=y)$
$\forall x \in \operatorname{dom}(X): \forall y \in \operatorname{dom}(Y): \quad P(X=x \mid Y=y)=P(X=x)$
- Shorthand notation: $P(X, Y)=P(X) \cdot P(Y)$.

Note the formal difference between $P(A) \in[0,1]$ and $P(X) \in[0,1]^{|\operatorname{dom}(X)|}$.

Conditional Independence

- Let X, Y and Z be three random variables. We call X and Y conditionally independent given Z, iff the following condition holds:

$$
\begin{aligned}
& \forall x \in \operatorname{dom}(X): \forall y \in \operatorname{dom}(Y): \forall z \in \operatorname{dom}(Z): \\
& \quad P(X=x, Y=y \mid Z=z)=P(X=x \mid Z=z) \cdot P(Y=y \mid Z=z)
\end{aligned}
$$

- Shorthand notation: $X \Perp_{P} Y \mid Z$
- Let $\boldsymbol{X}=\left\{A_{1}, \ldots, A_{k}\right\}, \boldsymbol{Y}=\left\{B_{1}, \ldots, B_{l}\right\}$ and $\boldsymbol{Z}=\left\{C_{1}, \ldots, C_{m}\right\}$ be three disjoint sets of random variables. We call \boldsymbol{X} and \boldsymbol{Y} conditionally independent given \boldsymbol{Z}, iff

$$
P(\boldsymbol{X}, \boldsymbol{Y} \mid \boldsymbol{Z})=P(\boldsymbol{X} \mid \boldsymbol{Z}) \cdot P(\boldsymbol{Y} \mid \boldsymbol{Z}) \Leftrightarrow P(\boldsymbol{X} \mid \boldsymbol{Y}, \boldsymbol{Z})=P(\boldsymbol{X} \mid \boldsymbol{Z})
$$

- Shorthand notation: $\boldsymbol{X} \Perp_{P} \boldsymbol{Y} \mid \boldsymbol{Z}$

Conditional Independence

- The complete condition for $\boldsymbol{X} \Perp_{P} \boldsymbol{Y} \mid \boldsymbol{Z}$ would read as follows:

$$
\begin{aligned}
& \forall a_{1} \in \operatorname{dom}\left(A_{1}\right): \cdots \forall a_{k} \in \operatorname{dom}\left(A_{k}\right): \\
& \forall b_{1} \in \operatorname{dom}\left(B_{1}\right): \cdots \forall b_{l} \in \operatorname{dom}\left(B_{l}\right): \\
& \quad \forall c_{1} \in \operatorname{dom}\left(C_{1}\right): \cdots \forall c_{m} \in \operatorname{dom}\left(C_{m}\right): \\
& \quad P\left(A_{1}=a_{1}, \ldots, A_{k}=a_{k}, B_{1}=b_{1}, \ldots, B_{l}=b_{l} \mid C_{1}=c_{1}, \ldots, C_{m}=c_{m}\right) \\
& \quad=P\left(A_{1}=a_{1}, \ldots, A_{k}=a_{k} \mid C_{1}=c_{1}, \ldots, C_{m}=c_{m}\right) \\
& \quad \cdot P\left(B_{1}=b_{1}, \ldots, B_{l}=b_{l} \mid C_{1}=c_{1}, \ldots, C_{m}=c_{m}\right)
\end{aligned}
$$

- Remarks:

1. If $\boldsymbol{Z}=\emptyset$ we get (unconditional) independence.
2. We do not use curly braces ($\}$) for the sets if the context is clear. Likewise, we use X instead of \boldsymbol{X} to denote sets.

Conditional Independence - Example 1

(Weak) Dependence in the entire dataset: X and Y dependent.

Conditional Independence - Example 1

No Dependence in Group 1: X and Y conditionally independent given Group 1.

Conditional Independence - Example 1

No Dependence in Group 2: X and Y conditionally independent given Group 2.

Conditional Independence - Example 2

- $\operatorname{dom}(G)=\{\mathrm{mal}, \mathrm{fem}\}$
- $\operatorname{dom}(S)=\{\mathrm{sm}, \overline{\mathrm{sm}}\}$
- $\operatorname{dom}(M)=\{$ mar, $\overline{\mathrm{mar}}\}$
- $\operatorname{dom}(P)=\{$ preg, $\overline{\text { preg }}\}$

Geschlecht (gender)
Raucher (smoker)
Verheiratet (married)
Schwanger (pregnant)

$p_{\text {GSMP }}$	$\mathrm{G}=\mathrm{mal}$		$G=f e m$	
	$\mathrm{S}=\mathrm{sm}$	$\mathrm{S}=\overline{\mathrm{sm}}$	$\mathrm{S}=\mathrm{sm}$	$\mathrm{S}=\overline{\mathrm{sm}}$
$\mathrm{M}=$ mar	0	0	0.01	0.05
	0.04	0.16	0.02	0.12
$\mathrm{M}=\overline{\mathrm{mar}} \frac{\mathrm{P}=\text { preg }}{}$	0	0	0.01	0.01
	0.10	0.20	0.07	0.21

Conditional Independence - Example 2

$$
\begin{aligned}
P(\mathrm{G}=\mathrm{fem}) & =P(\mathrm{G}=\mathrm{mal})=0.5 & & P(\mathrm{P}=\mathrm{preg})=0.08 \\
P(\mathrm{~S}=\mathrm{sm}) & =0.25 & & P(\mathrm{M}=\mathrm{mar})=0.4
\end{aligned}
$$

- Gender and Smoker are not independent:

$$
P(\mathrm{G}=\mathrm{fem} \mid \mathrm{S}=\mathrm{sm})=0.44 \neq 0.5=P(\mathrm{G}=\mathrm{fem})
$$

- Gender and Marriage are marginally independent but conditionally dependent given Pregnancy:

$$
P(\text { fem }, \text { mar } \mid \overline{\text { preg }}) \approx 0.152 \neq 0.169 \approx P(\text { fem } \mid \overline{\text { preg }}) \cdot P(\operatorname{mar} \mid \overline{\text { preg }})
$$

Bayes Theorem

- Product Rule (for events A and B):

$$
P(A \cap B)=P(A \mid B) P(B) \quad \text { and } \quad P(A \cap B)=P(B \mid A) P(A)
$$

- Equating the right-hand sides:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- For random variables X and Y :

$$
\forall x \forall y: \quad P(Y=y \mid X=x)=\frac{P(X=x \mid Y=y) P(Y=y)}{P(X=x)}
$$

- Generalization concerning background knowledge/evidence E :

$$
P(Y \mid X, E)=\frac{P(X \mid Y, E) P(Y \mid E)}{P(X \mid E)}
$$

Bayes Theorem - Application

$$
\begin{aligned}
P(\text { toothache } \mid \text { cavity }) & =0.4 \\
P(\text { cavity }) & =0.1 \quad P(\text { cavity } \mid \text { toothache })=\frac{0.4 \cdot 0.1}{0.05}=0.8 \\
P(\text { toothache }) & =0.05
\end{aligned}
$$

Why not estimate P (cavity | toothache) right from the start?

- Causal knowledge like P (toothache \mid cavity $)$ is more robust than diagnostic knowledge P (cavity | toothache).
- The causality P (toothache \mid cavity) is independent of the a priori probabilities P (toothache) and P (cavity).
- If P (cavity) rose in a caries epidemic, the causality P (toothache \mid cavity) would remain constant whereas both P (cavity | toothache) and P (toothache) would increase according to P (cavity).
- A physician, after having estimated P (cavity \mid toothache), would not know a rule for updating.

Relative Probabilities

Assumption:
We would like to consider the probability of the diagnosis GumDisease as well.

$$
\begin{aligned}
P(\text { toothache } \mid \text { gumdisease }) & =0.7 \\
P(\text { gumdisease }) & =0.02
\end{aligned}
$$

Which diagnosis is more probable?
If we are interested in relative probabilities only (which may be sufficient for some decisions), P (toothache) needs not to be estimated:

$$
\begin{aligned}
\frac{P(C \mid T)}{P(G \mid T)} & =\frac{P(T \mid C) P(C)}{P(T)} \cdot \frac{P(T)}{P(T \mid G) P(G)} \\
& =\frac{P(T \mid C) P(C)}{P(T \mid G) P(G)}=\frac{0.4 \cdot 0.1}{0.7 \cdot 0.02} \\
& =28.57
\end{aligned}
$$

Normalization

If we are interested in the absolute probability of $P(C \mid T)$ but do not know $P(T)$, we may conduct a complete case analysis (according C) and exploit the fact that $P(C \mid T)+P(\neg C \mid T)=1$.

$$
\begin{aligned}
P(C \mid T) & =\frac{P(T \mid C) P(C)}{P(T)} \\
P(\neg C \mid T) & =\frac{P(T \mid \neg C) P(\neg C)}{P(T)} \\
1=P(C \mid T)+P(\neg C \mid T) & =\frac{P(T \mid C) P(C)}{P(T)}+\frac{P(T \mid \neg C) P(\neg C)}{P(T)} \\
P(T) & =P(T \mid C) P(C)+P(T \mid \neg C) P(\neg C)
\end{aligned}
$$

- Plugging into the equation for $P(C \mid T)$ yields:

$$
P(C \mid T)=\frac{P(T \mid C) P(C)}{P(T \mid C) P(C)+P(T \mid \neg C) P(\neg C)}
$$

- For general random variables, the equation reads:

$$
P(Y=y \mid X=x)=\frac{P(X=x \mid Y=y) P(Y=y)}{\sum_{\forall y^{\prime} \in \operatorname{dom}(Y)} P\left(X=x \mid Y=y^{\prime}\right) P\left(Y=y^{\prime}\right)}
$$

- Note the "loop variable" y^{\prime}. Do not confuse with y.

Multiple Evidences

- The patient complains about a toothache. From this first evidence the dentist infers:

$$
P(\text { cavity } \mid \text { toothache })=0.8
$$

- The dentist palpates the tooth with a metal probe which catches into a fracture:

$$
P(\text { cavity } \mid \text { fracture })=0.95
$$

- Both conclusions might be inferred via Bayes rule. But what does the combined evidence yield? Using Bayes rule further, the dentist might want to determine:

$$
P(\text { cavity } \mid \text { toothache } \wedge \text { fracture })=\frac{P(\text { toothache } \wedge \text { fracture } \mid \text { cavity }) \cdot P(\text { cavity })}{P(\text { toothache } \wedge \text { fracture })}
$$

Multiple Evidences

Problem:
He needs P (toothache \wedge catch | cavity), i. e. diagnostics knowledge for all combinations of symptoms in general. Better incorporate evidences step-by-step:

$$
P(Y \mid X, E)=\frac{P(X \mid Y, E) P(Y \mid E)}{P(X \mid E)}
$$

Abbreviations:

- C - cavity
- T - toothache
- F - fracture

Objective:

Computing $P(C \mid T, F)$ with just causal statements of the form $P(\cdot \mid C)$ and under exploitation of independence relations among the variables.

Multiple Evidences

- A priori:

$$
P(C)
$$

- Evidence toothache: $\quad P(C \mid T) \quad=P(C) \frac{P(T \mid C)}{P(T)}$
- Evidence fracture: $\quad P(C \mid T, F)=P(C \mid T) \frac{P(F \mid C, T)}{P(F \mid T)}$

$$
\begin{aligned}
T \Perp F \mid C & \Leftrightarrow \quad P(F \mid C, T)=P(F \mid C) \\
P(C \mid T, F) & =P(C) \frac{P(T \mid C)}{P(T)} \frac{P(F \mid C)}{P(F \mid T)}
\end{aligned}
$$

Seems that we still have to cope with symptom inter-dependencies?!

Multiple Evidences

- Compound equation from last slide:

$$
\begin{aligned}
P(C \mid T, F) & =P(C) \frac{P(T \mid C) P(F \mid C)}{P(T) P(F \mid T)} \\
& =P(C) \frac{P(T \mid C) P(F \mid C)}{P(F, T)}
\end{aligned}
$$

- $P(F, T)$ is a normalizing constant and can be computed if $P(F \mid \neg C)$ and $P(T \mid \neg C)$ are known:

$$
P(F, T)=\underbrace{P(F, T \mid C)}_{P(F \mid C) P(T \mid C)} P(C)+\underbrace{P(F, T \mid \neg C)}_{P(F \mid \neg C) P(T \mid \neg C)} P(\neg C)
$$

- Therefore, we finally arrive at the following solution...

Multiple Evidences

$$
P(C \mid F, T)=\frac{\qquad P(C) \quad P(T \mid C) P P(F \mid C)}{\mid P(F \mid C) P(T \mid C) P(C)+P(F \mid \neg C) P(T \mid \neg C)}
$$

Note that we only use causal probabilities $P(\cdot \mid C)$ together with the a priori (marginal) probabilities $P(C)$ and $P(\neg C)$.

Multiple Evidences - Summary

Multiple evidences can be treated by reduction on

- a priori probabilities
- (causal) conditional probabilities for the evidence
- under assumption of conditional independence

General rule:

$$
P(Z \mid X, Y)=\alpha P(Z) P(X \mid Z) P(Y \mid Z)
$$

for X and Y conditionally independent given Z and with normalizing constant α.

Monty Hall Puzzle

Marylin Vos Savant in her riddle column in the New York Times:
You are a candidate in a game show and have to choose between three doors. Behind one of them is a Porsche, whereas behind the other two there are goats. After you chose a door, the host Monty Hall (who knows what is behind each door) opens another (not your chosen one) door with a goat. Now you have the choice between keeping your chosen door or choose the remaining one.

Which decision yields the best chance of winning the Porsche?

Monty Hall Puzzle

G You win the Porsche.
$R \quad$ You revise your decision.
$A \quad$ Behind your initially chosen door is (and remains) the Porsche.

$$
\begin{aligned}
P(G \mid R) & =P(G, A \mid R)+P(G, \bar{A} \mid R) \\
& =P(G \mid A, R) P(A \mid R)+P(G \mid \bar{A}, R) P(\bar{A} \mid R) \\
& =0 \cdot P(A \mid R)+1 \cdot P(\bar{A} \mid R) \\
& =P(\bar{A} \mid R)=P(\bar{A})=\frac{2}{3} \\
P(G \mid \bar{R}) & =P(G, A \mid \bar{R})+P(G, \bar{A} \mid \bar{R}) \\
& =P(G \mid A, \bar{R}) P(A \mid \bar{R})+P(G \mid \bar{A}, \bar{R}) P(\bar{A} \mid \bar{R}) \\
& =1 \cdot P(A \mid \bar{R})+0 \cdot P(\bar{A} \mid \bar{R}) \\
& =P(A \mid \bar{R})=P(A)=\frac{1}{3}
\end{aligned}
$$

Simpson's Paradox

Example: $\quad C=$ Patient takes medication, $E=$ patient recovers

	E	$\neg E$	\sum	Recovery rate
C	20	20	40	50%
$\neg C$	16	24	40	40%
\sum	36	44	80	

Men	E	$\neg E$	\sum	Rec.rate	Women	E	$\neg E$	\sum	Rec.rate
C	18	12	30	60%	C	2	8	10	20%
$\neg C$	7	3	10	70%	$\neg C$	9	21	30	30%
	25	15	40			11	29	40	

$$
\text { but } \begin{aligned}
P(E \mid C) & >P(E \mid \neg C) \\
P(E \mid C, M) & <P(E \mid \neg C, M) \\
P(E \mid C, W) & <P(E \mid \neg C, W)
\end{aligned}
$$

Probabilistic Reasoning

- Probabilistic reasoning is difficult and may be problematic:
- $P(A \wedge B)$ is not determined simply by $P(A)$ and $P(B)$: $P(A)=P(B)=0.5 \quad \Rightarrow \quad P(A \wedge B) \in[0,0.5]$
- $P(C \mid A)=x, P(C \mid B)=y \quad \Rightarrow \quad P(C \mid A \wedge B) \in[0,1]$

Probabilistic logic is not truth functional!

- Central problem: How does additional information affect the current knowledge?
I. e., if $P(B \mid A)$ is known, what can be said about $P(B \mid A \wedge C)$?
- High complexity: n propositions $\rightarrow 2^{n}$ full conjunctives
- Hard to specify these probabilities.

Summary

- Uncertainty is inevitable in complex and dynamic scenarios that force agents to cope with ignorance.
- Probabilities express the agent's inability to vote for a definitive decision. They model the degree of belief.
- If an agent violates the axioms of probability, it may exhibit irrational behavior in certain circumstances.
- The Bayes rule is used to derive unknown probabilities from present knowledge and new evidence.
- Multiple evidences can be effectively included into computations exploiting conditional independencies.

