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Abstract 

Clustering methods are frequently used in data analysis 
to find groups in the data such that objects in the same 
group are similar to each other. Applied to document 
collections, clustering methods can be used to structure 
the collection based on the similarities of the contained 
documents and thus support a user in searching for 
similar documents. Furthermore, the discovered clus-
ters can be automatically indexed by keywords. There-
fore the user does not depend on manually defined 
index terms or a fixed hierarchy, which often did not 
reflect recent changes in the underlying document col-
lections. In this article we present an approach that 
clusters a document collection using a growing self-
organizing map. The presented method was imple-
mented in a software tool, which combines keyword 
search methods with a visualization of the document 
collection.  

1. Introduction 
Index terms and (hierarchical) classification methods 
are frequently used to structure object collections, e.g. 
document archives or libraries, and thus simplify the 
access for a user who is searching for specific docu-
ments. One of the main drawbacks of this approach is 
that the maintenance of these indexes is very expen-
sive. Furthermore, they are usually not applied consis-
tently and – since they are not updated frequently – 
they usually did not reflect recent changes of the struc-
ture of the underlying document collection.  
Clustering is a well-known approach to structure prior 
unknown and unclassified datasets. Applied to docu-
ment collections, clustering methods can be used to 
structure the collection based on the similarities of the 
contained documents and thus support a user in search-
ing for similar documents. Furthermore, the discovered 
clusters can be automatically indexed by keywords 
without the need to manually define index terms. 
In the following we present an approach that clusters a 
document collections using a growing self-organizing 
map. The method was implemented in a software tool 

that combines conventional keyword search methods 
with a visualization of the document collection. With 
the approach presented in this paper we resolved some 
of the problems of a first prototype that was imple-
mented using conventional self-organizing maps [9, 
15]. The main disadvantage of this architecture was 
that the size and shape of the map had to be defined in 
advance. Therefore a map had to be trained several 
times to obtain an appropriate solution. Especially for 
huge collections of documents this process is usually 
very time-consuming.  
Clustering a document collection using self-organizing 
maps requires a preprocessing of the document collec-
tion to obtain numerical data describing each docu-
ment. Similar to most of the existing models for docu-
ment retrieval our approach is based on the vector 
space model [18]. The vector space model represents 
terms and documents as vectors in k-dimensional 
space. The currently most popular models using this 
approach are Latent Semantic Indexing (LSI) [2], Ran-
dom Projection [8], and Independent Component 
Analysis (ICA) [7]. 
The vector space model enables very efficient analysis 
of huge document collections due to its simple data 
structure without using any explicit semantic informa-
tion. A document is described based on a ‘statistical 
fingerprint’ of word occurrences and the semantically 
information is considered based on statistical correla-
tions in further processing steps, e.g. the so-called ‘la-
tent semantic’ in the LSI approach [13, 14]. However, 
some approaches try to consider semantic information 
by a preprocessing step, see e.g., the analysis of three-
word contexts discussed in [5]. In spite of the insuffi-
ciencies the vector space model enables the processing 
of large document collections efficiently. Furthermore, 
using self-organizing maps document collections and 
search results can be visualized in an intuitive way. 
In the following section we will briefly review the con-
cepts of self-organizing systems and the implemented 
growing self-organizing map approach. In Sect. 3 we 
describe the document pre-processing steps and the 



methods used for grouping the text documents based 
on different similarity measures. In Sect. 4 we present 
the implementation of this approach. 

2. Self-organizing maps 
Self-organizing maps [10] are a special architecture of 
neural networks that cluster high-dimensional data 
vectors according to a similarity measure. The clusters 
are arranged in a low-dimensional topology that pre-
serves the neighborhood relations in the high dimen-
sional data. Thus, not only objects that are assigned to 
one cluster are similar to each other (as in every cluster 
analysis), but also objects of nearby clusters are ex-
pected to be more similar than objects in more distant 
clusters. Usually, two-dimensional grids of squares or 
hexagons are used. Although other topologies are pos-
sible, two-dimensional maps have the advantage of an 
intuitive visualization and thus good exploration possi-
bilities. 
Self-organizing maps are trained in an unsupervised 
manner (i.e. no class information is provided) from a 
set of high-dimensional sample vectors. The network 
structure has two layers (see Figure 1). The neurons in 
the input layer correspond to the input dimensions. The 
output layer (map) contains as many neurons as clus-
ters needed. All neurons in the input layer are con-
nected with all neurons in the output layer. The 
weights of the connection between input and output 
layer of the neural network encode positions in the 
high-dimensional data space. Thus, every unit in the 
output layer represents a prototype. Before the learning 
phase of the network, the two-dimensional structure of 
the output units is fixed and the weights are initialized 
randomly. During learning, the sample vectors are re-
peatedly propagated through the network. The weights 
of the most similar prototype ws (winner neuron) are 
modified such that the prototype moves toward the 
input vector wi. As similarity measure usually the sca-
lar product is used. The weights ws of the winner neu-
ron are modified according to the following equa-
tion: )( isss wwδwi:w' −⋅+=∀ , where δ is a learning 
rate. 
To preserve the neighborhood relations, prototypes 
that are close to the winner neuron in the two-
dimensional structure are also moved in the same di-
rection. The weight change decreases with the distance 
from the winner neuron. Therefore, the adaptation 
method is extended by a neighborhood function v: 

)(),(: isss' wwicvwwi −⋅⋅+=∀ δ  
where δ is a learning rate. By this learning procedure, 
the structure in the high-dimensional sample data is 
non-linearly projected to the lower-dimensional topol-
ogy.  After learning, arbitrary vectors (i.e. vectors from 

the sample set or prior `unknown' vectors) can be 
propagated through the network and are mapped to the 
output units.  For further details on self-organizing 
maps see [11].  
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Figure 1. Structure of a rectangular self-organizing 

map (top) and possible neighborhood function 
for a structure based on hexagons (bottom). 

Unfortunately, the standard model of self-organizing 
maps requires a predefined map structure. Therefore, 
the complete learning process has to be repeated if the 
size of the map was to small (the classification error 
which can be defined by |ww| is −  for every pattern 
is usually very high and thus very dissimilar vectors 
are assigned to the same unit) or to large (similar vec-
tors spread out on the map).  
Growing self-organizing map approaches try to solve 
this problem by a learning method which modifies the 
size (and structure) of the map by adding new units to 
the map, e.g. if the accumulated error on a map unit 
increases a specified threshold. In the following the 
approach which is used in the presented application is 
briefly described. 

2.1. A growing self-organizing map approach 
The proposed method is mainly motivated by the 
growing self-organizing map models presented in [1, 
4]. In contrast to these approaches we use hexagonal 
map structure and restrict the algorithm to add new 
units to the external units if the accumulated error of a 
unit exceeds a specified threshold value.  

The algorithm can be briefly described as follows: 

1. Predefine the initial grid size (usually 2×2 units) 
2. Initialize the assigned vectors with randomly se-

lected values. Reset error values ei for every unit i. 



3. Train the map using all inputs patterns for a fixed 
number of iterations. During training increase the 
error values of a winner unit s by the current error 
value for pattern i.  

4. Identify the unit with the largest accumulated error. 
5. If the error does not exceed a threshold value stop 

training. 
6. Identify the external unit k with the largest accumu-

lated error. 
7. Add a new unit to the unit k. If more than one free 

link is available select the unit at the nearest posi-
tion to the neighboring unit which is most dissimi-
lar to k. Initialize the weights of the new unit with 
respect to the vectors of the neighboring units so 
that the new vector is smoothly integrated into the 
existing vectors (see Figure 2).  

8. Continue with step 3. 
9. Continue training of the map for a fixed number of 

iterations. Reduce the learning rate during training. 
This process creates an incremental growing map and 
it also allows training the map incrementally by adding 
new documents, since the training algorithms affects 
mainly the winning units to which new documents are 
assigned. If these units accumulate high errors, which 
means that the assigned documents cannot be classified 
appropriately, this part of the map starts to grow. Even 
if the consider neuron is an inner neuron, than the addi-
tional documents pushes the prior assigned documents 
to outer areas to which new neurons had been created. 
This can be interpreted, e.g. as an increase in publica-
tions concerning a specific topic. Therefore also dy-
namic changes can be visualized by comparing maps, 
which were incrementally trained by newly published 
documents.  
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Figure 2. Example of a computation of a vector for 
a new inserted unit 

3. Building a map of a document collection 
For the training of self-organizing maps, the docu-
ments must be encoded in form of numerical vectors. 
To be suited for the learning process of the map, to 
similar documents similar vectors have to be assigned, 
i.e. the vectors have to represent the document content. 
After training of the map, documents with similar con-

tents should be close to each other, and possibly as-
signed to the same neuron. So, when a user has discov-
ered a document of interest on the map, he or she can 
search the surrounding area. 
The presented approach is based on statistical evalua-
tions of word occurrences. We do not use any informa-
tion on the meaning of the words since in domains like 
scientific research we are confronted with a wide and 
(often rapidly) changing vocabulary, which is hard to 
catch in fixed structures like manually defined thesauri 
or keyword lists. However, it is important to be able to 
calculate significant statistics. Therefore, the number 
of considered words must be kept reasonably small, 
and the occurrences of words sufficiently high. This 
can be done by either removing words or by grouping 
words with equal or similar meaning. A possible way 
to do so is to filter so-called stop words and to build 
the stems of the words (see e.g. [3]).  
Although these document preprocessing steps are well 
known, they are still rarely used in commercially avail-
able document retrieval approaches or search engines. 
An overview of  document pre-processing and encod-
ing is given in Figure 3. 

3.1. Stemming and filtering 
The idea of stop word filtering is to remove words that 
bear no content information, like articles, conjunctions, 
prepositions, etc. Furthermore, words that occur ex-
tremely often can be said to be of little information 
content to distinguish between documents. Also, words 
that occur very seldom are likely to be of no particular 
statistical relevance.  
Stemming tries to build the basic forms of words, i.e. 
strip the plural ‘s’ from nouns, the ‘ing’ from verbs, or 
other affixes. A stem is a natural group of words with 
equal (or very similar) meaning. We currently used the 
stemming algorithm of [16], which uses a set of pro-
duction rules to iteratively transform (English) words 
into their stems. 
For the further reduction of relevant words we use two 
alternative approaches. The first reduces the vocabu-
lary to a set of index words. These words are not se-
lected manually, but automatically chosen by an infor-
mation theoretic measure. The second approach is 
based on the work discussed in [17] and [6]. It uses a 
self-organizing map to build clusters of similar words, 
where similarity is defined based on a statistical meas-
ure over the word's context. 

3.2. Selection of index words based on their en-
tropy 
For each word a in the vocabulary we calculate the 
entropy as defined by [14]: 
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ni(a) is the frequency of word a in document i and m is 
the number of documents in the document collection. 
Here, the entropy gives a measure how well a word is 
suited to separate documents by keyword search. E.g. 
words that occur in many documents will have low 
entropy. The entropy can be seen as a measure of im-
portance of words in the given domain context. We 
choose a number of words that have a high entropy 
relative to their overall frequency (i.e. from words oc-
curring equally often we prefer those with the higher 
entropy). This procedure has empirically been found to 
yield a set of relevant words that are suited to serve as 
index terms. 

3.3. The word category map 
This approach does not reduce the number of words by 
removing irrelevant words from the vocabulary, but by 
building groups of words which are frequently used in 
similar (three-word-)contexts. A self-organizing map is 
used to find appropriate clusters of words. To be able 
to use words for training of a self-organizing map, the 
words have to be encoded. Therefore, to every word a 
random vector w�  with 90 dimensions is assigned (dis-
cussions concerning the number of dimensions can be 
found in [5]). This encoding does not imply any word 
ordering, as random vectors of dimensionalities that 
high can be shown to be ‘quasi-orthogonal’: the scalar 

product for nearly every pair of words is approximately 
zero. Then, the three-word-context of a word a is en-
coded by calculating the element-wise mean vectors of 
the words before beforew�  and after afterw�  the considered 
word over all documents and all occurrences of a. 
These mean (or expectation value) vectors >< beforew�  
and >< afterw�  over the random vectors of enclosing 
words are used to define the context vector cw�  of the 
considered word: ),,( ><><= afterbeforec wwww ����

. 
The obtained context vectors have 270 (=3·90) dimen-
sions. Words a, b that often occur in similar contexts 
have similar expectation values and therefore similar 
context vectors )(a

cw� , )(b
cw� . The vectors cw�  are finally 

clustered on a two-dimensional hexagonal grid using a 
self-organizing map. Words that are used in similar 
contexts are expected to be mapped to the same or to 
nearby neurons on this so-called word category map. 
Thus, the words in the vocabulary are reduced to the 
number of clusters given by the size of the word cate-
gory map. Instead of index terms, the word categories 
buckets are used for the document indexing. 
The most apparent advantage of this approach over the 
index term approach is that no words are removed 
from the vocabulary. Thus, all words are considered in 
the document clustering step. Furthermore, the word 
category map can be used as an expedient for the vis-
ual exploration of the document collection, because 
one often finds related words clustered together in the 
same or adjacent neurons of the word category map. 
From these clusters the user may choose related key-
words which are appropriate for a (new) keyword 
search to reduce (or increase) the number of consid-
ered documents. However, due to the statistical peculi-
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Figure 3. Document pre-processing and encoding 



arities of the approach and the rather weak semantic 
clues the context vectors give, there are often addi-
tional words in the clusters that stand in no under-
standable relation to the others. The main drawback of 
this approach is that the words in one cluster become 
indistinguishable for the document indexing. 

3.4. Generating characteristic document vectors 
Figure 3 shows the principle of the proposed document 
encoding.  At first, the original documents are pre-
processed, i.e. they are split into words, then stop 
words are filtered and the word stems are generated 
(Sect. 3.1). Afterwards the considered vocabulary is 
reduced to a number of groups or buckets. These buck-
ets are the index words from Sect. 3.2 or the word 
category maps from Sect. 3.3.  The words of every 
document are then sorted into the buckets, i.e. the oc-
currences of the word stems associated with the buck-
ets are counted. Each of the n buckets builds a compo-
nent in a n-dimensional vector that characterizes the 
document. These vectors can be seen as the finger-
prints of each document. 
For every document in the collection such a fingerprint 
is generated. Using a self-organizing map, these docu-
ment vectors are then clustered and arranged into a 
hexagonal grid, the so-called document map. Further-
more, each grid cell is labeled by a specific keyword 
that describes the content of the assigned documents.  
The labeling method we used is based on methods pro-
posed in [12]. It focuses on the distribution of words 
used in the documents assigned to the considered grid 
cell compared to the whole document database.  The 
labeled map can then be used in visual exploration of 
the document collection, as shown in the following 
section. 

4. Using the maps to explore document collections 
To assess the usability of this approach a software pro-
totype has been developed. The interactive user inter-
face has been implemented in Java. The tool processes 
the documents as described above and stores the in-
dexes and maps in a simple database. So we finally 
have a document map, where similar documents are 
grouped, and a word category map (if this approach is 
chosen) where the grouping of words is shown. In 
Figure 4 a screenshot of the software tool is shown.  
The document map opens up several appealing naviga-
tion possibilities. Most important, the surrounding grid 
cells of documents known to be interesting can be 
scanned for further (similar) documents. Furthermore, 
a keyword search method has been implemented that – 
besides providing an ordered result set – visualizes the 
distribution of keyword search results by coloring the 
grid cells of the document map with respect to the 

number of hits for specific keywords or combinations 
of keywords. This allows a user to judge e.g. whether 
the search results are assigned to a small number of 
(neighboring) grid cells of the map, or whether the 
search hits are spread widely over the map and thus the 
search was – most likely – too unspecific and should 
be further refined.  
If the highlighted nodes build clusters on the map we 
can suppose that the corresponding search term was 
relevant for the neighborhood relations in the learning 
of the self-organizing map. In this case the probability 
to find documents with similar topics in adjacent nodes 
can be expected to be higher.  
Furthermore, the labels (index terms) assigned to the 
grid cells can be used to search for specific topics and 
thus supports the user in navigating through the docu-
ment collection.  

4.1. Using the word category map 
The word category map can be used e.g. to look for 
related keywords for searching. If, for example, the 
number of search hits seems to be very small, so we 
would like to broaden our search. On the other hand, 
we would like the query to be still specific. In the word 
category map we can visualize the fingerprints of the 
matching documents. The highlighted nodes give us 
visual hints on which important keywords the docu-
ment contains in addition to those keywords we have 
been searching for. Furthermore, we may find groups 
of documents with visually similar fingerprints (i.e. 
similar highlighted regions) and thus similar content. 
Therefore, we are supported in finding some keywords 
which describe the document content and which can 
then be used to refine the search by adding (or prohib-
iting) these keywords. 

 

 
Figure 4. Screenshot of the software tool: Ranked 

search results (top left), word category map (top 
right), query window (bottom left), and docu-
ment map with colored grid cells according to 
search results (bottom right)  



5. Conclusions 
The presented approach enables a user to search for 
specific documents, but also to enlarge obtained result 
sets (without the need to redefine search terms) by 
navigating through groups of documents with similar 
contents surrounding the search hits. Furthermore, the 
user is supported in finding appropriate search key-
words to reduce or increase the documents under con-
sideration by using a word category map, which groups 
together words used in similar contexts. 
The methods proposed in this article combine (itera-
tive) keyword search with grouping of documents 
based on a similarity measure in an interactive envi-
ronment without the need to manually define lists of 
index terms or a classification hierarchy, which usually 
require expensive maintenance. Especially in rapidly 
changing document collections – like collections of 
publications of scientific research – classification sys-
tems that are not frequently updated are usually not 
accepted by the users, for whom especially new topics 
are of high importance. 
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