Decomposition

Example

Example World

Relation

color	shape	size
\square	\bigcirc	small
\square	\bigcirc	medium
\square	\bigcirc	small
\square	\bigcirc	medium
\square	\triangle	medium
\square	\triangle	large
\square	\square	medium
\square	\square	medium
\square	\square	
\square	\triangle	medium
\square	\triangle	large

- 10 simple geometric objects
- 3 attributes

Example

Relation

color	shape	size
\square	\bigcirc	small
\square	\bigcirc	medium
\square	\bigcirc	small
\square	\bigcirc	medium
\square	\triangle	medium
\square	\triangle	large
\square	\square	medium
\square	\square	medium
\square	\triangle	medium
\square	\triangle	large

Geometric Representation

Object Representation

- Universe of Discourse: Ω
- $\omega \in \Omega$ represents a single abstract object.
- A subset $E \subseteq \Omega$ is called an event.
- For every event we use the function R to determine whether E is possible or not.

$$
R: 2^{\Omega} \rightarrow\{0,1\}
$$

- We claim the following properties of R :

1. $R(\emptyset)=0$
2. $\forall E_{1}, E_{2} \subseteq \Omega: R\left(E_{1} \cup E_{2}\right)=\max \left\{R\left(E_{1}\right), R\left(E_{2}\right)\right\}$

- For example:

$$
R(E)= \begin{cases}0 & \text { if } E=\emptyset \\ 1 & \text { otherwise }\end{cases}
$$

Object Representation

- Attributes or Properties of these objects are introduced by functions: (later referred to as random variables)

$$
A: \Omega \rightarrow \operatorname{dom}(A)
$$

where $\operatorname{dom}(A)$ is the domain (i. e., set of all possible values) of A.

- A set of attibutes $U=\left\{A_{1}, \ldots, A_{n}\right\}$ is called an attribute schema.
- The preimage of an attribute defines an event:

$$
\forall a \in \operatorname{dom}(A): A^{-1}(a)=\{\omega \in \Omega \mid A(\omega)=a\} \subseteq \Omega
$$

- Abbreviation: $A^{-1}(a)=\{\omega \in \Omega \mid A(\omega)=a\} \quad=\quad\{A=a\}$
- We will index the function R to stress on which events it is defined. $R_{A B}$ will be short for $R_{\{A, B\}}$.

$$
R_{A B}: \bigcup_{a \in \operatorname{dom}(A)} \bigcup_{b \in \operatorname{dom}(B)}\{\{A=a, B=b\}\} \rightarrow\{0,1\}
$$

Formal Representation

$A=$ color	$B=$ shape	$C=$ size
$a_{1}=\square$	$b_{1}=\bigcirc$	$c_{1}=$ small
$a_{1}=\square$	$b_{1}=\bigcirc$	$c_{2}=$ medium
$a_{2}=\square$	$b_{1}=\bigcirc$	$c_{1}=$ small
$a_{2}=\square$	$b_{1}=\bigcirc$	$c_{2}=$ medium
$a_{2}=\square$	$b_{3}=\triangle$	$c_{2}=$ medium
$a_{2}=\square$	$b_{3}=\triangle$	$c_{3}=$ large
$a_{3}=\square$	$b_{2}=\square$	$c_{2}=$ medium
$a_{4}=\square$	$b_{2}=\square$	$c_{2}=$ medium
$a_{4}=\square$	$b_{3}=\triangle$	$c_{2}=$ medium
$a_{4}=\square$	$b_{3}=\triangle$	$c_{3}=$ large

$$
\left.\left.\begin{array}{l}
R_{A B C}(A=a, B=b, C=c) \\
\quad=R_{A B C}(\{A=a, B=b, C=c\}) \\
=R_{A B C}(\{\omega \in \Omega \mid A(\omega)=a \wedge \\
B(\omega)=b \wedge
\end{array}\right] \begin{array}{ll}
C(\omega)=c)\}
\end{array}\right] \begin{array}{ll}
0 & \text { if there is no tuple }(a, b, c) \\
1 & \text { else }
\end{array}
$$

R serves as an indicator function.

Operations on the Relations

Projection / Marginalization

Let $R_{A B}$ be a relation over two attributes A and B. The projection (or marginalization) from schema $\{A, B\}$ to schema $\{A\}$ is defined as:

$$
\forall a \in \operatorname{dom}(A): R_{A}(A=a)=\max _{\forall b \in \operatorname{dom}(B)}\left\{R_{A B}(A=a, B=b)\right\}
$$

This principle is easily generalized to sets of attributes.

Object Representation

Cylindrical Extention

Let R_{A} be a relation over an attribute A. The cylindrical extention $R_{A B}$ from $\{A\}$ to $\{A, B\}$ is defined as:

$$
\forall a \in \operatorname{dom}(A): \forall b \in \operatorname{dom}(B): R_{A B}(A=a, B=b)=R_{A}(A=a)
$$

This principle is easily generalized to sets of attributes.

Object Representation

Intersection

Let $R_{A B}^{(1)}$ and $R_{A B}^{(2)}$ be two relations with attribute schema $\{A, B\}$. The intersection $R_{A B}$ of both is defined in the natural way:
$\forall a \in \operatorname{dom}(A): \forall b \in \operatorname{dom}(B):$

$$
R_{A B}(A=a, B=b)=\min \left\{R_{A B}^{(1)}(A=a, B=b), R_{A B}^{(2)}(A=a, B=b)\right\}
$$

This principle is easily generalized to sets of attributes.

Object Representation

Conditional Relation

Let $R_{A B}$ be a relation over the attribute schema $\{A, B\}$. The conditional relation of A given B is defined as follows:

$$
\forall a \in \operatorname{dom}(A): \forall b \in \operatorname{dom}(B): R_{A}(A=a \mid B=b)=R_{A B}(A=a, B=b)
$$

This principle is easily generalized to sets of attributes.

Object Representation

(Unconditional) Independence

Let $R_{A B}$ be a relation over the attribute schema $\{A, B\}$. We call A and B relationally independent (w.r.t. $R_{A B}$) if the following condition holds:
$\forall a \in \operatorname{dom}(A): \forall b \in \operatorname{dom}(B): R_{A B}(A=a, B=b)=\min \left\{R_{A}(A=a), R_{B}(B=b)\right\}$
This principle is easily generalized to sets of attributes.

Object Representation

(Unconditional) Independence

Intuition: Fixing one (possible) value of A does not restrict the (possible) values of B and vice versa.

Conditioning on any possible value of B always results in the same relation R_{A}.

$$
\begin{aligned}
& \forall b \in \operatorname{dom}(B): R_{B}(B=b)=1: \\
& \quad R_{A}(A=a \mid B=b)=R_{A}(A=a)
\end{aligned}
$$

Decomposition

- Obviously, the original two-dimensional relation can be reconstructed from the two one-dimensional ones, if we have (unconditional) independence.
- The definition for (unconditional) independence already told us how to do so:

$$
R_{A B}(A=a, B=b)=\min \left\{R_{A}(A=a), R_{B}(B=b)\right\}
$$

- Storing R_{A} and R_{B} is sufficient to represent the information of $R_{A B}$.
- Question: The (unconditional) independence is a rather strong restriction. Are there other types of independence that allow for a decomposition as well?

Conditional Relational Independence

Clearly, A and C are unconditionally dependent, i. e. the relation $R_{A C}$ cannot be reconstructed from R_{A} and R_{C}.

Conditional Relational Independence

$$
R_{A C}\left(\cdot, \cdot \mid B=b_{3}\right)
$$

However, given all possible values of B, all respective conditional relations $R_{A C}$ show the independence of A and C.

$$
R_{A C}(a, c \mid b)=\min \left\{R_{A}(a \mid b), R_{C}(c \mid b)\right\}
$$

With the definition of a conditional relation, the decomposition description for $R_{A B C}$ reads:

$$
R_{A B C}(a, b, c)=\min \left\{R_{A B}(a, b), R_{B C}(b, c)\right\}
$$

$$
R_{A C}\left(\cdot, \cdot \mid B=b_{1}\right)
$$

Conditional Relational Independence

Again, we reconstruct the initial relation from the cylindrical extentions of the two relations formed by the attributes A, B and B, C.

It is possible since A and C are (relationally) independent given B.

