Elements of Graph Theory

Simple Graph

Simple Graph

A simple graph (or just: graph) is a tuple $\mathcal{G}=(V, E)$ where

$$
V=\left\{A_{1}, \ldots, A_{n}\right\}
$$

represents a finite set of vertices (or nodes) and

$$
E \subseteq(V \times V) \backslash\{(A, A) \mid A \in V\}
$$

denotes the set of edges.
It is called simple since there are no self-loops and no multiple edges.

Edge Types

Let $\mathcal{G}=(V, E)$ be a graph. An edge $e=(A, B)$ is called

- directed if $(A, B) \in E \Rightarrow(B, A) \notin E$ Notation: $A \rightarrow B$
- undirected if $(A, B) \in E \Rightarrow(B, A) \in E$ Notation: $A-B$ or $B-A$

(Un)directed Graph

A graph with only (un)directed edges is called an (un)directed graph.

Adjacency Set

Let $\mathcal{G}=(V, E)$ be a graph. The set of nodes that is accessible via a given node $A \in V$ is called the adjacency set of A :

$$
\operatorname{adj}(A)=\{B \in V \mid(A, B) \in E\}
$$

Paths

Let $\mathcal{G}=(V, E)$ be a graph. A series ρ of r pairwise different nodes

$$
\rho=\left\langle A_{i_{1}}, \ldots, A_{i_{r}}\right\rangle
$$

is called a path from A_{i} to A_{j} if

- $A_{i_{1}}=A_{i}, \quad A_{i_{r}}=A_{j}$
- $A_{i_{k+1}} \in \operatorname{adj}\left(A_{i_{k}}\right), \quad 1 \leq k<r$

A path with only undirected edges is called an undirected path

$$
\rho=A_{i_{1}}-\cdots-A_{i_{r}}
$$

whereas a path with only directed edges is referred to as a directed path

$$
\rho=A_{i_{1}} \rightarrow \cdots \rightarrow A_{i_{r}}
$$

If there is a directed path ρ from node A to node B in a directed graph \mathcal{G} we write

$$
A \underset{\mathcal{G}}{\rho} B .
$$

If the path ρ is undirected we denote this with

$$
A \stackrel{\underset{\mathcal{G}}{\rho}}{\underset{\sim}{\rho}} B .
$$

Graph Types

Loop

Let $\mathcal{G}=(V, E)$ be an undirected graph. A path

$$
\rho=X_{1}-\cdots-X_{k}
$$

with $X_{k}-X_{1} \in E$ is called a loop.

Cycle

Let $\mathcal{G}=(V, E)$ be a directed graph. A path

$$
\rho=X_{1} \rightarrow \cdots \rightarrow X_{k}
$$

with $X_{k} \rightarrow X_{1} \in E$ is called a cycle.

Directed Acyclic Graph (DAG)

A directed graph $\mathcal{G}=(V, E)$ is called acyclic if for every path $X_{1} \rightarrow \cdots \rightarrow X_{k}$ in \mathcal{G} the condition $X_{k} \rightarrow X_{1} \notin E$ is satisfied, i. e. it contains no cycle.

Parents, Children and Families

Let $\mathcal{G}=(V, E)$ be a directed graph. For every node $A \in V$ we define the following sets:

- Parents:

$$
\text { parents }_{\mathcal{G}}(A)=\{B \in V \mid B \rightarrow A \in E\}
$$

- Children:
$\operatorname{children}_{\mathcal{G}}(A)=\{B \in V \mid A \rightarrow B \in E\}$
- Family:
family $_{\mathcal{G}}(A)=\{A\} \cup$ parents $_{\mathcal{G}}(A)$
If the respective graph is clear from the context, the index \mathcal{G} is omitted.

Ancestors, Descendants, Non-Descendants

Let $\mathcal{G}=(V, E)$ be a DAG. For every node $A \in V$ we define the following sets:

- Ancestors:

$$
\underset{\operatorname{ancs}}{\mathcal{G}}(A)=\{B \in V \mid \exists \rho: B \underset{\mathcal{G}}{\rho} A\}
$$

- Descendants:

$$
\operatorname{descs}_{\mathcal{G}}(A)=\{B \in V \mid \exists \rho: A \underset{\mathscr{G}}{\rho} B\}
$$

- Non-Descendants:

If the respective graph is clear from the context, the index \mathcal{G} is omitted.

$$
\begin{aligned}
\operatorname{ancs}(F) & =\{A, B, C, D\} \\
\operatorname{descs}(F) & =\{J, K, L, M\} \\
\operatorname{mon}-\operatorname{descs}(F) & =\{A, B, C, D, E, G, H\}
\end{aligned}
$$

Operations on Graphs

Let $\mathcal{G}=(V, E)$ be a DAG.
The Minimal Ancestral Subgraph of \mathcal{G} given a set $M \subseteq V$ of nodes is the smallest subgraph that contains all ancestors of all nodes in M.

The Moral Graph of \mathcal{G} is the undirected graph that is obtained by

1. connecting nodes that share a common child with an arbitrarily directed edge and,
2. converting all directed edges into undirected ones by dropping the arrow heads.

Moral graph of ancestral graph induced by the set $\{E, F, G\}$.

u-Separation

Let $\mathcal{G}=(V, E)$ be an undirected graph and $X, Y, Z \subseteq V$ three disjoint subsets of nodes. We agree on the following separation criteria:

1. Z u-separates X from Y - written as

$$
X \Perp_{\mathcal{G}} Y \mid Z,
$$

if every possible path from a node in X to a node in Y is blocked.
2. A path is blocked if it contains one (or more) blocking nodes.
3. A node is a blocking node if it lies in Z.

u-Separation

E.g. path $A-B-E-G-H$ is blocked by $E \in Z$. It can be easily verified, that every path from X to Y is blocked by Z. Hence we have:

$$
\{A, B, C, D\} \Perp_{\mathcal{G}}\{G, H, J\} \mid\{E, F\}
$$

u-Separation

Another way to check for u-separation: Remove the nodes in Z from the graph (and all the edges adjacent to these nodes). X and Y are u-separated by Z if the remaining graph is disconnected with X and Y in separate subgraphs.

d-Separation

Now: Separation criterion for directed graphs.
We use the same principles as for u-separation. Two modifications are necessary:

- Directed paths may lead also in reverse to the arrows.
- The blocking node condition is more sophisticated.

Blocking Node (in a directed path)
A node A is blocked if its edge directions along the path

- are of type 1 and $A \in Z$, or
- are of type 2 and neither A nor one of its descendants is in Z.

Type 1

converging, head-to-head
Type 2

d-Separation

Checking path $A \rightarrow C \rightarrow E \leftarrow D$:

- C is serial and not in Z : non-blocking
- E is converging and not in Z, neither is F, G, H or J : blocking
\Rightarrow Path is blocked

$$
A \Perp D \mid \emptyset
$$

d-Separation

Checking path $A \rightarrow C \rightarrow E \leftarrow D$:

- C is serial and not in Z : non-blocking
- E is converging and in Z : non-blocking
\Rightarrow Path is not blocked

$$
A \not \Perp D \mid E
$$

d-Separation

Checking path $A \rightarrow C \rightarrow E \leftarrow D$:

- C is serial and not in Z : non-blocking
- E is converging and not in Z but one of its descendants (J) is in Z : non-blocking
\Rightarrow Path is not blocked

$$
A \not \Perp D \mid J
$$

d-Separation

Checking path $A \rightarrow C \rightarrow E \rightarrow F \rightarrow H$:

- C is serial and not in Z : non-blocking
- E is serial and not in Z : non-blocking
- F is serial and not in Z : non-blocking
\Rightarrow Path is not blocked

$$
A \not \Perp H \mid \emptyset
$$

d-Separation

Checking path $A \rightarrow C \rightarrow E \rightarrow F \rightarrow H$:

- C is serial and not in Z : non-blocking
- E is serial and in Z : blocking
- F is serial and not in Z : non-blocking
\Rightarrow Path is blocked

d-Separation

Checking path $A \rightarrow C \rightarrow E \leftarrow D \rightarrow B$:

- C is serial and not in Z : non-blocking
- E is converging and in Z : non-blocking
- D is serial and in Z : blocking
\Rightarrow Path is blocked

$$
A \Perp H, B \mid D, E
$$

d-Separation: Alternative Way for Checking

Steps

- Create the minimal ancestral subgraph induced by $X \cup Y \cup Z$.

d-Separation: Alternative Way for Checking

Steps

- Create the minimal ancestral subgraph induced by $X \cup Y \cup Z$.
- Moralize that subgraph.

d-Separation: Alternative Way for Checking

Steps:

- Create the minimal ancestral subgraph induced by $X \cup Y \cup Z$.
- Moralize that subgraph.
- Check for u-Separation in that undirected graph.

$$
A \Perp H, B \mid D, E
$$

