
Connection Science, Vol. 11, No. 1, 1999, 5± 40

A Recurrent Neural Network that Learns to Count

PAUL RODRIGUEZ, JANET WILES & JEFFREY L. ELMAN

Parallel distributed processing (PDP) architectures demonstrate a potentially radical

alternative to the traditional theories of language processing that are based on serial

computational models. However, learning complex structural relationships in temporal

data presents a serious challenge to PDP systems. For example, automata theory dictates

that processing strings from a context-free language (CFL) requires a stack or counter

memory device. While some PDP models have been hand-crafted to emulate such a

device, it is not clear how a neural network might develop such a device when learning a

CFL. This research employs standard backpropagation training techniques for a recurrent

neural network (RNN) in the task of learning to predict the next character in a simple

deterministic CFL (DCFL). We show that an RNN can learn to recognize the structure

of a simple DCFL. We use dynamical systems theory to identify how network states re¯ ect

that structure by building counters in phase space. The work is an empirical investigation

which is complementary to theoretical analyses of network capabilities, yet original in its

speci ® c con® guration of dynamics involved. The application of dynamical systems theory

helps us relate the simulation results to theoretical results, and the learning task enables us

to highlight some issues for understanding dynamical systems that process language with

counters.

KEYWORDS: Recurrent neural network, dynamical systems, context-free languages.

1. Introduction

It is well established that sentences of natural language are more than just a linear

arrangement of words. Sentences also contain complex structural relationships
between words that are often characterized syntactically, such as phrase structures,

relative clauses and subject± verb agreement. Representing and processing such

structure presents a critical challenge to mechanisms of natural language processing

(NLP) as a gauge of both their theoretical capabilities and their potential to provide

a psychological account of natural language parsing.

A traditional view of NLP is based on mechanisms of ® nite automata, in which
discrete states and transitions between states specify the temporal processing of the

system. On the other hand, parallel distributed processing (PDP) architectures

demonstrate a potentially radical alternative to the traditional theories of language

processing. In particular, a recurrent neural network (RNN) is a PDP model

that implements temporal processing through feedback connections. Contrary to

P. Rodriguez and J. L. Elman, Department of Cognitive Science, University of California at San Diego,

La Jolla, CA 92093-0515, USA. E-mail: prodrigu@cogsci.ucsd.edu. Janet Wiles, Departments of

Computer Science and Psychology, University of Queensland, Queensland 4072, Australia.

0954-0091/99/010005-36 $9.00 � 1999 Carfax Publishing Ltd

6 P. Rodriguez et al.

discrete automata, an RNN has continuous-valued states that are functions of

previous states. In this sense, an RNN is a dynamical system; and an RNN that
processes language is an example of a dynamical recognizer (Pollack, 1991).

Research that investigates RNNs as language processors has been based on

both empirical simulations and theoretical analysis of dynamical systems. Empirical

approaches have shown interesting behavior of RNNs that re¯ ect some aspects of

performance and some aspects of theoretical capabilities in processing natural and

arti® cial languages (e.g. Elman, 1991; Giles et al., 1992; Servan-Shrieber et al.,
1988). Theoretical approaches have been guided by traditional automata theories

and have formally shown that a dynamical system can be constructed as an

RNN to simulate universal Turing machines (Pollack, 1987b; Siegelmann, 1993).

However, many questions remain to be investigated with respect to the kind

of computational hierarchy embodied in dynamical systems, and how they are

implemented or learned in RNNs.
The work reported here is an empirical investigation which is complementary

to theoretical analyses, yet original in its speci ® c con® guration of dynamics involved.

Our results demonstrate how an RNN can implement the kind of solutions used

in the formal dynamical recognizer analysis. Speci® cally, we show that an RNN

that performs a prediction task can learn to process a simple deterministic context-
free language (DCFL), anbn, in a way that generalizes to longer strings by developing

up /down counters in separate regions of phase space. The solution is novel because

it uses a saddle point and the trajectories oscillate around the ® xed points. The

analysis demonstrates an application of dynamical systems theory to the study of

RNNs and helps identify properties of the trajectories that may be especially

relevant to learnability and representation for connectionist models of language
processing.

2. Background

Automata theory states that a regular language (RL) can be processed by a ® nite

state machine (FSM). However, a language with center-embedding is at least a
context-free language (CFL), for which at least a push-down automaton (PDA) is

required (Hopcroft & Ullman, 1979). Importantly, a PDA is an FSM with an

additional resource of a memory-like device that is a stack or counter to keep track

of the embeddings. Learning complex structural relationships in temporal data,

such as CFLs, presents a serious challenge to systems which do not have a distinct
memory device. An RNN can be hand-crafted to emulate such a device, but it is

not clear how a network might develop such a device when learning a CFL.

Empirical investigations using RNNs with simple arti® cial grammars have shown

that an RNN can learn to recognize strings from an RL (Giles & Omlin, 1993;

Giles et al., 1992; Servan-Shrieber et al., 1988; Smith & Zipser, 1989; Waltrous &

Kuhn, 1992). It has also been shown that an RNN can implement FSM computa-
tions, such as push± pop transitions for a PDA (Sun et al., 1990) and the read/

write /shift transitions for a Turing machine (Cottrell & Tsung, 1993; Williams &

Zipser, 1989). In fact, analysis has shown that an RNN can use regions of hidden

unit space and transitions between regions to mimic states and transitions between

states in an FSM (Casey, 1996; Giles et al., 1992). Owing to limited computer

precision, an RNN can only represent a ® nite number of regions of space, thereby
never achieving more than the capability of an FSM. Consequently, the argument

could be made that any attempt to learn a CFL by an RNN simulation will only

An RNN that Learns to Count 7

result in an FSM-like approximation with limited or no generalizationÐ but we

shall show otherwise.
There has been relatively less work using RNNs with arti® cial CFLs. Work with

the recursive auto-associative memory model (R AAM) has been successful at

showing that an RNN can learn to perform push and pop functions that encode

and decode tree structures, analogous to a stack, thereby exhibiting compositional

structure (Blank et al., 1992; Kwasny & Kalman, 1995; Pollack, 1988). Pollack

(1988, 1990) showed that a RAAM network can learn tree structures for simple
context-free grammars, with some systematic generalization to unseen cases.

Kwasny and Kalman (1995) trained a RAAM network with a simple DCFL, a

balanced parenthesis language, and it was able to generalize to at least one more

level of embedding, from four levels to ® ve. However, in these cases it was not

shown that the RAAM can learn to generalize to much longer input strings or

represent an unlimited number of embeddings.
In contrast to the R AAM model, several researchers have used a simple

recurrent network (SRN) in a prediction task to model sentence processing

capabilities of RNNs. For example, Elman reports an RNN that can learn up to

three levels of center-embeddings (Elman, 1991). Stolcke reports an RNN that

can learn up to two levels of center-embeddings, and up to ® ve levels for tail-
recursion (Stolcke, 1990). Other work has shown that an RNN can process

temporal semantic cues within sentences and thereby re¯ ect semantic constraints

and associations (St. John, 1990).1 It has also been shown that an RNN can handle

more levels of embedding if there are additional semantic constraints (Weckerley

& Elman, 1992), which suggests that the RNN is a mechanism that re¯ ects

performance. However, in all these latter studies it may be the case that the RNN
is performing the functional equivalent of an FSM. In other words, the RNN may

not appropriately re¯ ect the syntactic structure of complex sentences as does a

PDA.

Pollack (1987a) showed that a second-order RNN can learn to develop an up /

down counter to accept/reject strings from a balanced parenthesis language, but

he did not show that it generalized to longer strings. Recently, it was shown that a
® rst-order RNN can perform prediction of strings from a DCFL, but the network

could not generalize properly (Batali, 1994; Christiansen & Chater, 1994). In these

cases, although the network clearly developed a counting function, it was not clear

whether the network could learn function and process strings longer than seen in

training.
Kolen (1994) points out that both the RAAM and SRN are examples of

dynamical systems that fall under the general framework of iterated function

systems, and with real-valued variables they are capable of representing in® nite

state systems. Blair and Pollack (1997) and Pollack (1991) showed how an RNN

that learns an RL can represent an in® nite state machine as one looks at higher

resolution of phase space partitions, even though the RNN looks like an FSM at
lower resolution. In this work, we give an example of how an RNN actually re¯ ects

an in® nite state system for a simple DCFL anbn. Our architecture is the same as an

SRN and we use the prediction task, but we use backpropagation through time

training. As with earlier work, the network develops up /down counters, but in

order to keep predictions linearly separable, the counters are in diþ erent regions

of phase space. This work is distinct from other proposed modeling of CFLs by
R AAMs, in that we are not directly attempting to represent constituent structures.

Ultimately, we are more directly concerned with using a prediction task as a model

8 P. Rodriguez et al.

of performance, hence our analysis will show the nature of a solution that an RNN

develops in this context.
In the rest of the paper, we describe the RNN simulation experiment, present

some concepts from dynamical systems theory, and apply the concepts to the

analysis of the RNN simulations. We focus the analysis on two network results for

comparison and then, later, discuss two further experiments: one with another

simple DCFL (a balanced parenthesis language) and one that explores learning

issues with more hidden units. We also describe how the RNN dynamics represent
a solution that can process extremely long strings under ideal conditions.

3. RNN Simulation Experiment

3.1. Issues

In this experiment we are concerned with the following two questions:

(1) Can an RNN learn to process a simple DCFL with a prediction task?

(2) What are the states and resources employed by the RNN?

The ® rst question demands that an RNN learn to process a simple DCFL so that

it generalizes beyond those input/output mappings presented in training. In other
words, the performance of the RNN must somehow re¯ ect the underlying structure

of the data. The second question demands a functional description of how the

RNN re¯ ects the structure of the data. Ideally, one should ground the functional

description of states and resources on a formal analysis of the RNN dynamics.

First, we describe an RNN experiment to address the ® rst question; later, we

describe some standard features of dynamical systems theory as the method of
analysis to address the second question.

3.2. Simulation Details

3.2.1. The input± output mapping task. The input stimuli consisted of strings from

a very simple DCFL that uses two symbols, {a,b}, of the form anbn. The input is
presented one character at a time and the output of the network is trained to

predict the next input in the sequence. Since the network outputs are not strictly

binary, a correct prediction has a threshold value of 0.5. An example of the

input± output mappings for network training is the following:

(note the transition at the last b should predict the ® rst a of the next string).

Notice that when the network receives an a input, it will not be able to predict

accurately the next symbol because the next symbol can be either another a or the

® rst b in the sequence. On the other hand, when the network receives a b input it

should accurately predict the number of b symbols that match the number of a

inputs already seen, and then also predict the end of the string (Batali, 1994).

Correct processing to accept a string is de® ned as follows:

An RNN that Learns to Count 9

(1) for `b’ input Þ predict only `b ’ symbols, except for (2);

(2) on the last `b ’ input Þ predict end of the string (or beginning of the next string).

For a input there is not a clear criterion for what counts as correct predictions. It

is relatively easy to hand-code a solution2 that always predicts b, except at the end

of the string. However, we are much more interested in what the network can learn

on its own. We might also add the condition that for an a input the network predict

only an a output, but it will be seen that `good’ networks do this anyway to
minimize error.

Since the network does not explicitly accept/reject strings, as is typical in formal

automata theory, our use of the prediction task raises an issue regarding the formal

capabilities of the network. However, if the network makes all the right predictions

possible, especially at the end of a string, then performing the prediction task

subsumes the accept task. In our case, the network will always be presented with
valid substrings so that the possibility of rejection will not explicitly arise. The

restriction to legal strings does not invalidate the instructiveness of the RNN

simulation results since there may be simple methods to include reject capabilities.

For example, Das et al. (1992) trained an RNN to activate an explicit reject node

for invalid strings. One could also add an extra output layer such that more

complicated decision functions would be available. Furthermore, there are several
advantages in the prediction task, as pointed out by Elman (1991). For example,

it requires minimal commitment to de® ning the role of an external teacher and,

perhaps most importantly, it is psychologically motivated by the observation that

humans use prediction and anticipation in language processing (Kutas & Hillyard,

1984; McClelland, 1987).

3.2.2. Training set. The training set was purposely skewed towards having more

short strings than long strings. The main reason is that we did not want the

network to settle into a solution for a*b*. Rather, we wanted the network learn to

process both long strings and the end-of-string transition of b to a, which required

some skew. Although we did not do a systematic search of training sets, we did
® nd solutions using diþ erent proportions of long and short strings. We present

results that we felt had a nice contrast to demonstrate the network solution. The

training set we used contained 390 strings, where for each string 1 < n < 11; in

other words, there was a maximum total length of 22 (11 as followed by 11 bs).

The strings were presented in random order for a total of 2652 characters in

sequence. There were more short strings than long strings in the following
proportions: 10 strings of n 5 1, six strings of n 5 2, four strings of n 5 3, three

strings of n 5 4, one string each for n > 5. The test set consisted of one copy of

each string where 1 < n < 11, plus strings with n> 11. A network was considered

to have generalized if that network had properly learned the training set and

produced correct outputs for strings of length n> 11, up to the ® rst string that
failed, such that the longer the string processed, then the better the network had

generalized.

3.2.3. Architecture. The architecture for the experiment was an RNN with two

input units, two hidden units, two copy units (which provide recurrent connections

from the hidden units), two output units and one bias unit (see Figure 1). The
bias unit was always set to a value of 1. The input units were set to values of [1 0]

for the `a ’ input, and [0 1] for the `b ’ input. In one time step each bias, input and

10 P. Rodr iguez et al.

Figure 1. A recurrent neural network with two input lines, two hidden nodes, two

output nodes, and a bias input to hidden nodes and output nodes. In one time step
activation values for hidden nodes and output nodes are calculated based on the

input line and copy unit values. The recurrent connections are realized through

copy units which save the hidden unit values at one time step and then inject those

values at the next time step.

copy unit values were presented to the network. In the same time step the hidden

unit activation values and then output unit activation values were updated. The
copy units were then updated with the hidden unit activation values in preparation

for the next time step. The copy units were initialized to zero for the ® rst input

presentation and were not reset for each string.

3.3. Training

We used the `backpropagation through time’ (BPTT) training algorithm (Rumel-

hart et al., 1986) implemented in our local simulator. During training the network
is unfolded in time and several hidden layer copies are maintained. Although we

did not systematically vary the number of copies, we found solutions with as few

as eight copies for training sets that had a maximum size of n 5 11. The results we

analyze in detail used 12 copies of hidden units for training. After training, the

network is `folded back up’ so that there is only one set of weights. The only

parameters we varied during training were the initial random seed, the length of
training and the learning rate. In no case did we use momentum. We present

networks that were trained to the point where they could generalize best, which is

An RNN that Learns to Count 11

not necessarily the same point at which it achieves a lowest mean squared error

(MSE) measure. We often found better results in the network performance by
using smaller learning rate parameters for short periods of training, as detailed

below.

3.4. Results

Out of 50 trials we found eight networks that successfully learned the training set

and generalized. With more hidden units we found solutions more often, but the

task still required lots of training. However, since we are more interested in
identifying the nature of a solution, we ® rst present in detail two cases of network

results and then, later, after understanding the solution, we discuss overall learning

tallies of networks under various conditions. Of the two networks we will discuss,

one network resulted in an incomplete solution and the other produced a solution

that successfully generalized. The former will be useful in understanding the
conditions for generalization. Both cases use the same network architecture and

the same training set, but have diþ erent sets of initial weights (e.g. diþ erent initial

seeds). In each case the initial weights were randomly chosen to be greater than

2 0.3 and less than + 0.3.

The ® rst network was trained for approximately 2 million sweeps,3 or about

294 000 strings, with a learning rate value of 0.01, and then trained for another
100 000 sweeps with a smaller learning rate value of 0.001, for a total of 2.1 million

sweeps. The network only learned proper predictions for n < 8. We tried various

combinations of sweeps and learning rate values but no other performed better

with this particular initial set of weights, although many combinations performed

as well. The second network was trained for approximately 1 million sweeps, or

about 147 000 strings, with a learning rate value of 0.01, 100 000 sweeps with a
learning rate value of 0.0001, and 20 000 sweeps with a learning rate value of

0.00001. Again, we did not ® nd any other combination of sweeps and learning

rate values that performed better with this initial set of weights. The network

learned proper predictions for n < 16, for a total string length of 32. The MSE for

the sample training set was about 0.248 for the ® rst network, and about 0.303 for

the second network.4

The ® rst network attempts to solve the problem in an intuitive way, although it

fails. The second network found a solution that does generalize, although the

solution is non-intuitive and requires a dynamical systems analysis to explicate.

Consequently, before we present the results in detail, in the next section we

introduce the concepts and formalisms of dynamical systems theory.

4. Method of Analysis

4.1. An RNN is a Dynamical System

A discrete-time RNN can be characterized as a discrete-time dynamical system

(e.g. Casey, 1996; Kolen, 1994; Pollack, 1991; Tino et al., 1995; Tsung & Cottrell,

1994). In each time step there is some vector of input values, some vector of copy

unit values and a bias input which all feed a set of sigmoid activation functions

that updates the vector of hidden unit values (see Figure 2). If the weight parameters
are frozen (as they are after training) and the input values are held constant for

several time steps,5 then the hidden unit activation values are the state variables in

12 P. Rodr iguez et al.

Figure 2. An RNN can be interpreted as a dynamical system. After training, the
weights are frozen and each input condition is a constant for some number of itera-

tions, until that input changes. Note that there is a diþ erent set of dynamics for each

input condition and the phase space diagram is limited to the region [0,1] 3 [0,1]

since the sigmoid activation function squashes all values to within that range.

a phase space diagram. In our simulations, the coordinate point of the phase space

diagram is the pair {hidden unit 1, hidden unit 2} ({HU1,HU2}) and the vector

`¯ ow’ ® eld6 gives a qualitative description of the change in activation values over
time (e.g. the trajectory). Note that for each input there will be a diþ erent set of

autonomous dynamics. Hence, for our experiment there will be one phase space

diagram for the system of equations with a input (Fa system), and one phase space

diagram for the system of equations with b input (Fb system).

Each output unit of an RNN is a function of the hidden unit activation values

and therefore is not described as a state variable of a dynamical system. One could
graph the output units in a three-dimensional coordinate system with {HU1,HU2}

as the X ,Y axis and the output unit as the Z axis. Instead, it will be more informative

An RNN that Learns to Count 13

to draw a contour plot for each output unit on the phase space trajectory diagrams.

Since the output unit threshold of our task is 0.5, our ® gures have a one-line
contour plot which partitions the phase space such that for all {HU1,HU2} values

on one side of the line the output unit is > 0.5, and all values on the other side of

the line the output unit is < 0.5.

4.2. Dynamical Systems Concepts

In Appendix A we present formal de® nitions of concepts from dynamical systems
theory. The formal concepts are most useful for understanding how the network

may process unlimited length strings in principle. For the analysis below, we are

mostly interested in the particular con® guration of attracting points, repelling

points, and the trajectories realized by the hidden unit values for each input

condition. Informally, if the system trajectory contracts towards a ® xed point, then

that point is attracting; otherwise, that point is repelling. It is important in our case
that a repelling point may be contracting in one direction and expanding in another

direction, in which case that point is called a saddle point.

In order to understand network performance we use the standard technique of

linearization for analyzing behavior near a ® xed point. The technique produces a

linear system for which the eigenvalues govern how the trajectories are contracting

or expanding, as speci ® ed in item (9) in the Appendix. In the analysis we show
that a comparison of eigenvalues and associated eigenvectors provides criteria by

which to evaluate network solutions.

5. Results

5.1. Overall Results

As stated earlier, we present two cases of the RNN training results. Network 1
learned the training set only for n < 8; network 2 learned the training set completely

and generalized to strings with n 5 12 to n 5 16. We present ® rst a graphical

analysis of network performance using vector ¯ ow ® elds and trajectory plots. The

graphical analysis will provide only a qualitative description of the network dynamics

and some insights into the mathematical analysis that follows.

5.2. Network 1: Failure to Generalize

The output units cut up the phase space evenly along a nearly vertical decision

line, such that all {HU1,HU2} values to the left of the line predict a output, and

all {HU1,HU2} values to the right predict b output. Most networks, independent

of overall performance, divided the phase space evenly, although not necessarily

vertically. The decision line will be shown on trajectory diagrams as a line in the
diagram.

Figure 3 shows the vector ¯ ow ® eld for the two input conditions. Note that the

vectors are scaled from their true magnitude, but the relative vector size still re¯ ects

relative change in {HU1,HU2}. Fa and Fb represent the systems for the a input

condition and b input condition, respectively. Note that Fa has an attracting point

near (0,0.35), and Fb has an attracting point near (0,1). The vector ¯ ow ® eld
presents a graphical view of network dynamics when presenting strings from the

anbn language. Essentially, the hidden units will change values according to the Fa

14 P. Rodr iguez et al.

Figure 3. Network 1 vector ¯ ow ® elds for the dynamical system with a input condi-

tion (Fa), or b input condition (Fb). There is one attracting point for Fa near (0,0.35),

Fb has one attracting point near (0,1). Each arrow is a scaled version of the actual

change in the {HU1,HU2} coordinate point at the tail of the arrow. Each arrow
direction indicates the direction of one trajectory step for that coordinate point.

dynamics for the a input, and then change values according to the Fb dynamics for

the b input. These dynamics form the basis for network performance, as will be

shown in the following ® gures.

Figure 4 shows the trajectories for some short strings, n 5 2 and n 5 3.7 Each

arrow represents one time step, hence one input. The tail of the arrow is the value of
{HU1,HU2} before the time step and the head represents the updated value of

{HU1,HU2} after applying the activation functions. Note that the initial value was

An RNN that Learns to Count 15

Figure 4. Network 1 trajectories for n 5 2 and n 5 3. The nearly vertical line repre-
sents the 0.5 threshold decision boundary; the left side indicates an a prediction at

the output nodes and the right side indicates a b output prediction. Each arrow

represents one time step, hence one input value. The tail is the previous hidden

unit coordinate value; the head is the updated value. The initial starting point for

the ® rst a is about {0.05,0.99}, the ® nal b input ends at about the same value. The

trajectory crosses the dividing line on the last b input, which equates to predicting
the start of the next string.

16 P. Rodr iguez et al.

chosen by allowing the network to run for one or two short strings. Importantly, for

each string the last b input causes a change in {HU1,HU2} that crosses over to the
left of the dividing line, hence the network properly predicts an a when the last b is

input. Not surprisingly, the last {HU1,HU2} value is near the initial starting value.

Figure 5 shows the trajectories for n 5 8 and n 5 9. Note that the trajectory

steps are increasingly shorter near the Fa attracting ® xed point. Also, the ® rst b

input causes a transition to a region of phase space where the trajectory can take

Figure 5. Network 1 trajectories for n 5 8 and n 5 9. For n 5 8, the trajectory

crosses the dividing line on only the last arrow; but for n 5 9 the trajectory crosses
the line on the eighth b input, which is one time step too early. For n> 9 the network

had similar results of making predictions for the start of the next string too early.

An RNN that Learns to Count 17

smaller step sizes as well. However, for n 5 9 the network crosses the dividing line

on the eighth b, showing that the step sizes are not properly matched.
One important feature is that network 1 performed most of the processing of a

input along the HU2 axis, and most of the processing for b input along the HU1

axis. In fact, Fa monotonically decreased in HU2, and Fb monotonically decreased

in HU1, which intuitively suggests that the network is `counting as’ and then

`counting bs’ , with a transition from a to b that attempts to set up a proper b

starting point.

5.3. Network 2: Successful Generalization

Network 2 also has output values that divide the phase space along a nearly vertical

line (but not all networks had vertical dividing lines). The ¯ ow ® elds in Figure 6

show that Fa has an attracting point near (0,0.85). Fb appears to have an attracting

point near (0.4,0.8), however, this turns out to be an artifact of the scaling of the

vector ® eld.

Figure 7 shows a smaller region with unscaled vectors in a 3 3 3 array. Notice
that the top row and bottom row bounce over the middle, but the middle row

vectors are shorter and they cross over the middle of the array, which suggests that

there is actually a repelling ® xed point near the middle. Simple computer iteration

determined that starting at (0.4,0.8), the Fb system activation values oscillate and

eventually settle into a periodic-2 ® xed point. The presence of a periodic-2 ® xed

point also implies that the system had a period-doubling bifurcation that created a
repelling ® xed point. Figure 8 shows the dynamics for F 2

b (the composite of Fb with

itself). One can now see that F 2
b has two ® xed points, near (0,0.4) and near (1,1).

As it turns out, the trajectories for Fa also oscillate as they converge on the attractor.

Figure 9 shows the trajectories for short strings, n 5 2 and n 5 3. Again, the

arrows represent one time step, hence one input. In Figure 10, n 5 4 and n 5 5,
one can see that the trajectories are actually oscillating around both the attracting

point and the repelling point. Figure 11, n 5 11 and n 5 16, con® rms that the

oscillations match for longer strings. In other words, if the last a input ends up a

little higher (or lower) than the attracting ® xed point, then the ® rst b input must

transition to a coordinate point that is also higher (or lower8) than the repelling

® xed point near (0.4,0.8). Also, the small steps of Fa must be matched by small
steps of Fb . As the Fb trajectory steps expand around the repelling point, the

network will cross the dividing line on the last expanding step after taking the

correct number of small steps. We refer to such complementary dynamics as

coordinated trajectories.

5.4. Analysis Results

In this section we develop a deeper analysis of the networks and establish some

informal criteria that explain how a network is successful. The analysis employs
the standard technique of linearization for each input condition as follows.

Step 1. Find the ® xed points. For some systems one can ® nd ® xed points by

analytically solving the set of equations that de® ne the system. However, one

cannot analytically ® nd an exact ® xed point solution for an RNN with sigmoid
activation functions. Fortunately, after one freezes the weights one can easily ® nd

attracting points by computer iteration of the activation functions. A repelling point

18 P. Rodr iguez et al.

Figure 6. Network 2 vector ¯ ow ® elds for Fa and Fb . There is one attracting point

for Fa near (0,0.85). Fb seems to have one attracting point near (0.4,0.8) but, due

to the oscillation dynamics around a saddle point, the scaled vectors are misleading
(see Figure 7).

can be found by ® rst estimating its location and then using standard methods to

® nd roots of the system of equations.

Step 2. Evaluate the partial derivative at the ® xed point. The partial derivative of the

RNN with sigmoid functions for two hidden units is given by the following matrix:

DF 5 [wh1,h1 (1 2 f1) (f1) wh1,h2 (1 2 f1) (f1)

wh2,h1 (1 2 f2) (f2) wh2,h2 (1 2 f2) (f2)
]

An RNN that Learns to Count 19

Figure 7. A close-up of the network 2 vector ¯ ow ® eld for Fb using unscaled vectors

in a 3 3 3 array. The vectors actually jump over the middle region and are smaller
in the middle region, which suggests that there is a repelling point there.

Figure 8. Network 2 vector ¯ ow ® eld for Fb composite with Fb (written as F 2
b).

There is a periodic-2 ® xed point near (0,0.4) and near (1,1). The F 2
b ¯ ow ® eld

shows that there is a saddle point, not an attracting point, near (0.4,0.8).

20 P. Rodr iguez et al.

Figure 9. Network 2 trajectories for n 5 2 and n 5 3. The nearly vertical line repre-

sents the 0.5 threshold decision boundary; the left side indicates an a prediction at

the output nodes and the right side indicates a b output prediction. Each arrow

represents one time step, hence one input value. The trajectories oscillate around
the ® xed points but still manage to cross the dividing line on the last b input.

where w i, j is the weight to the i th hidden unit from the j th hidden unit and each

function fi is evaluated at the ® xed point value. Each element of the matrix is the

partial derivative of fi with respect to xj , where i is the row and j is the column.

Step 3. Use the linear system with the partial derivative as the matrix of coeý cients. The

linear system is set up as: X 5 [DF] ´ X.

An RNN that Learns to Count 21

Figure 10. Network 2 trajectories for n 5 4 and n 5 5. Again, the trajectory crosses
the dividing line on the last b input.

Step 4. Find the eigenvalues and eigenvectors of the linear system to infer the behavior of

the non-linear system near the ® xed point.

Steps 1 ± 4 are a standard method for evaluating the stability (attracting or repelling)

of ® xed points in non-linear systems. Although in our experiment we already knew

about the stability of the ® xed points (graphically and via iteration), we used this

technique to compare the trajectories for Fa and Fb in the neighborhood around

the ® xed points. Since the graphs show that the interesting dynamics occur near
the attracting point for Fa and the repelling point for Fb , we used these two points

in the linearization method.9

22 P. Rodr iguez et al.

Figure 11. Network 2 trajectories for n 5 11 and n 5 16. The small trajectory steps

seem to be matched near the Fa attracting point and the Fb repelling point.

The results in Table I summarize our ® ndings. For comparison we included

two other cases of networks with the same architecture trained on the same task,
although with diþ erent combinations of initial seed, training set and learning rate

values. Network 3 has dynamics similar to network 1.10 Network 4 has dynamics

similar to network 2, which was reported earlier by Wiles and Elman (1995).

The table compares the largest eigenvalues (in positive or negative magnitude)

of the Fa system with the largest eigenvalue of the Fb system. These eigenvalues are

associated with the eigenvectors that correspond to the axis of contraction under

Fa , and the axis of expansion under Fb . The contraction and expansion rates, which

are given by the eigenvalues, indicate the change in hidden unit values from one

An RNN that Learns to Count 23

Table I. A comparison of largest eigenvalues at the attracting ® xed point of Fa and

repelling ® xed point of Fb ; the successful networks, 2 and 4, have eigenvalues that
are inversely proportional to each other

Network Max n learned Fa Fb 1/Fa

1 8 0.408 0.832 2.45

2 16 2 0.7095 2 1.455 2 1.409

3 7 0.242 1.29 4.136

4 25 2 0.637 2 1.536 2 1.57

time step to the next. In other words, the size of the trajectory step, as seen in the

graphical analysis, is determined by the eigenvalues. If the eigenvalues are inversely

proportional, then step sizes for a input will be matched by step sizes for b input.
Based on the results in the table, one criterion for successful counting is to have

the rate of contraction for Fa around the attracting point and the rate of expansion

for Fb around the repelling point inversely proportional to each other.

This criterion helps explain how the network predicts the transition at the end

of the string. However, it does not explain how the network dynamics are con® gured
so that the transition from the last a to the ® rst b in an input sequence will put the

network in a region of phase space where the step sizes match. In other words,

how does the network functionally copy over the value of the a count?

We analyzed this by looking at the smaller eigenvalue and related eigenvector

at the repelling point of the Fb system. The smaller eigenvalue has a value less than

one (about 0.3), which means that the repelling ® xed point is a saddle point.
Figure 12 replicates the vector ¯ ow ® eld Fb and F 2

b , but we have also drawn in

lines in the direction of the eigenvectors, which intersect at the location of the

saddle point. The line that crosses the HU2 axis near (0,0.85) is the stable

eigenvector line; and the line that crosses the HU2 axis near (0,0.65) is the unstable

eigenvector line. Values of {HU1,HU2} near the stable eigenvector are contracted

in towards the saddle point before moving towards the periodic-2 ® xed point.
Notice that the attracting ® xed point for the Fa dynamics (see Figure 6) nearly falls

on the stable eigenvector line of the saddle point for the Fb dynamics. In Figure 13

we show the coordinate points for several of the ® rst b input transitions after an

where n 5 2 . . . 6. The points of the a sequence are contracted so that they are

nearly aligned with the unstable eigenvector. Notice that points that are near to /
far from the Fa attracting point are translated by the ® rst b input to points that are

near to /far from the Fb saddle point. Hence, a second criterion for counting in

diþ erent regions of phase space is to have the attracting point of Fa lie on the stable

manifold11 of the saddle point for Fb , with a small enough eigenvalue, so that the

system can copy over the a count value to the unstable manifold of the saddle

point.
Finally, we should also require that the system return to a correct starting point,

which in principle could be achieved with another input symbol, such as an end

marker, that resets the system. In our case, a third criterion is to have the Fb

trajectory return to the starting point, or, equivalently, the starting point should be

located at the end of the Fb trajectory. For example, in network 4, all cases of anbn

start and end in a region roughly between (0.09,0.85), (0.15,0.98) and (0.24,0.88).
On the other hand, in network 2 the string a1b1 was solved separately since it could

not use the same initial starting point as for anbn, when n> 1. The start /end point

24 P. Rodr iguez et al.

Figure 12. Network 2 eigenvector lines, for Fb saddle point, drawn on the vector
¯ ow ® eld for Fb and F 2

b . The eigenvector lines intersect at the saddle point. The Fb

diagram does not show the oscillatory dynamics because the arrows are scaled to

one-tenth of the actual size. The arrows around the saddle point actually represent

trajectories that `hop’ over the saddle point. However, it does show that arrows near

the eigenvectors move in a direction along the eigenvectors. The F 2
b diagram shows

that trajectories along the stable eigenvector will move towards the saddle point ® rst

and then towards one of the attracting points. Importantly, the stable eigenvector

line crosses the HU2 axis near (0,0.85), which is near the attracting point for Fa ,

which accounts for how the ® rst b input condition places the {HU1,HU2} values

close to the saddle point, thereby allowing the system to process the b input in a

diþ erent region of phase space.

An RNN that Learns to Count 25

Figure 13. The transition of the ® rst b input after sequences of a input. Note that

the b input aligns the points along the unstable eigenvector such that points near
to /far from the Fa attracting ® xed point are translated to points near to /far from the

stable eigenvector.

for anbn is near (0.15,0.65), but a correct starting point for a1b1 is near (0.05,0.5).

However, a1b1 terminates close enough to the good starting point so that a sequence

of strings that start with a1b1 will be processed correctly.

Among the best networks, networks 2 and 4 nearly satisfy all three criteria. For
the other networks, network 3 does not satisfy the ® rst criterion but otherwise did

satisfy the second and third, and network 1 does not satisfy either the ® rst or

second. The best networks are imperfect counters and the other networks are bad

counters. In summary, the criteria describe suý cient conditions for an RNN to

achieve coordinated trajectories that have the functional capability to process the

anbn language.

6. Balanced Parenthesis Language

A more complicated DCFL, but still relatively simple, is the balanced parenthesis

language.12 A string in this language consists of some number of as and the same
number of bs, but a b can be placed anywhere such that it matches some previous

a. In other words, a ba can be embedded anywhere in the string after the ® rst a

(e.g. S ® ab ½ aXb; X ® ab ½ ba ½ aX*b). A network trained to predict the next input

can only correctly predict the end of the string. Intuitively, the network must

maintain the coordination of trajectories such that for any interweaving sequence

of as and bs the system will still be able to predict the beginning of the next string
when it gets the last b input. For example, in the string aababb the hidden unit

values should be the same after aa as they are after aaba. In other words, any ba

26 P. Rodr iguez et al.

subsequence must return the system to a state on the same trajectory as the string

without that subsequence. Since this prediction task is also a counting task, we
asked if our network can process balanced parenthesis strings.

Further testing of network 2 with strings from the balanced parenthesis language

con® rms that coordinated trajectories can process the language. Figure 14 shows

that network 2 will correctly predict the transition at the end of strings such as

aabaabbb and aabaabaabbbb. In fact, the network also worked with longer strings,

Figure 14. Network 2 trajectories for strings from balanced parenthesis language.

The only prediction possible for the network is to predict the start of the next string

by crossing the dividing line on the last b input. Even though the network was not
trained on such strings it does cross the dividing line properly on the last b for the

input strings aabaabbb (total length 5 8) and aabaabaabbbb (total length 5 12).

An RNN that Learns to Count 27

Figure 15. Network 2 trajectory for balanced parenthesis string of

aaaabaaaabbbaaabbbbaaaaaabbbbbbbbb (total length 5 34).

Again, on the last b input the network crosses the dividing line.

as shown in Figure 15. This result is striking because the network was never trained
on any string with a ba subsequence. Other tests showed that the network did not

correctly process all strings of total length < 32 (e.g. 16 as and 16 bs). One reason

seems to be that when it processed some strings it could not always return to a

proper initial starting value, which inhibited processing of following strings (e.g.

compare Figure 15 with Figures 9 ± 11). Nonetheless, the positive results suggest

that network 2 dynamics reveal how to generalize to the balanced parenthesis
language.

In contrast, however, network 4 could process almost no such strings. An

extension of the previous linearization analysis shows that only for network 2 does

the Fb saddle point fall near the second stable eigenvector (corresponding to the

smaller eigenvalue) of the Fa attracting ® xed point (compare Figure 16 with Figure
12). The latter con® guration does not occur in network 4 (see Figures 17 and 18).

In other words, for ba subsequences the network 2 dynamics can maintain

coordinated trajectories by contracting the hidden unit values back on to the

dominant contracting axis of Fa , which is where the system was processing the

previous a input. This suggests that an additional criterion for an RNN that

processes the balanced parenthesis language is to have the saddle point for Fb lie
on the stable eigenvector for the smaller eigenvalue of the Fa attracting point so

that the system can return to a previous state of the a count.

7. Learning

In this section we present some empirical results on learning with diþ erent training
sets and more hidden units. Not surprisingly, the maximum length of network

generalization is very sensitive to small changes in weight parameters. Tonkes

28 P. Rodr iguez et al.

Figure 16. Network 2 network vector ¯ ow ® eld for Fa with eigenvector lines at the

attracting point drawn in. The eigenvector associated with the dominant eigenvalue

is nearly vertical along the HU2 dimension, and the other line is nearly horizontal.

Note that the saddle point of Fb , approximately (0.4,0.8), lies near the eigenvector

associated with the smaller, non-dominant eigenvalue. This corresponds to the
ability of the network to handle ba subsequences of strings from the balanced

parenthesis language.

Figure 17. Network 4 network vector ¯ ow ® eld for Fa with eigenvector lines at the

attracting point drawn in. The eigenvector associated with the dominant eigenvalue

is nearly vertical along the HU2 dimension.

An RNN that Learns to Count 29

Figure 18. Network 4 network vector ¯ ow ® eld for F 2
b with eigenvector lines at the

saddle point (near 0.6,0.85) drawn in. Similar to network 2, there is a period-2

® xed point near {0.15,0.85} and {0.95,0.95}. Note that the saddle point does not

fall near the eigenvector line for the smaller, non-dominant eigenvalue of Fa (see

Figure 16), which indicates why the network cannot handle ba subsequences of the
balanced parenthesis problem.

(1998), for example, has repeated our experiment and shown how the network

cycles through periods of ® nding and losing good solutions during training. Also,

the length of strings used in training had some interesting eþ ects. We found that

no network developed oscillation dynamics around the ® xed points when the
maximum length string in the training set was n 5 6 (total length 5 12), whereas

some networks did for n 5 7. One reason may be that with a training set of shorter

strings the network learns that a6 is always followed by a b, whereas a1 . . . a5 are

not. Therefore, the b output unit decision line will intersect the a input trajectory

between a5 and a6 , which in turn inhibits trajectories that oscillate and converge
around an attractor.

Learning to process the anbn language by our de® nition of correctness is not a

trivial task for an RNN. We ran larger sets of simulations using the training set

described in Section 3 and varying the number of hidden units. We found that

with two hidden units eight out of 50 networks were successful,13 with three hidden

units 18 out of 50 networks were successful, and with ® ve hidden units 24 out of
50 were successful.14 These admittedly rough statistics suggest that learning to

process the language does require much training, but certainly is not rare.

All of the successful networks developed oscillation dynamics around the ® xed

points. We speculate that training a network that oscillates around the ® xed points

may be related to phase space learning, as investigated by Tsung (1994). In that

work Tsung demonstrated that RNN training is improved by providing input
vectors that specify how nearby orbits should converge to an attractor. In our case,

perhaps, oscillation dynamics perform better because the hidden unit activation

30 P. Rodr iguez et al.

values visit regions of phase space that surround the ® xed points, thereby enabling

error signals that better tune the parameters. In contrast, monotonic dynamics
only contract to (expand from) an attracting (repelling) point from one side such

that the system does not receive error signals around the ® xed points. For example,

in the network 3 monotonic solution, the Fb saddle point results in two attracting

points: one is near the starting point in the predict a region, and the other is in the

predict b region. Often, during training, the network would incorrectly process

long strings by transitioning into the wrong attractor region on the ® rst b input.
We also investigated in detail the network solutions with more hidden units.

We found that with more hidden units the dynamics are similar to that found in

network 2, although in some cases the network would generalize better (e.g. up to

n 5 21). Interestingly, in one network with ® ve hidden units the dynamics were

similar to network 2 but with one novel diþ erenceÐ the dynamics were oscillating

with periodicity of 5 and the Fb system settled into a periodic-5 ® xed point.
Although the dominant eigenvalues were not as closely inversely proportional as

network 2, the network generalized just as far, up to n 5 16. One reason for the

equivalent performance may be that the higher periodicity allowed the trajectory

to `take up’ more regions of phase space and avoid expanding across the hyperplane

that divides the a and b predictions too early. For example, on a test of n 5 17 the
network with ® ve hidden units erred by making a prediction ® ve time steps too

early on the twelfth b input. On the other hand, due to better matched eigenvalues,

on a test of n 5 17 network 2 did not make a prediction error until the ® fteenth b,

only two time steps too early. In addition, the network dynamics with ® ve hidden

units became more distributed among hidden units, which con® rms that counting

can be distributed among dimensions and that merely looking at individual hidden
unit values may be misleading.

8. Finding the Limit

In this section we argue that the coordinated trajectory dynamics clearly represent

a solution that could process the anbn language for strings of unlimited length given

unlimited precision. The argument is based on the dynamic properties of the

linearized systems derived in the analysis (Section 5) for network 2. We construct

a piecewise linear system that can work for strings of length n ® ` . Our construc-
tion is an example of the counting solutions in analog computation theory (e.g.

Moore, 1996; Pollack, 1987b; Siegelmann, 1993), except that our system can have

output predictions that are linearly separable. We then relate this to the non-linear

system of an RNN and explore how well an RNN does in practice.

Informally, the simple DCFL anbn can be processed in a dynamical system by
stipulating the piecewise linear function,

f(net) 5 {1 net > 1

net 0< net< 1

0 net < 0

and the equation

X t 5 f([0.5 0

2.0 2.0
] ´ X t 2 1 + [0.5 2 5

2 5 2 1
] ´ It)

An RNN that Learns to Count 31

where X t is the state vector at time t, It is the input vector at time t, either a 5 [1 0]Â ,

or b 5 [0 1]Â , and we apply f to each element of the vector. For example, given an
initial starting point of (0,0), the trajectory of aaabbb has a sequence of values:

(0.5,0), (0.75,0), (0.875,0), (0,0.75), (0,0.5), (0,0). The simple trick is to use

variable x1 to count the a input, variable x2 to count the b input, and use the a or

b input to turn on /oþ the counting. It is then easy to add decision functions to

make proper predictions. The solution works for unlimited length strings because

the attracting point for fa , (1,0), and saddle point for fb , (0,1), are limit points of
the system. The weight coeý cients satisfy the conditions of having inversely

proportional eigenvalues and the point (1,0) is on the fb saddle point stable

eigenvector. (For comparison, we present the weight matrices for network 2 in

Appendix B, which includes a bias node and uses the sigmoid function.)

In principle, the non-linear system can be approximated closely by a linear

system in a neighborhood around the ® xed point, which suggests that the non-
linear system can also possess the dynamics to process strings of unlimited length

if it stays in the linear range of the sigmoid function. For example, networks 2 and

4 are both non-linear systems which have linear system approximations around the

® xed points with dynamic properties like the linear system above. Furthermore,

one can get a sense of how well the linear system matches the non-linear system
by considering how the stable eigenvector aligns with the stable manifold at the

saddle point. In Figure 19, we pictorially demonstrate that for network 4 the stable

Figure 19. This graph demonstrates the stable manifold for the saddle point of
network 4 under the b input condition (Fb system) as follows: since the Fb system

has a periodic-2 ® xed point the F 2
b has two attracting points. The ® gure simply

indicates which {HU1,HU2} values will settle on which attracting point for F 2
b .

The shaded region of the graph is attracted to one ® xed point and the unshaded

region is attracted to the other ® xed point. The curved boundary between the

regions corresponds to the stable manifold for the saddle point. The stable eigen-
vector is drawn in as well. Note how the stable manifold seems to be well

approximated by the stable eigenvector in the [0,1] 3 [0,1] region.

32 P. Rodr iguez et al.

eigenvector of the linear system at the saddle point of Fb stays very close to the

stable manifold of the non-linear system in the [0,1] 3 [0,1] region. Our conjecture
is that an idealization of the network system, which would have very close linear

system approximations with all the right properties (e.g. exactly matching rates of

contraction and expansion, and a correct alignment of eigenvectors), would repre-

sent a non-linear system that can process extremely long strings. Therefore,

although an RNN may not process extremely long strings in practice,15 the

successful networks in our analysis have acquired dynamics that approximately
represent a correct counting solution to process strings of unlimited length.

The above argument raises the question: How far can an RNN process the anbn

language in practice? In order to explore this question further, we attempted to

maximize performance of the networks discussed in the analysis. We used a brute

force search to vary each recurrent weight and some input weight parameters by

tiny amounts. We found that the network 2 generalization could be improved up
to n 5 28 (total length 5 56). The dominant eigenvalues were slightly closer to

inverse proportions (2 0.707 for Fa , 2 1.439 for Fb and 1/ 2 0.707 5 2 1.414)

compared to the original network (see Table I) and the ® xed point locations were

virtually unchanged. Also, the network 4 generalization was improved up to n 5 27,

but networks 1 and 3, which both have monotonic dynamics, could not be
improved very much at all by brute force methods. However, after manipulating

the ® xed point locations and eigenvalues at those locations, we found a weight

combination for network 316 that could process strings for n 5 14.

Several factors are involved in network performance, such as precision, location

of ® xed points with respect to stable manifolds, actual distance between ® xed

points, eigenvalues, etc. so we cannot easily point to any one limitation. The
dynamical system analysis guides the view that the system can process very large

strings and that both oscillation and monotonic dynamics around the ® xed points

are capable of similar performance (although, as stated earlier, learning may be

easier for networks that oscillate). At this time we cannot account for the apparent

upper limit of n 5 28, or as to why the monotonic dynamics perform worse even

with brute force searches. However, we performed only a cursory exploration
because our emphasis has been on the nature of the solution.

9. Results Summary

In summary, we can address the two questions posed earlier: ® rst, an RNN can
learn to process a simple DCFL in the prediction task in a way that generalizes;

second, the states and resources employed are correctly identi ® ed by a dynamical

systems interpretation. For example, network 2 generalized to strings of length

n < 16 (e.g. total length < 32), which is 10 characters longer than presented in

training. Also, the dynamical systems interpretation provides the correct functional

description (as well as the mathematical analysis) of the resources employed by an
RNN. In particular, a coordinated trajectory in the anbn task domain is composed

of resources such as an attractor point, saddle point, and associated expansion and

contraction rates and axes that enable the system to count up and down.

In discrete automata the type of resource available is often the primary distinc-

tion in formal capabilities. For example, a PDA diþ ers from an FSM by the

addition of a stack resource; but in the case of an RNN there is little `resource’
diþ erence between processing an RL and processing a DCFL. The RNN uses

® xed-point dynamics as the basis for both kinds of tasks. The DCFL task requires

An RNN that Learns to Count 33

some particular coordination of dynamics, but the additional requirements are

seemingly nothing like adding an external counter.

10. Related Issues and Future Directions

10.1. Theoretical Analysis

In this section, we compare and contrast the relationship between the RNN results
in our simulations and theoretical results of dynamical recognizers. A dynamical

recognizer (as de® ned by Pollack (1991), Siegelmann (1993) and Moore (1996))

is a discrete-time continuous space dynamical system with an initial starting point

and decision function. It is composed of the following: a space f d , an alphabet A,

a function that maps f d ® f d for each element of A, an initial point x0 in f d , and

an accepting region Hyes in f d . The RNN we have described is one particular
example of a dynamical recognizer, except that we use a prediction task instead of

the accept/reject task (as discussed in Section 3). The RNN has a two-dimensional

phase space f 2 , the alphabet is the set {a,b} coded as input vectors {(1,0), (0,1)},

and the sigmoid activation function with weights frozen and constant input are the

functions Fa and Fb , and the prediction regions are determined by a simple
threshold decision function over the output unit activation values.17

In order to simulate a Turing machine with a dynamical recognizer one can use

a real-valued variable to encode the contents of a stack or counter. With enough

precision and appropriate dynamic equations, the least signi® cant digits of the

variable can be used to push on new values (for details see Pollack (1987b);

Siegelmann (1993) and Moore (1996)). For example, Siegelmann (1993) demon-
strates how one can construct an RNN to perform as a counter. She uses linear

nodes and builds two counters, one to count up and one to count down. Each

counter consists of one linear node with only one recurrent connection to itself

and the connections between nodes are laid out such that they only have limited

interaction.

The dynamics for counters in the theoretical analysis are similar to our results
because they make use of attractor dynamics and rely on the precision of state

variables, however, there are also crucial diþ erences. In our network 2, the `counting

up’ values oscillate and converge around a ® xed point, and the `counting down’

values oscillate and expand around a saddle point. More importantly, the network

learned the solution with hidden units that were fully connected to each other with
no pre-wiring. The axis of expansion in network 2 contained components of both

hidden units, thereby indicating that the solution was distributed among units.

The output units were not specially constructed but rather developed their own

connection weights to partition the hidden unit phase space as appropriate. The

hidden layer was forced to ® nd a solution that `counts up and down’ in two

diþ erent regions of phase space.
Since our system organized its resources into a counter mechanism, the solution

re¯ ects learnability issues of RNNs as dynamical recognizers with a prediction task.

For example, in order to allow the RNN to `count’ in linearly separably regions of

phase space, the stable eigenvector for the saddle point eþ ectively created a

transition between phase space regions. Hence, the system could make strong

predictions for all a input and only make an error on the transition between the a

input and b input, which is unpredictable anyway. Also, the last step at the end of

the string was relatively large because of the expansion away from the saddle point,

34 P. Rodr iguez et al.

which made the end of string prediction linearly separable with some margin.

Hence, the system could make strong predictions for all b input and have a
relatively large switch to a prediction at the last b input. As discussed previously,

other issues include the oscillation dynamics, amount of periodicity and the

number of hidden unit dimensions available. All these system properties aþ ect the

learnability and the processability of the prediction task. The theoretical analysis

indicates an abstract solution, while a successful empirical simulation implements

a solution that points out the kind of dynamics that may be relevant to learning
and processing natural languages. Both avenues are crucial to understanding how

an RNN mechanism can re¯ ect natural language classes.

10.2. The Psychological Account

An important question surrounding this work is the following: Does an RNN
provide an alternative account of psychological data on human language processing

in contrast to discrete automata? For example, a PDA with limitations on the stack

depth can account for human performance limits on processing center-embedded

sentences (Barton et al., 1987). For an RNN, we should ask: What are the resource

limitations that might account for performance? The work presented here suggests
that characterization of resources involves understanding how trajectories are built

and coordinated. Performance eþ ects could arise from precision, location of ® xed

points, rates of contraction /expansion, the topographical relationships of those axes

of contraction /expansion, the ability of output units to partition the phase space,

etc. Analogous to a stack limit, for example, one can limit the numeric precision

in an RNN, which degrades the trajectories, thereby limiting the length of strings
that the network can process correctly. Network 2, with two-digit precision, can

only process strings of length n < 8; with one-digit precision the network can only

process strings of length n < 3. But there are many ways to degrade a trajectory.

The dynamical systems analysis presented here provides insight on some perfor-

mance issues for RNN models of language processing, but by no means does it

exhaust the possibilities.

10.3. What other Languages can an RNN Learn?

There is an obvious extension of the network solution for the simple DCFL anbn

for the language anbncn, which is a simple deterministic context-sensitive language.
A solution could use some hidden units to count anbn and then some other hidden

units to count bncn. Preliminary trials with this language show that is what the

network does, and the analysis would be much the same as reported herein.

We are particularly interested in expanding this work to strings from a language

that have some symbol-sensitive counting, such as a palindrome language (e.g. the

language wwr, where w is a string of characters, w r is the reverse). Based on the
linear system found in the analysis section, we can suggest a similar solution for a

simple deterministic palindrome. For example, the language xmanbnym, where m> 0,

n > 0, is deterministic because of the change of symbols from w to w r at the middle.

One way to process this language is to have an embedded counter for anbn that

keeps track of how many x inputs preceded the as in order to count the ys. We

have results showing that an RNN can learn the task with some generalization such
that an idealized version of the network dynamics re¯ ects a counting solution

(Rodriguez & Wiles, 1998). However, preliminary tests show that a palindrome

An RNN that Learns to Count 35

that has all possible sequences, e.g. w 5 (x or a)*, is a much harder problem.

Although one can hand-code a piecewise linear solution easily enough, the network
would have to learn to maintain information about all combinations, which would

entail a fractal solution.

11. Conclusion

Although the theoretical framework of discrete automata has established a hierarchy

of complexity of formal languages and computation, the exact relationship of

formal language computation to human language performance has not been fully
established. One alternative is to develop an account based on processing with

continuous-valued states, such as in dynamical systems. A proper approach seeks

convergence of psycholinguistic data, empirical studies with RNNs, and theoretical

analysis of dynamical recognizers to understand dynamical systems as a mechanism

that may capture the complexity and hierarchies of natural language.

Our work reported here helps draw together the study of RNNs using formal
grammars, known classes of computability, learning and dynamical systems theory.

The work adds a building block to the connectionist framework by showing that

an RNN in a prediction task has the potential to go beyond a FSM. Rather, it can

organize its resources to process dependencies in temporal data, such as strings

from a DCFL, by coordinating the trajectories in phase space instead of adding an

external stack /counter mechanism. Therefore, an RNN may not adhere to the
same kind of resource diþ erences and computational metaphor embodied by

traditional language-processing models based on discrete automata. Instead, an

RNN may have similar capabilities without the same mechanistic discontinuities.

Acknowledgements

We bene® ted from helpful feedback from John Batali, Michael Casey, Gary Cottrell,

Paul Mineiro, David Zipser, Mark St. John and three anonymous reviewers. This

work was supported in part by the following grants: UCSD Department of
Cognitive Science NSF Training Grant SBR-9256834, UCSD Center for Research

in Language PHS5 T32 DC00041, and a McDonnell-Pew Center for Cognitive

Neuroscience Visiting Scientist Award.

Notes

1. There have been other works showing that feed-forward networks are capable of performing

semantic processes, such as assigning thematic role information (McClelland & Kawamoto, 1986;

Miikkulainen, 1992). However, these do not show how a network can process temporal data.

2. An example is to use one hidden unit to count up and down. However, we found that no networks

learned the prediction task with one hidden unit.

3. Each sweep is de ® ned to be one presentation of an input pattern with the corresponding set of

weight adjustments through error correction.

4. Some of the error in both cases is due to the fact that the network cannot predict the ® rst `b ’ input.

The case 1 network seemed to have a lower error since it often made predictions close to 1, even

though it would not always correctly predict the end of string transition. With 1 million more

sweeps the case 2 network MSE was even lower at 0.225, although it only generalized to n < 13.

5. When the parameters and input of a dynamical system are held constant it is often referred to as

time-invariant and autonomous.

6. In the case of a discrete system, each vector can be created by taking a sample of points in the

coordinate system, then for each point apply the activation functions for one time step, and then

36 P. Rodr iguez et al.

use the new point as an arrow head (we thank Mike Casey for pointing this out to us). `Flow’ is a

slight abuse of terminology, since it is normally used to refer to tangent vectors of continuous time

systems.

7. For the case n 5 1, the network can simply predict an a for both inputs in the ab sequence, which

is not an interesting trajectory to display. Successful networks will sometimes require a few transient

states (e.g. running the network with some short strings) in order to reach a good starting point to

process n 5 1.

8. More generally, higher or lower should be interpreted as one side or the other of the attracting

point such that the system crossing the dividing line on the correct step.

9. Network 1 did not actually have a repelling point, however, we used the point that had the smallest

change in activation values, which still allows one to make a rough comparison of dynamics.

10. Network 3 had dynamics that monotonically increased for one hidden unit in Fa , then monotonically

decreased for the other hidden unit in Fb , but in this case the Fb dynamics have a saddle point.

11. It is more correct to use the stable manifold rather than stable eigenvector because, as we state in

the Appendix, the non-linear system has a stable manifold that is approximated by the stable

eigenvector. In Section 8 we discuss this further.

12. In fact, the language anbn is a subset of the balanced parenthesis language.

13. Success is de® ned here as no more than one error on the training set. We found that networks

which made only one error typically had some generalization at some point in the training.

14. Brad Tonkes (personal communication) has found similar frequencies of learning results.

15. Casey (1996) has shown a stronger statement that an RNN with ® nite number of hidden units

cannot robustly process a CFL. We are not challenging this statement, but rather pointing out that

these dynamics represent an idealized solution, not a physical realization of a solution (note that

the same can be said of discrete automata).

16. Since the case 1 network did not have a saddle point, it did not easily enable the same kind of

manipulation of ® xed points, which involves solving a system of equations based on the network

weights while holding some weights and some coeý cients constant.

17. In our case the location of the decision line is learned by the network; but see Kolen (1994) for a

discussion of how the choice of decision function can aþ ect the interpretation of the computational

capabilities of a system.

References

Barton, G.E., Berwick, R.C. & Ristad, E.S. (1987) Computational Complexity and Natural Language.

Cambridge, MA: MIT Press.

Batali, J. (1994) Innate biases and critical periods: combining evolution and learning the acquisition of

syntax. Arti® cial Life IV, pp. 160 ± 171. Cambridge, MA: MIT Press.

Blair, A.D. & Pollack, J.B. (1997) Analysis of dynamical recognizers. Neural Computation, 9, 1127 ± 1142.

Blank, D.S., Meeden, L.A. & Marshall, J.B. (1992) Exploring the symbolic /subsymbolic continuum: a

case study of R AAM. In J. Dinsmore (Ed.), Closing the Gap: Symbolism vs. Connectionism, pp. 113 ± 147.

Hillsdale, NJ: Lawrence Erlbaum Associates.

Casey, M. (1996) The dynamics of discrete-time computation, with application to recurrent neural

networks and ® nite state machine extraction. Neural Computation, 8, 1135 ± 1178.

Christiansen, M.H. & Chater, N. (1994) Natural Language Recursion and Recurrent Neural Networks.

TR 94-13 in Archive of Philosophy /Neuroscience/Psychology, Washington University.

Cottrell, G.W. & Tsung, F.-S. (1993) Learning simple arithmetic procedures. Connection Science, 5,

37 ± 58.

Das, S., Giles, C.L. & Sun, G.Z. (1992) Learning context-free grammars: capabilities and limitations

of a recurrent neural network with an external memory stack. Proceedings of the 14th Annual Conference

of the Cognitive Science Society, pp. 791 ± 796. Hillsdale, NJ: Lawrence Erlbaum Associates.

Elman, J.L. (1991) Distributed representations, simple recurrent networks, and grammatical structure.

Machine Learning, 7, 195 ± 225.

Giles, C.L. & Omlin, C.W. (1993) Extraction, insertion and re® nement of symbolic rules in dynamically

driven recurrent neural networks. Connection Science, 5, 307 ± 337.

Giles, C.L., Sun, G.Z., Chen, H.H., Lee, Y.C. & Chen, D. (1992) Extracting and learning an unknown

grammar with recurrent neural networks. In J.E. Moody, S.J. Hanson & R.P. Lippmann (Eds),

Advances in Information Processing 4, pp. 317 ± 323. San Mateo, CA: Morgan Kaufman.

Hopcroft, J.E. & Ullman, J.D. (1979) Introduction to Automata Theory, Languages, and Computation.

Addison-Wesley.

http://figaro.catchword.com/rpsv/0899-7667()9l.1127
http://figaro.catchword.com/rpsv/0899-7667()8l.1135[csa=0899-7667&vol=8&iss=6&firstpage=1135]
http://figaro.catchword.com/rpsv/0954-0091()5l.37[csa=0954-0091&vol=5&iss=1&firstpage=37]
http://figaro.catchword.com/rpsv/0885-6125()7l.195
http://figaro.catchword.com/rpsv/0954-0091()5l.307
http://figaro.catchword.com/rpsv/0954-0091()5l.37[csa=0954-0091&vol=5&iss=1&firstpage=37]

An RNN that Learns to Count 37

Kolen, J.F. (1994) Exploring the Computational Capabilities of Recurrent Neural Networks. PhD dissertation,

The Ohio State University.

Kutas, M. & Hillyard, S.A. (1984) Brain potentials during reading re¯ ect word expectancy and semantic

association. Nature, 307, 161 ± 163.

Kwasny, S.C. & Kalman, B.L. (1995) Tail-recursive distributed representations and simple recurrent

networks. Connection Science, 7, 61 ± 80.

Martelli, M. (1992) Discrete Dynamical Systems and Chaos. Longman Scienti® c and Technical.

McClelland, J.L. (1987) The case for interactionism in language processing. In M. Coltheart (Ed.),

Attention and Performance XII: The Psychology of Reading. London: Erlbaum.

McClelland, J.L. & Kawamoto, A.H. (1986) Mechanisms of sentence processing: assigning roles to

constituents. In D.E. Rumelhart & J.L. McClelland (Eds), Parallel Distributed Processing, Vol. 2.

Cambridge, MA: MIT Press.

Miikulainen, R. (1992) Script recognition with hierarchical feature maps. In N. Sharkey (Ed.),

Connectionist Natural Language Processing, pp. 196 ± 214. Dordrecht: Kluwer Academic.

Moore, C. (1996) Dynamical recognizers: real-time language recognition by analog computers. Santa

Fe Institute Working Paper 96-05-023.

Pollack, J.B. (1991) The induction of dynamical recognizers. Machine Learning, 7, 227 ± 252.

Pollack, J.B. (1990) Recursive autoassociative memories. Arti® cial Intelligence, 46, 77 ± 105.

Pollack, J.B. (1988) Recursive autoassociative memory: devising compositional distributed representa-

tions. Proceedings of the 10th Annual Conference of the Cognitive Science Society, pp. 33 ± 38. Hillsdale,

NJ: Lawrence Erlbaum Associates.

Pollack, J.B. (1987a) Cascaded back propagation on dynamic connectionist networks. Proceedings of the

9th Annual Conference of the Cognitive Science Society, pp. 391 ± 404. Hillsdale, NJ: Lawrence Erlbaum

Associates.

Pollack, J.B. (1987b) On Connectionist Models of Language, PhD dissertation, Computer Science

Department, University of Illinois at Urbana-Champaign.

Robinson, C. (1995) Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. Boca Raton: CRC

Press.

Rodriguez, P. & Wiles, J. (1998) A recurrent neural network can learn to implement symbol-sensitive

counting. In M. Jordan, M. Kearns & S. Solla (Eds), Advances in Neural Information Processing Systems

10, pp. 87 ± 93. Cambridge, MA: MIT Press.

Rumelhart, D.E., Hinton, G.E. & Williams, R.J. (1986) Learning internal representations by error

propagation. In D.E. Rumelhart & J.L. McClelland (Eds), Parallel Distributed Processing, Vol. 2.

Cambridge, MA: MIT Press.

Servan-Schreiber, D., Cleermans, A. & McClelland, J.L. (1988) Encoding Sequential Structure in Simple

Recurrent Networks. CMU TR CS-88-183, Carnegie Mellon University.

Siegelmann, H.T. (1993) Foundations of Recurrent Neural Networks. PhD dissertation, New Brunswick

Rutgers, The State University of New Jersey.

Smith, A.W. & Zipser, D. (1989) Learning sequential structure with the real-time recurrent learning

algorithm. International Journal of Neural Systems, 1, 125 ± 131.

St. John, M. (1992) The story Gestalt: a model of knowledge-intensive processes in text comprehension.

Cognitive Science, 16, 271 ± 306.

Stolcke, A. (1990) Learning Feature-based Semantics with Simple Recurrent Networks. TR-90-015, Inter-

national Computer Science Institute, University of California at Berkeley.

Sun, G.Z., Chen, H.H., Giles, C.L., Lee, Y.C. & Chen, D. (1990) Connectionist pushdown automata

that learn context-free grammars. Proceedings of the International Joint Conference on Neural Networks,

pp. I-577 ± 580. Washington, DC.

Tino, P., Horne, B.G. & Giles, C.L. (1995) Finite State Machines and Recurrent Neural Networks

Automata and Dynamical Systems Approaches. TR-UMCP-CSD:CS-TR-3396, University of Maryland,

College Park.

Tonkes, B. (1998) Recurrent networks are unstable in learning a simple context free language. 4th

B iannual Australian Conference of Cognitive Science (in press).

Tsung, F.-S. (1994) Modeling Dynamical Systems with Recurrent Neural Networks. PhD dissertation,

Department of Computer Science, University of California, San Diego.

Tsung, F.-S. & Cottrell, G.W. (1994) Phase-space learning. In G. Tesauro, D. Touretzky & T. Leen

(Eds), Advances in Neural Information Processing Systems 7. Cambridge, MA: MIT Press.

Watrous, R.L. & Kuhn, G.M. (1992) Induction of ® nite-state automata using second order recurrent

networks. In J.E. Moody, S.J. Hanson & R.P. Lippmann (Eds), Advances in Information Processing 4,

pp. 309 ± 316. San Mateo, CA: Morgan Kaufman.

Weckerley, J. & Elman, J.L. (1992) A PDP approach to processing center-embedded sentences.

http://figaro.catchword.com/rpsv/0028-0836()307l.161[csa=0028-0836&vol=307&iss=5947&firstpage=161]
http://figaro.catchword.com/rpsv/0954-0091()7l.61
http://figaro.catchword.com/rpsv/0885-6125()7l.227
http://figaro.catchword.com/rpsv/0004-3702()46l.77
http://figaro.catchword.com/rpsv/0129-0657()1l.125[csa=0129-0657&vol=1&iss=2&firstpage=125]
http://figaro.catchword.com/rpsv/0364-0213()16l.271

38 P. Rodr iguez et al.

Proceedings of the 14th Annual Conference of the Cognitive Science Society, pp. 414 ± 419. Hillsdale, NJ:

Lawrence Erlbaum Associates.

Wiggins, S. (1990) Introduction to Applied Nonlinear Dynamical Systems and Chaos. New York: Springer.

Wiles, J. & Elman, J.L. (1995) Learning to count without a counter: a case study of dynamics and

activation landscapes in recurrent neural networks. Proceedings of the 17th Annual Conference of the

Cognitive Science Society, pp. 482 ± 487. Cambridge, MA: MIT Press.

Williams, R.J. & Zipser, D. (1989) Experimental analysis of the real-time recurrent learning algorithm.

Connection Science, 1, 87 ± 111.

Appendix A: Dynamical Systems De® nitions

In this section we present formal de® nitions of concepts from dynamical systems
theory (see, for example, Martelli (1992), Tino et al. (1995), Robinson (1994) and

Wiggins (1990)). The formal concepts are useful when we discuss the principle of

how the network may process in® nite-length strings.

(1) A discrete-time dynamical system can be represented as the iteration of a
diþ erentiable function:

f : f n ® f n , e.g. xt + 1 5 f (xt), t Î N, x Î f n

where N denotes the set of natural numbers and f n denotes the n-dimensional

space of real numbers. Note that the function f can be linear or non-linear,

the diþ erence being that a linear function has the following property of

superposition: f (cx + ky) 5 cf (x) + kf (y), where c and k are scalar constants.

(2) For each x Î f n, the iteration of f generates a sequence of distinct points which

de® ne a trajectory of f. Given an initial state x0 , the evolution of the system
starting from x0 is determined by the sequence of states:

x0 , x1 5 f (x0), x2 5 f (x1) 5 f 2(x0), . . .

The sequence is called the trajectory of the system starting from x0 . The

sequence can also be de® ned as the set { f m(x0) ½ m > 0}, where f m(x) is the

composition of f with itself m times.

(3) A point xÂ is called a ® xed point of f if f m(xÂ) 5 xÂ , for all m Î N.

(4) A ® xed point xÂ is called an attracting ® xed point of f if there exists a

neighborhood around xÂ , O(xÂ), such that limm ® ` f m(xÂ) 5 xÂ , for all x Î O(xÂ).
(5) A ® xed point xÂ is called a repelling ® xed point of f if there exists a

neighborhood around xÂ , O(xÂ), such that limm ® 2 ` f m(xÂ) 5 xÂ , for all

x Î O(xÂ). In other words, a repelling ® xed point is an attracting ® xed point in

reverse sequence.

(6) A ® xed point xÂ is called a periodic-2 ® xed point of f if f 2(xÂ) 5 xÂ . Note that
a function may have a ® xed point of any period.

(7) A system of equations is a set of functions F 5 { fi : f n ® f n , i 5 1, 2, . . . }.

For example, for a two-dimensional system, F 5 { fi , i 5 1,2},

x1,t + 1 5 f1 (x1,t , x2,t)

x2,t + 1 5 f1 (x1,t , x2,t)

(All the above de® nitions of ® xed points also hold for systems of equations.)

http://figaro.catchword.com/rpsv/0954-0091()1l.87

An RNN that Learns to Count 39

(8) For a linear system, F can be written as a matrix and the set of xi can be

written as a vector X, such that X t + 1 5 F ´ X t .

(9) An eigenvalue is a scalar k , and an eigenvector is a vector v, such that Fv 5 k v.

For a linear system of n equations the eigenvalues give the rate of contraction

or expansion and the eigenvectors give the axis along which the system

contracts or expands. The eigenvalues, k i , i 5 1, 2, . . . , n, at the ® xed points

determine the behavior of the system as follows:

a) if k i<1 and k i> 2 1, for all i, then the system is stable and contracting,

and the ® xed point is an attracting ® xed point,

b) if k i> 1 or k i< 2 1, for all i, then the system is expanding, and the ® xed

point is a repelling ® xed point,

c) if k j> 1 or k j< 2 1, for some integer(s) j, and if k i< 1 and k i> 2 1, for

i 5 1, 2, . . . , j 2 1, j + 1, . . . , n, then the system is unstable and expanding in

the direction of the eigenvector(s) that corresponds to k j , and the system is

contracting in all other corresponding eigenvector directions. The ® xed point

is also a repelling point speci® cally referred to as a saddle point. (The case of

an eigenvalue 5 1 is de® ned to be non-hyperbolic and requires other methods

to analyze the system around the ® xed point.)

(10) For a non-linear system of equations, F, let DF 5 the partial derivative matrix

(Jacobian). There is a standard linearization technique for analyzing the

behavior in the neighborhood of a ® xed point. The technique uses the DF

matrix analyzed at the ® xed point, DF(xÂ), to produce a linear system, e.g.

X 5 [DF(xÂ)] ´ X. The eigenvalues of the linear system govern whether or not

the non-linear system is contracting or expanding in the neighborhood of the

® xed point, just as for the linear system.

(11) The non-linear system also contains invariant sets analogous to the linear

system eigenvectors. These invariant sets are referred to as the stable manifold,

and the unstable manifold. In the case of a saddle point there exists both a

stable manifold and an unstable manifold. For a two-dimensional system each

manifold is a curve tangent to the stable and unstable eigenvector at the

saddle point, such that the following holds:

(stable manifold) WS 5 {x ½ F(x) Î WS , and limm ® ` F m(x) 5 xÂ }

(unstable manifold) WU 5 {x ½ F(x) Î WU , and limm ® 2 ` F m(x) 5 xÂ }

where xÂ is the saddle point.

Appendix B: The Weights from Network 2

For completeness, we present the weights for network 2 discussed in the paper.

Using an equation format where the weights are the matrix entries, H t is the state

vector for hidden units at time t, It is the input vector which include the bias node

(a 5 [1 1 0]Â , b 5 [1 0 1]Â) and G is the sigmoid function:

G(x) 5
1

1 + e 2 x

40 P. Rodr iguez et al.

we have the equation:

H t 5 G([2 3.080526 2 9.2054679

2 0.83122147 2 6.05627365
] ´ H t 2 1 +

[3.4761645 2 0.52505533 4.6773302

4.4907968 2.6301704 1.9219846
] ´ It)

For the output unit vector, Y, the equation is:

Y t 5 G([1.4940302 2 5.2289746 2 0.58472942

2 1.4957459 5.22906011 0.58668607
] ´ H ²

t)
where H ² is the hidden unit vector augmented with the bias node as the ® rst entry.

