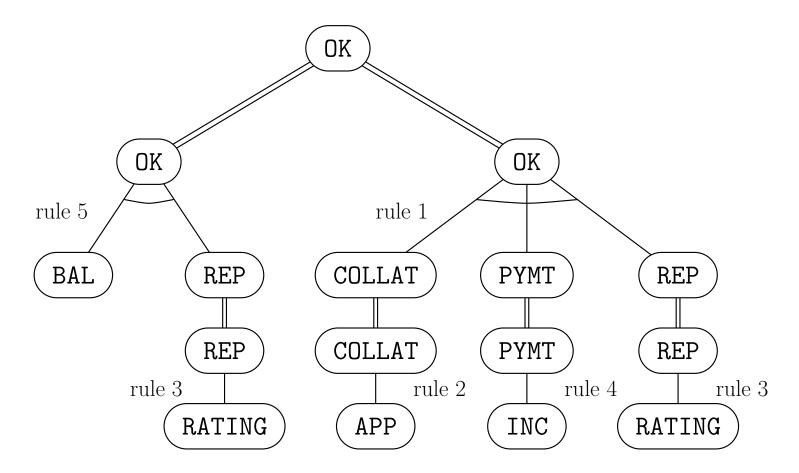
Rule-based Systems

Modi of usage:

- Query: Facts are retrieved from database or user is interrogated
- **Explanation:** System answers questions how a decision was concluded

Example rule base:


- 1. COLLAT \land PYMT \land REP \Rightarrow OK
- 2. APP \Rightarrow COLLAT
- 3. RATING \Rightarrow REP
- 4. INC \Rightarrow PYMT
- 5. BAL \land REP \Rightarrow OK

Description:

COLLAT	satisfactory collateral
PYMT	payments undisputed
REP	good reputation
APP	high appraisal
RATING	good rating
INC	positive income
BAL	excellent balance
OK	loan will be approved

Decision Rule Tree

Corresponding and/or-Tree:

Example Queries

- **User:** Why do you believe that the loan should be approved?
- **System:** Because the collateral for the loan is satisfactory, and the applicant is able to make the loan payments, and the applicant has a good financial reputation.
- User: Why did you ask me about whether or not the applicant's income exceeds his/her expenses?
- **System:** Because I was trying to establish whether or not the applicant is able to make the loan payments.
- **User:** Why do you believe that the applicant has a good financial reputation?
- **System:** Because the credit rating service said that the applicant has a good credit rating.

Rules

• A rule in general is a *if-then*-construct consisting of a *condition* and an *action*.

If condition then conclusion

- These two parts may be interpreted differently according to the context:
 - Inference rules: If *premise* then *conclusion*
 - Hypotheses: If evidence then hypothesis
 - **Productions:** If *condition* then *action*
- Rules are often referred to as *productions* or *production rules*.

Rules

- A rule in the ideal case represents a unit of knowledge.
- A set of rules together with an execution/evaluation strategy comprises a program to find solutions to specific problem classes.
- Prolog program: rule-based system
- Rule-based systems are historically the first types of AI systems and were for a long time considered prototypical expert systems.
- Nowadays, not every expert systems uses rules as its core inference mechanism.
- Rising importance in the field of business process rules.

Rule Evaluation

Forward chaining

- Expansion of knowledge base: as soon as new facts are inserted the system also calculates the conclusions/consequences.
- Data-driven behavior
- Premises-oriented reasoning: the chaining is determined by the left parts of the rules.

Backward chaining

- Answering queries
- Demand-driven behavior
- Conclusion-oriented reasoning: the chaining is determined by the right parts of the rules.

Components of a Rules-based System

Data base

- Set of structured data objects
- Current state of modeled part of world

Rule base

- Set of rules
- Application of a rule will alter the data base

Rule interpreter

- Inference machine
- Controls the program flow of the system

Rule Interpretation

- Main scheme forward chaining
 - Select and apply rules from the set of rules with valid antecedences. This will lead to a modified data base and the possibility to apply further rules.
- Run this cycle as long as possible.
- The process terminates, if
 - there is no rule left with valid antecendence
 - $\circ\,$ a solution criterion is satisfied
 - a stop criterion is satisfied (e.g. maximum number of steps)
- Following tasks have to be solved:
 - Identify those rules with a valid condition \Rightarrow Instantiation or Matching
 - Select rules to be executed
 - \Rightarrow need for **conflict resolution**
 - (e.g. via partial or total orderings on the rules)

Certainty Factors

Mycin (1970)

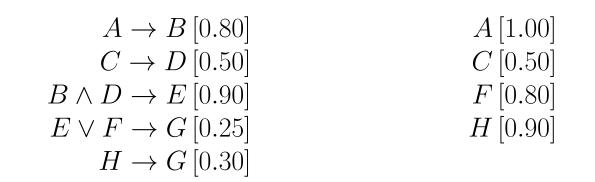
- **Objective:** Development of a system that supports physicians in diagnosing bacterial infections and suggesting antibiotics.
- **Features:** Uncertain knowledge was represented and processed via *uncertainty factors*.
- Knowledge: 500 (uncertain) decision rules as static knowledge base.
- Case-specific knowledge:
 - static: patients' data
 - dynamic: intermediate results (facts)

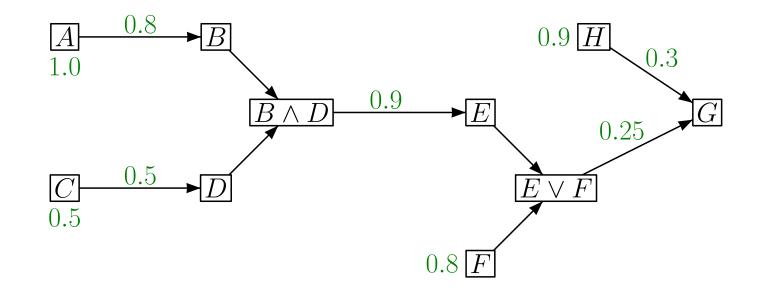
• Strengths:

- $\circ\,$ diagnosis-oriented interrogation
- hypotheses generation
- finding notification
- the rapy recommendation
- $\circ~{\rm explanation}$ of inference path

Uncertainty Factors

- Uncertainty factor $CF \in [-1, 1] \approx$ degree of belief.
- Rules:


$$CF(A \to B) \begin{cases} = 1 & B \text{ is certainly true given } A \\ > 0 & A \text{ supports } B \\ = 0 & A \text{ has no influence on } B \\ < 0 & A \text{ provides evidence against } B \\ = -1 & B \text{ is certainly false given } A \end{cases}$$


A Mycin Rule

RULE035

- PREMISE: (\$AND (SAME CNTXT GRAM GRAMNEG) (SAME CNTXT MORPH ROD) (SAME CNTXT AIR ANAEROBIC)) ACTION: (CONCL.CNTXT IDENTITY BACTEROIDES TALLY .6)
- If 1) the gram stain of the organism is gramneg, and 2) the morphology of the organism is rod, and 3) the aerobicity of the organism is anaerobic
- then there is suggestive evidence (0.6) that the *identity* of the organism is *bacteroides*

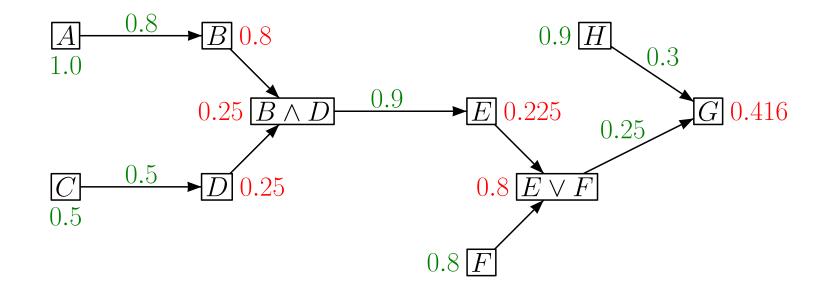
Example

Propagation Rules

- Conjunction:
- Disjunction:
- Serial Combination:
- Parallel Combination: for n > 1:

$$\begin{array}{l} \text{for } n > 1 \\ \text{CF}(B, \{A_1, \dots, A_n\}) = \\ f(\text{CF}(B, \{A_1, \dots, A_{n-1}\}), \text{CF}(B, \{A_n\})) \end{array}$$

 $CF(B, \{A\}) = CF(A \to B) \cdot \max\{0, CF(A)\}$

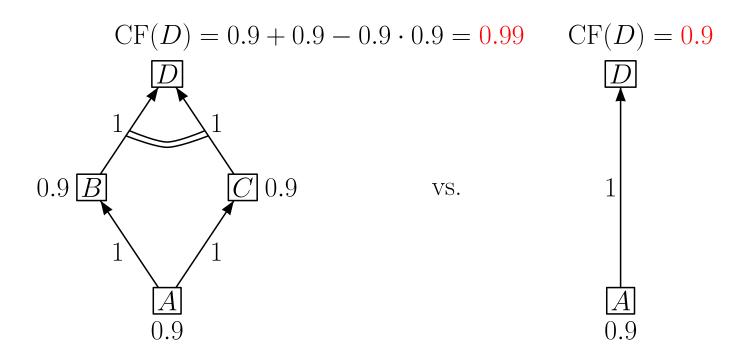

 $CF(A \land B) = \min\{CF(A), CF(B)\}\$

 $CF(A \lor B) = \max\{CF(A), CF(B)\}\$

with

$$f(x,y) = \begin{cases} x + y - xy & \text{if } x, y > 0\\ x + y + xy & \text{if } x, y < 0\\ \frac{x + y}{1 - \min\{|x|, |y|\}} & \text{otherwise} \end{cases}$$

Example (cont.)



 $f(0.3 \cdot 0.9, 0.25 \cdot 0.8) = 0.27 + 0.2 - 0.27 \cdot 0.2 = 0.416$

Was Mycin a failure?

- It worked in the Mycin case because the rules had tree-like structure.
- It can be shown that the rule combination scheme is inconsistent in general.

Example: CF(A) = 0.9, CF(D) = ?

Certainty factor is increased just because (the same) evidence is transferred over different (parallel) paths!

Mycin was never used for its intended purpose, because

- physicians were distrustful and not willing to accept Mycin's recommendations.
- Mycin was too good.

However,

- Mycin was a milestone for the development of expert systems.
- it gave rise to impulses for expert system development in general.

How to assign probabilities to rules (implications)?

$$P(B \mid A) \leq P(A \to B) = P(\neg A \lor B)$$

A	B	$P(\cdot)$
0	0	0.04
0	1	0.95
1	0	0.01
1	1	0

$P(B \mid A) = 0$, but $P(A \to B) = 0.99!$

In the following, probabilistic rules are evaluated with conditional probabilities.