
Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 38

Elements of Graph Theory
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Simple Graph

A simple graph (or just: graph) is a tuple G = (V,E) where

V = {A1, . . . , An}
represents a finite set of vertices (or nodes) and

E ⊆ (V × V ) \ {(A,A) | A ∈ V }
denotes the set of edges.
It is called simple since there are no self-loops and no multiple edges.
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Let G = (V,E) be a graph. An edge e = (A,B) is
called

• directed if (A,B) ∈ E ⇒ (B,A) /∈ E
Notation: A→ B

• undirected if (A,B) ∈ E ⇒ (B,A) ∈ E
Notation: A−B or B − A

(Un)directed Graph

A graph with only (un)directed edges is called an
(un)directed graph.

Adjacency Set

Let G = (V,E) be a graph. The set of nodes that
is accessible via a given node A ∈ V is called the
adjacency set of A:

adj(A) = {B ∈ V | (A,B) ∈ E}

A B

C D E

F G

A B

C D E

F G

adj(D)
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Let G = (V,E) be a graph. A series ρ of r pairwise
different nodes

ρ =
〈
Ai1, . . . , Air

〉
is called a path from Ai to Aj if

• Ai1 = Ai, Air = Aj

• Aik+1
∈ adj(Aik), 1 ≤ k < r

A path with only undirected edges is called an undi-
rected path

ρ = Ai1 − · · · − Air

whereas a path with only directed edges is referred
to as a directed path

ρ = Ai1 → · · · → Air

A B

C D E

F G

If there is a directed path ρ
from node A to node B in a
directed graph G we write

A�ρG B.

If the path ρ is undirected we
denote this with

A�ρG B.
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Loop

Let G = (V,E) be an undirected graph. A path

ρ = X1 − · · · −Xk

with Xk −X1 ∈ E is called a loop.

Cycle

Let G = (V,E) be a directed graph. A path

ρ = X1 → · · · → Xk

with Xk → X1 ∈ E is called a cycle.

Directed Acyclic Graph (DAG)

A directed graph G = (V,E) is called acyclic if
for every path X1 → · · · → Xk in G the condition
Xk → X1 /∈ E is satisfied, i. e. it contains no cycle.

A B

C D E

F G

Cycle

A B

C D E

F G

Loop
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Let G = (V, E) be a directed graph. For every node
A ∈ V we define the following sets:

• Parents:

parentsG(A) = {B ∈ V | B → A ∈ E}
• Children:

childrenG(A) = {B ∈ V | A→ B ∈ E}
• Family:

familyG(A) = {A} ∪ parentsG(A)

If the respective graph is clear from the context, the
index G is omitted.

A B

C D

E F G

H J K

L M

parents(F ) = {C,D}
children(F ) = {J,K}

family(F ) = {C,D, F}
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Let G = (V,E) be a DAG. For every node A ∈ V
we define the following sets:

• Ancestors:

ancsG(A) = {B ∈ V | ∃ρ : B �ρG A}
• Descendants:

descsG(A) = {B ∈ V | ∃ρ : A�ρG B}
• Non-Descendants:

non-descsG(A) = V \ {A} \ descsG(A)

If the respective graph is clear from the context, the
index G is omitted.

A B

C D

E F G

H J K

L M

ancs(F ) = {A,B,C,D}
descs(F ) = {J,K, L,M}

non-descs(F ) = {A,B,C,D,E,G,H}
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Let G = (V,E) be a DAG.

The Minimal Ancestral Subgraph of G given
a set M ⊆ V of nodes is the smallest subgraph that
contains all ancestors of all nodes in M .

The Moral Graph of G is the undirected graph
that is obtained by

1. connecting nodes that share a common child
with an arbitrarily directed edge and,

2. converting all directed edges into undirected
ones by dropping the arrow heads.

A B

C D

E F G

H J K

L M

Moral graph of ancestral graph
induced by the set {E, F,G}.
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A B

C D

E

F

G

H

J

X Z Y

Let G = (V,E) be an undirected graph and X,Y, Z ⊆ V three disjoint
subsets of nodes. We agree on the following separation criteria:

1. Z u-separates X from Y — written as

X ⊥⊥G Y | Z,
if every possible path from a node in X to a node in Y is blocked.

2. A path is blocked if it contains one (or more) blocking nodes.

3. A node is a blocking node if it lies in Z.
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A B

C D

E

F

G

H

J

X Z Y

E. g. path A − B − E − G − H is blocked by E ∈ Z. It can be easily
verified, that every path from X to Y is blocked by Z. Hence we have:

{A,B,C,D} ⊥⊥G {G,H, J} | {E,F}
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A B

C D

E

F

G

H

J

X Z Y

Another way to check for u-separation: Remove the nodes in Z from the
graph (and all the edges adjacent to these nodes). X and Y are u-separated
by Z if the remaining graph is disconnected with X and Y in separate
subgraphs.
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Now: Separation criterion for directed graphs.

We use the same principles as for u-separation. Two modifications are necessary:

• Directed paths may lead also in reverse to the arrows.

• The blocking node condition is more sophisticated.

Blocking Node (in a directed path)

A node A is blocked if its edge directions along the path

• are of type 1 and A ∈ Z, or

• are of type 2 and neither A nor one of its descendants is in Z.

serial, head-to-tail

serial, head-to-tail

diverging, tail-to-tail

Type 1

converging, head-to-head

Type 2
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A C

B D

E

F

G

H

J

X Z = ∅

Y

Checking path A→ C → E ← D:

• C is serial and not in Z: non-blocking

• E is converging and not in Z, neither is F,G,H or J : blocking

⇒ Path is blocked

A⊥⊥D | ∅
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A C

B D

E

F

G

H

J

X

Z

Y

Checking path A→ C → E ← D:

• C is serial and not in Z: non-blocking

• E is converging and in Z: non-blocking

⇒ Path is not blocked

A⊥�⊥D | E



d-Separation

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 52

A C

B D

E

F

G

H

J

X

ZY

Checking path A→ C → E ← D:

• C is serial and not in Z: non-blocking

• E is converging and not in Z but one of its descendants (J) is in Z:
non-blocking

⇒ Path is not blocked

A⊥�⊥D | J
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A C

B D

E

F

G

H

J

X Z = ∅

Y

Checking path A→ C → E → F → H :

• C is serial and not in Z: non-blocking

• E is serial and not in Z: non-blocking

• F is serial and not in Z: non-blocking

⇒ Path is not blocked

A⊥�⊥H | ∅
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A C

B D

E

F

G

H

J

X

Z

Y = {B,H}

Checking path A→ C → E → F → H :

• C is serial and not in Z: non-blocking

• E is serial and in Z: blocking

• F is serial and not in Z: non-blocking

⇒ Path is blocked
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A C

B D

E

F

G

H

J

X

Z

Y = {B,H}

Checking path A→ C → E ← D → B:

• C is serial and not in Z: non-blocking

• E is converging and in Z: non-blocking

• D is serial and in Z: blocking

⇒ Path is blocked

A⊥⊥H,B | D,E
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A C

B D

E

F

G

H

J

X

Z

Y = {B,H}

Steps

• Create the minimal ancestral subgraph induced by X ∪ Y ∪ Z.
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A C

B D

E

F H

X

Z

Y = {B,H}

Steps

• Create the minimal ancestral subgraph induced by X ∪ Y ∪ Z.

• Moralize that subgraph.
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A C

B D

E

F H

X

Z

Y = {B,H}

Steps:

• Create the minimal ancestral subgraph induced by X ∪ Y ∪ Z.

• Moralize that subgraph.

• Check for u-Separation in that undirected graph.

A⊥⊥H,B | D,E


