
Neuro-Fuzzy Techniques under MATLAB/SIMULINK
Applied to a Real Plant

Andreas Nürnberger
University of Magdeburg

Faculty of Computer Science
39106 Magdeburg, Germany

E-mail: andreas.nuernberger@cs.uni-
magdeburg.de

Rudolf Kruse
University of Magdeburg

Faculty of Computer Science
39106 Magdeburg, Germany
E-mail: rudolf.kruse@cs.uni-

magdeburg.de

Abstract
The design and optimization process of fuzzy

controllers can be supported by learning techniques
derived from neural networks. Such approaches are
usually called neuro-fuzzy systems. In this paper, we
describe the application of an updated version of the
neuro-fuzzy model NEFCON to a real plant. The
NEFCON model is able to learn and optimize the rulebase
of a Mamdani-type fuzzy controller online by a
reinforcement learning algorithm that uses a fuzzy error
measure. We used an implementation of this model under
MATLAB/SIMULINK. This simulation environment
supports the development of real time applications in an
easy way.

1. Introduction

The main problems in fuzzy controller design are the
construction of an initial rulebase and in particular the
optimization of an existing rulebase. The optimization
process is usually very time consuming, especially if real
plants must be used during optimization. The methods
used for the application presented in this paper have been
developed to support the user in these cases.

One of the main objectives of our project is to develop
algorithms that are able to determine online an appropriate
and interpretable rulebase within a small number of
simulation runs. Besides, it must be possible to use prior
knowledge to initialize the learning process.

 This is a contrast to ‘pure’ reinforcement strategies [2]
or methods based on dynamic programming [1, 10] which
try to find an optimal solution using neural network
structures. These methods need many runs to find even an
approximate solution for a given control problem. On the
other hand, they have the advantage of using less
information about the error of the current system state.

However, in many cases a simple error description can be
achieved with little effort [7, 9].

In this paper, we describe the application of neuro-
fuzzy learning methods to a real plant. We chose
MATLAB/SIMULINK [9] as environment for the neuro-
fuzzy model, in order to use a standard software tool, that
is well suited for the design of industrial applications.

The model was implemented as a toolbox for
MATLAB/SIMULINK [9]. Thus, it is available for the
interactive design of fuzzy controllers and supports it by
learning methods.

The used learning techniques are based on the neuro-
fuzzy model NEFCON [7].

1.1. The NEFCON-Model

The NEFCON-Model is based on a generic fuzzy
perceptron [6, 7]. An example, which describes the
structure of a fuzzy controller with five rules, two inputs,
and one output, is shown in Figure 1. The inner nodes R1,
…, R5 represent the rules, the nodes ξ1 , ξ1 , and η the

input and output values, and µr
i() , νr the fuzzy sets

describing the antecedents Ar
i() and consequents Br .

Rules with the same antecedents use so-called shared
weights, which are represented by ellipses in Figure 1.
They ensure the integrity of the rulebase. The node R1 for
example represents the rule:

 R1: if is A and is A then is B1 1
(1)

2 1
(2)

1ξ ξ η .

The model structure allows to learn and optimize the
rulebase of a Mamdani-type fuzzy controller [4] online by
a reinforcement learning algorithm.

2. The Learning Algorithms

The learning process of the NEFCON model can be
divided into two main phases. The first phase is designed

to learn an initial rulebase, if no prior knowledge of the
system is available. Furthermore, it can be used to
complete a manually defined rulebase.

The second phase optimizes the rules by shifting or
modifying the fuzzy sets of the rules.

 Both phases use a fuzzy error to learn or to optimize
the rulebase [7, 9]. The fuzzy error describes the quality of
the current system state

2.1. Rulebase Learning

For the presented application, we used the ‘Bottom-
Up`-Algorithm [8, 9].

This algorithm starts with an empty rulebase. An initial
fuzzy partitioning of the input and output intervals must be
given. The algorithm can be divided into two parts.

 During the first part, the rules' antecedents are
determined by classifying the input values, i.e. finding that
membership function for each variable that yields the
highest membership value for the respective input value.
Then the algorithm tries to ‘guess’ the output value by
deriving it from the current fuzzy error.

During the second part, the rulebase is optimized by
changing the consequent to an adjacent membership
function, if this is necessary.

2.2. Optimization of the Rulebase

To optimize the rulebase we choose the optimization
algorithm NEFCON-I [9].

This algorithm is motivated by the backpropagation
algorithm for the multilayer perceptron. It optimizes the
rulebase by ‘reward and punishment’. A rule is ‘rewarded’
by shifting its consequent to a higher value and by
widening the support of the antecedents, if its current
output has the same sign as the optimal output. Otherwise,
the rule is ‘punished’ by shifting its consequent to a lower
value and by reducing the support of the antecedents.

2.3. Description of the System Error

For the description of the system error, we use a
linguistic error description [7].

 This method is based on the fact that the optimal state
of a dynamic system can be described by a vector of
system state variable values. Usually the state can not be
described exactly, or we are content, if the system
variables have roughly taken these values. Thus, the
quality of a current state can be described by fuzzy rules.

 By use of an error definition that is based on a
linguistic error description with fuzzy rules, it is also
easily possible to describe compensatory situations. These
are situations in which the dynamic system is driven
towards its optimal state.

3. Learning applied to a real plant

Since we want to be able to determine an appropriate
and interpretable rulebase within a small number of
simulation runs, we decided to split the learning process in
two main steps.

During the first step, the rulebase will be learned and
optimized by use of a simple (linear) model of the real
plant. Because of the differences between the real plant
and the linear model used for learning, the fuzzy controller
will not be able to control the real plant appropriately in
most cases. Therefore, a second learning step will be
necessary. During the second step, the derived rulebase
will be optimized by use of the real plant.

Thus, an appropriate working rulebase can be found
with less experimental (and time) effort on the real plant.
Besides, the risk of a damage of the real plant is reduced.

As an example for a real plant, we used the well-known
inverted pendulum.

3.1. The learning Environment

 The used inverted pendulum model is shown in Figure
2. The revolving pendulum is mounted on top of a moving

η

R1 R3R2

ξ2ξ1

R5R4

µ1
1() µ2

1()

µ3
1() µ2

2()

µ1
2()

µ3
2()

ν1

ν2
ν3

Figure 1: A NEFCON System with two inputs, five
rules and one output

base. The moving base can be driven along a track over a
length of approximately 1.5m. The moving base is driven
by a DC-motor, a toothwheel, a toothbelt and a clutch.

The measured values of the pendulum are the pendulum
angle a (|a| < 10°), the cart position x obtained by
incremental encoders, and the cart velocity x’.

The plant was connected to a standard Pentium 166 PC
running Microsoft Windows NT 4.0. For the data transfer
we use of a standard I/O interface card with a scanning
rate of at least 10 ms (during simulation we used a
scanning rate of 30 ms).

For the first learning step, we used a simple linear
model of the real pendulum. This model was implemented
in the SIMULINK learning environment, which was
constructed for this learning approach (see Figure 3).

The derivation of a linear model for an inverted
pendulum is described in detail in [5].

As mentioned above, the angle velocity could not be
obtained directly from the plant. The use of two measured
angles to calculate a local derivative was not possible due
to the measurement errors. These errors were caused by

the simple mechanical construction of the pendulum and
its control environment. Therefore, we used an observer to
derive the missing value (see, for example, [11, 12]). The
observer calculates the missing value, in this case the
angle velocity a’, by use of the measured values and the
control values applied to the plant (see the block observer
in Figure 3).

 The derivation of the observer for the pendulum is
described in [5], too.

3.2. The Used Error Description

The required system error for the learning algorithms
was defined by the rulebase depicted in Figure 4. The
input domains of the fuzzy system, which defines the error
description, are partitioned by three triangular membership
functions and the output domain by five triangular
membership functions.

1 If (a is n) and (da is p) then (err is z)
2 If (a is p) and (da is n) then (err is z)
3 If (a is p) and (da is p) then (err is n)
4 If (a is n) and (da is n) then (err is p)
5 If (a is p) and (da is z) then (err is n)
6 If (a is n) and (da is z) then (err is p)
7 If (a is z) and (da is n) then (err is p)
8 If (a is z) and (da is p) then (err is n)
9 If (a is z) and (da is z) and (x is p) and (dx is z) then (err is pz)
10 If (a is z) and (da is z) and (x is n) and (dx is z) then (err is nz)
11 If (a is z) and (da is z) and (x is z) and (dx is p) then (err is p)
12 If (a is z) and (da is z) and (x is z) and (dx is n) then (err is n)
13 If (a is z) and (da is z) and (x is n) and (dx is n) then (err is n)
14 If (a is z) and (da is z) and (x is p) and (dx is p) then (err is p)
15 If (a is z) and (da is z) and (x is n) and (dx is p) then (err is z)
16 If (a is z) and (da is z) and (x is p) and (dx is n) then (err is z)

(a - angle; da - angle velocity; x - position; dx - velocity; err - error)

Figure 4: Rulebase of the linguistic error description

The rules 1 to 8 (Figure 4) are used to define the error
of the pendulum.

The rules 9 to 16 define the position error of the cart.
The error signal derived by these rules is only used
(unequal to zero), if the pendulum is well balanced (a is
zero and da is zero). Thus, a straightforward and non-
optimal control strategy is implicitly defined by this error
description.

3.3. Learning and Optimization

The learning algorithm was initialized with an empty
rulebase. The input and output intervals have been
partitioned by five triangular membership functions. Each
simulation cycle was started with random initial conditions
for the angle and angle velocity of the pendulum.

For the first learning approach we used only the angle
and angle velocity to learn a rulebase. Therefore, the error
description was restricted to the rules 1 to 8 (Figure 4) and

Figure 2: The used inverted pendulum model

Demux

demux

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

observer

Mux

mux

x’ = Ax+Bu
 y = Cx+Du

pendulum

k
K

dx
velocity

x
position

da
angle vel.

a
angle

NEFCON
Fuzzy

y
out

clock
 t

time

Figure 3: SIMULINK simulation environment for the
pendulum

a NEFCON system with two input and one output values
was used.

During the rulebase learning phase, noise was added to
the reference signal to improve the coverage of the system
state space [2]. Each cycle took 10 seconds of simulation
time. If the pendulum fell down, the current cycle was
terminated immediately.

The learning algorithm was able to generate an
appropriate working rulebase in only three cycles of
rulebase learning and three cycles for optimization. The
control behavior is depicted in Figure 5.

Afterwards, the learned rulebase was applied to the real
pendulum model. This was done by simply replacing the
linear pendulum model block (pendulum) in the
SIMULINK simulation environment (see Figure 3). The
block was replaced by a control block, which
communicates directly with the plant, by use of the I/O
interface card of the PC.

The controller was able to balance the pendulum
without further optimization quite well. However, since we
used no restrictions for the cart movement during learning,
the cart moved slightly against the system boundaries. The

simulation results are depicted in Figure 6.
For the next learning approach, we used the simulation

environment as presented in (Figure 3) and the complete
error description (Figure 4).

The learning algorithm was able to generate an
appropriate working rulebase within only five cycles for
rulebase learning and three cycles for the optimization of
the fuzzy sets. The control behavior is shown in Figure 7.

Nevertheless, the control behavior is not optimal. The
presented control behavior is a typical sample of system
control with an automatically learned rulebase. The system
’swings’ slightly around its optimal state, but remains
stable. Better results could be obtained, for example, by
starting the learning procedure with different initial
conditions or by refining the used error description.
Furthermore, the intervals for the input and output values
could be changed or prior knowledge could be used to
initialize the rulebase of the fuzzy controller.

Finally, we applied the rulebase, which was learned by
use of the simple linear model, to the real pendulum. The
control results are depicted in Figure 8.

The controller was able to balance the pendulum, as

0 2 4 6
-10

-5

0

5

10

time

angle /
angle velocity

-0.5 0 0.5 1
-10

-5

0

5

10

angle

angle
velocity

0 2 4 6
-0.5

0

0.5

1

time

position /
velocity

0.4 0.6
-0.5

0

0.5

1

position

velocity

Figure 5: Model based learned rulebase (restricted to
a and a’) applied to the simulated model

0 5 10 15 20
-10

-5

0

5

10

time

angle /
angle velocity

-1 -0.5 0 0.5
-10

-5

0

5

angle

angle
velocity

0 5 10 15 20
-5

0

5

10

time

position /
velocity

0 5 10
-3

-2

-1

0

position

velocity

Figure 6: Model based learned rulebase (restricted to
a and a’) applied to the real plant

0 2 4 6 8 10
-10

-5

0

5

10

time

angle /
angle vel.

-1 -0.5 0 0.5 1
-10

-5

0

5

10

angle

angle
velocity

0 2 4 6 8 10
-1

-0.5

0

0.5

1

time

position /
 velocity

-1 -0.5 0 0.5
-1

-0.5

0

0.5

1

position

velocity

Figure 7: Model based learned rulebase applied to the
simulated model

0 2 4 6 8
-10

-5

0

5

10

time

angle /
angle vel.

-10 -5 0 5
-40

-20

0

20

40

angle

angle
velocity

0 2 4 6 8
-10

-5

0

5

time

position /
 velocity

-4 -2 0 2 4 6
-6

-4

-2

0

2

position

velocity

Figure 8: Model based learned rulebase applied to the
real plant

expected, only for a short period (about seven seconds).
This is caused by the model-based differences between the
real pendulum and the linear model used for learning.
Further tests have shown, that even rulebases obtained by
more exact models work only slightly better, when they
were applied to the real model.

4. Conclusion and future work

By the implementation of the updated NEFCON model
under MATLAB/SIMULINK, it is possible to use the
model conveniently for the design of fuzzy controllers for
different dynamic systems.

As presented, the rulebase obtained by use of a simple
model of a plant can be applied to a real plant in an easy
way. Nevertheless, the derived rulebase has to be
optimized by using the real plant in most cases, to be able
to control the plant appropriately.

Currently, this optimization cannot be done in real time,
due to some performance problems with the current
release of the MATLAB/SIMULINK environment and the
announced, but still missing, MATLAB compiler. The
next release of our NEFCON tool will likely support
online learning in real time.

Nevertheless, in case of more complex dynamic
systems, the quality of the results greatly depends on the
definition of the fuzzy error measure. This is caused by the
fact that the NEFCON algorithms use only a simple
approach to include the dynamics of the controlled system
in the optimization process (see, for example, the credit
assignment problem [2]).

Some variations of reinforcement strategies [1, 3] have
to be analyzed in order to determine, if it will be possible
to integrate them into the optimization phase of the
presented algorithms. It has to be studied whether they
improve the quality of the controller without increasing the
number of runs for learning significantly.

5. Remarks

The used development tool for fuzzy controllers under
MATLAB/SIMULINK can be obtained free of charge for
non-commercial purposes via the Internet from
http://fuzzy.cs.uni-magdeburg.de/nefcon.

MATLAB/SIMULINK is a simulation tool developed
by ‘The Mathworks’ Inc., 24 Prime Park Way, Natick,
Mass. 01760; (WWW: http://www.mathworks.com).

The used inverted pendulum was provided by the
Institute of Automation (IFAT), University of Magdeburg,
Germany (WWW: http://infaut.et.uni-magdeburg.de).

 The used plant (PS600 Position Control and Inverted
Pendulum) was constructed by amira GmbH, Düsseldorf,
Germany (WWW: http://www.amira.de).

6. References

[1] Barto, A. G., Bradtke, S. J., and Singh, S. P., Learning to
act using real-time dynamic programming, Artificial Intelligence,
Special Volume: Computational Research on Interaction and
Agency, 72(1), 81-138, 1995

[2] Barto, A.G., Sutton R. S., and Anderson, C. W.,
Neuronlike adaptive elements that can solve difficult learning
control problems, IEEE Transactions on Systems, Man and
Cybernetics, 13, 834-846, 1983

[3] Lin, C.T., Neural Fuzzy Control Systems with structure
and Parameter Learning, World Scientific Publishing,
Singapore, 1994

[4] Mamdani, E. H., and Assilian S., An Experiment in
Linguistic Synthesis with a Fuzzy Logic Controller,
International Journal of Man-Machine Studies, 7, pp. 1-13,
1973

[5] Mori, Shozo, Nishihara, Hiroyoshi, and Furuta, Kattsuhisa,
Control of an unstable mechanical system, Control of pendulum,
Int. J. Control, Vol. 23, No. 5, pp. 673-692, 1976

[6] Nauck, D., 1994, A Fuzzy Perceptron as a Generic Model
for Neuro-Fuzzy Approaches, Proceedings of the 2nd German
GI-Workshop Fuzzy-Systeme ’94, München, Germany, October.

[7] Nauck, D., Klawonn, F., and Kruse, R., Foundations of
Neuro-Fuzzy Systems, John Wiley & Sons, Inc., New York,
Chichester, 1997

[8] Nauck, D., Kruse, R., and Stellmach, R., New Learning
Algorithms for the Neuro-Fuzzy Environment NEFCON-I,
Proceedings of the 3rd German GI-Workshop Fuzzy-Neuro-
Systeme ’95, Darmstadt, Germany, November, pp. 357-364,
1995

[9] Nürnberger, A., Nauck, D., Kruse, R., Merz, L., A Neuro-
Fuzzy Development Tool for Fuzzy Controllers under
MATLAB/SIMULINK, In Proc. of the 5th European Congress
on Intelligent Techniques & Soft Computing (EUFIT ’97),
Aachen, Germany, 1997

[10] Riedmiller, M., and Janusz, B., Using Neural
Reinforcement Controllers in Robotics, Proceedings of the 8th

Australian Conference on Artificial Intelligence, Canberra,
Australia., 1995

[11] Tou, J. T., Modern Control Theory, McGraw Hill, New
York., 1964

[12] Unbehauen, H., Regelungstechnik II, Vieweg Verlag,
Braunschweig, Germany, 1987

