

Clustering of Document Collections using a Growing Self-Organizing Map

Andreas Nürnberger

University of California at Berkeley
EECS, Computer Science Division

Berkeley, CA 94720, USA
E-mail: anuernb@eecs.berkeley.edu

Abstract

Clustering methods are frequently used in data analysis
to find groups in the data such that objects in the same
group are similar to each other. Applied to document
collections, clustering methods can be used to structure
the collection based on the similarities of the contained
documents and thus support a user in searching for
similar documents. Furthermore, the discovered clus-
ters can be automatically indexed by keywords. There-
fore the user does not depend on manually defined
index terms or a fixed hierarchy, which often did not
reflect recent changes in the underlying document col-
lections. In this article we present an approach that
clusters a document collection using a growing self-
organizing map. The presented method was imple-
mented in a software tool, which combines keyword
search methods with a visualization of the document
collection.

1. Introduction
Index terms and (hierarchical) classification methods
are frequently used to structure object collections, e.g.
document archives or libraries, and thus simplify the
access for a user who is searching for specific docu-
ments. One of the main drawbacks of this approach is
that the maintenance of these indexes is very expen-
sive. Furthermore, they are usually not applied consis-
tently and – since they are not updated frequently –
they usually did not reflect recent changes of the struc-
ture of the underlying document collection.
Clustering is a well-known approach to structure prior
unknown and unclassified datasets. Applied to docu-
ment collections, clustering methods can be used to
structure the collection based on the similarities of the
contained documents and thus support a user in search-
ing for similar documents. Furthermore, the discovered
clusters can be automatically indexed by keywords
without the need to manually define index terms.
In the following we present an approach that clusters a
document collections using a growing self-organizing
map. The method was implemented in a software tool

that combines conventional keyword search methods
with a visualization of the document collection. With
the approach presented in this paper we resolved some
of the problems of a first prototype that was imple-
mented using conventional self-organizing maps [9,
15]. The main disadvantage of this architecture was
that the size and shape of the map had to be defined in
advance. Therefore a map had to be trained several
times to obtain an appropriate solution. Especially for
huge collections of documents this process is usually
very time-consuming.
Clustering a document collection using self-organizing
maps requires a preprocessing of the document collec-
tion to obtain numerical data describing each docu-
ment. Similar to most of the existing models for docu-
ment retrieval our approach is based on the vector
space model [18]. The vector space model represents
terms and documents as vectors in k-dimensional
space. The currently most popular models using this
approach are Latent Semantic Indexing (LSI) [2], Ran-
dom Projection [8], and Independent Component
Analysis (ICA) [7].
The vector space model enables very efficient analysis
of huge document collections due to its simple data
structure without using any explicit semantic informa-
tion. A document is described based on a ‘statistical
fingerprint’ of word occurrences and the semantically
information is considered based on statistical correla-
tions in further processing steps, e.g. the so-called ‘la-
tent semantic’ in the LSI approach [13, 14]. However,
some approaches try to consider semantic information
by a preprocessing step, see e.g., the analysis of three-
word contexts discussed in [5]. In spite of the insuffi-
ciencies the vector space model enables the processing
of large document collections efficiently. Furthermore,
using self-organizing maps document collections and
search results can be visualized in an intuitive way.
In the following section we will briefly review the con-
cepts of self-organizing systems and the implemented
growing self-organizing map approach. In Sect. 3 we
describe the document pre-processing steps and the

methods used for grouping the text documents based
on different similarity measures. In Sect. 4 we present
the implementation of this approach.

2. Self-organizing maps
Self-organizing maps [10] are a special architecture of
neural networks that cluster high-dimensional data
vectors according to a similarity measure. The clusters
are arranged in a low-dimensional topology that pre-
serves the neighborhood relations in the high dimen-
sional data. Thus, not only objects that are assigned to
one cluster are similar to each other (as in every cluster
analysis), but also objects of nearby clusters are ex-
pected to be more similar than objects in more distant
clusters. Usually, two-dimensional grids of squares or
hexagons are used. Although other topologies are pos-
sible, two-dimensional maps have the advantage of an
intuitive visualization and thus good exploration possi-
bilities.
Self-organizing maps are trained in an unsupervised
manner (i.e. no class information is provided) from a
set of high-dimensional sample vectors. The network
structure has two layers (see Figure 1). The neurons in
the input layer correspond to the input dimensions. The
output layer (map) contains as many neurons as clus-
ters needed. All neurons in the input layer are con-
nected with all neurons in the output layer. The
weights of the connection between input and output
layer of the neural network encode positions in the
high-dimensional data space. Thus, every unit in the
output layer represents a prototype. Before the learning
phase of the network, the two-dimensional structure of
the output units is fixed and the weights are initialized
randomly. During learning, the sample vectors are re-
peatedly propagated through the network. The weights
of the most similar prototype ws (winner neuron) are
modified such that the prototype moves toward the
input vector wi. As similarity measure usually the sca-
lar product is used. The weights ws of the winner neu-
ron are modified according to the following equa-
tion:)(isss wwδwi:w' −⋅+=∀ , where δ is a learning
rate.
To preserve the neighborhood relations, prototypes
that are close to the winner neuron in the two-
dimensional structure are also moved in the same di-
rection. The weight change decreases with the distance
from the winner neuron. Therefore, the adaptation
method is extended by a neighborhood function v:

)(),(: isss' wwicvwwi −⋅⋅+=∀ δ
where δ is a learning rate. By this learning procedure,
the structure in the high-dimensional sample data is
non-linearly projected to the lower-dimensional topol-
ogy. After learning, arbitrary vectors (i.e. vectors from

the sample set or prior `unknown' vectors) can be
propagated through the network and are mapped to the
output units. For further details on self-organizing
maps see [11].

. . .
input layer

map

. . .
input layer

map

0.1

0.1 0.1
0.1

0.1

0.1

0.1
0.1

0.1

0.5
0.1

0.0

0.50.0

0.5

S
0.5

0.50.1

0.0

0.5

0.0

0.0 0.1
0.0

0.0

0.0

0.0
0.0

0.0
0.0

0.0

0.0

0.0 0.0
0.0

0.0
0.0

Figure 1. Structure of a rectangular self-organizing

map (top) and possible neighborhood function
for a structure based on hexagons (bottom).

Unfortunately, the standard model of self-organizing
maps requires a predefined map structure. Therefore,
the complete learning process has to be repeated if the
size of the map was to small (the classification error
which can be defined by |ww| is − for every pattern
is usually very high and thus very dissimilar vectors
are assigned to the same unit) or to large (similar vec-
tors spread out on the map).
Growing self-organizing map approaches try to solve
this problem by a learning method which modifies the
size (and structure) of the map by adding new units to
the map, e.g. if the accumulated error on a map unit
increases a specified threshold. In the following the
approach which is used in the presented application is
briefly described.

2.1. A growing self-organizing map approach
The proposed method is mainly motivated by the
growing self-organizing map models presented in [1,
4]. In contrast to these approaches we use hexagonal
map structure and restrict the algorithm to add new
units to the external units if the accumulated error of a
unit exceeds a specified threshold value.

The algorithm can be briefly described as follows:

1. Predefine the initial grid size (usually 2×2 units)
2. Initialize the assigned vectors with randomly se-

lected values. Reset error values ei for every unit i.

3. Train the map using all inputs patterns for a fixed
number of iterations. During training increase the
error values of a winner unit s by the current error
value for pattern i.

4. Identify the unit with the largest accumulated error.
5. If the error does not exceed a threshold value stop

training.
6. Identify the external unit k with the largest accumu-

lated error.
7. Add a new unit to the unit k. If more than one free

link is available select the unit at the nearest posi-
tion to the neighboring unit which is most dissimi-
lar to k. Initialize the weights of the new unit with
respect to the vectors of the neighboring units so
that the new vector is smoothly integrated into the
existing vectors (see Figure 2).

8. Continue with step 3.
9. Continue training of the map for a fixed number of

iterations. Reduce the learning rate during training.
This process creates an incremental growing map and
it also allows training the map incrementally by adding
new documents, since the training algorithms affects
mainly the winning units to which new documents are
assigned. If these units accumulate high errors, which
means that the assigned documents cannot be classified
appropriately, this part of the map starts to grow. Even
if the consider neuron is an inner neuron, than the addi-
tional documents pushes the prior assigned documents
to outer areas to which new neurons had been created.
This can be interpreted, e.g. as an increase in publica-
tions concerning a specific topic. Therefore also dy-
namic changes can be visualized by comparing maps,
which were incrementally trained by newly published
documents.

m

k
k’

l

k: winner unit
l, m: neighboring units
k’: new unit
Computation of new
weight vector for k’:

lmkk wwww −+='

Figure 2. Example of a computation of a vector for
a new inserted unit

3. Building a map of a document collection
For the training of self-organizing maps, the docu-
ments must be encoded in form of numerical vectors.
To be suited for the learning process of the map, to
similar documents similar vectors have to be assigned,
i.e. the vectors have to represent the document content.
After training of the map, documents with similar con-

tents should be close to each other, and possibly as-
signed to the same neuron. So, when a user has discov-
ered a document of interest on the map, he or she can
search the surrounding area.
The presented approach is based on statistical evalua-
tions of word occurrences. We do not use any informa-
tion on the meaning of the words since in domains like
scientific research we are confronted with a wide and
(often rapidly) changing vocabulary, which is hard to
catch in fixed structures like manually defined thesauri
or keyword lists. However, it is important to be able to
calculate significant statistics. Therefore, the number
of considered words must be kept reasonably small,
and the occurrences of words sufficiently high. This
can be done by either removing words or by grouping
words with equal or similar meaning. A possible way
to do so is to filter so-called stop words and to build
the stems of the words (see e.g. [3]).
Although these document preprocessing steps are well
known, they are still rarely used in commercially avail-
able document retrieval approaches or search engines.
An overview of document pre-processing and encod-
ing is given in Figure 3.

3.1. Stemming and filtering
The idea of stop word filtering is to remove words that
bear no content information, like articles, conjunctions,
prepositions, etc. Furthermore, words that occur ex-
tremely often can be said to be of little information
content to distinguish between documents. Also, words
that occur very seldom are likely to be of no particular
statistical relevance.
Stemming tries to build the basic forms of words, i.e.
strip the plural ‘s’ from nouns, the ‘ing’ from verbs, or
other affixes. A stem is a natural group of words with
equal (or very similar) meaning. We currently used the
stemming algorithm of [16], which uses a set of pro-
duction rules to iteratively transform (English) words
into their stems.
For the further reduction of relevant words we use two
alternative approaches. The first reduces the vocabu-
lary to a set of index words. These words are not se-
lected manually, but automatically chosen by an infor-
mation theoretic measure. The second approach is
based on the work discussed in [17] and [6]. It uses a
self-organizing map to build clusters of similar words,
where similarity is defined based on a statistical meas-
ure over the word's context.

3.2. Selection of index words based on their en-
tropy
For each word a in the vocabulary we calculate the
entropy as defined by [14]:

 with))(ln()(
)ln(

11)(
1

apap
m

aW i

m

i
i ⋅+= ∑

=

∑ =

= m

j j

i
i

an

an
ap

1
)(

)(
)(,

ni(a) is the frequency of word a in document i and m is
the number of documents in the document collection.
Here, the entropy gives a measure how well a word is
suited to separate documents by keyword search. E.g.
words that occur in many documents will have low
entropy. The entropy can be seen as a measure of im-
portance of words in the given domain context. We
choose a number of words that have a high entropy
relative to their overall frequency (i.e. from words oc-
curring equally often we prefer those with the higher
entropy). This procedure has empirically been found to
yield a set of relevant words that are suited to serve as
index terms.

3.3. The word category map
This approach does not reduce the number of words by
removing irrelevant words from the vocabulary, but by
building groups of words which are frequently used in
similar (three-word-)contexts. A self-organizing map is
used to find appropriate clusters of words. To be able
to use words for training of a self-organizing map, the
words have to be encoded. Therefore, to every word a
random vector w� with 90 dimensions is assigned (dis-
cussions concerning the number of dimensions can be
found in [5]). This encoding does not imply any word
ordering, as random vectors of dimensionalities that
high can be shown to be ‘quasi-orthogonal’: the scalar

product for nearly every pair of words is approximately
zero. Then, the three-word-context of a word a is en-
coded by calculating the element-wise mean vectors of
the words before beforew� and after afterw� the considered
word over all documents and all occurrences of a.
These mean (or expectation value) vectors >< beforew�
and >< afterw� over the random vectors of enclosing
words are used to define the context vector cw� of the
considered word:),,(><><= afterbeforec wwww ����

.
The obtained context vectors have 270 (=3·90) dimen-
sions. Words a, b that often occur in similar contexts
have similar expectation values and therefore similar
context vectors)(a

cw� ,)(b
cw� . The vectors cw� are finally

clustered on a two-dimensional hexagonal grid using a
self-organizing map. Words that are used in similar
contexts are expected to be mapped to the same or to
nearby neurons on this so-called word category map.
Thus, the words in the vocabulary are reduced to the
number of clusters given by the size of the word cate-
gory map. Instead of index terms, the word categories
buckets are used for the document indexing.
The most apparent advantage of this approach over the
index term approach is that no words are removed
from the vocabulary. Thus, all words are considered in
the document clustering step. Furthermore, the word
category map can be used as an expedient for the vis-
ual exploration of the document collection, because
one often finds related words clustered together in the
same or adjacent neurons of the word category map.
From these clusters the user may choose related key-
words which are appropriate for a (new) keyword
search to reduce (or increase) the number of consid-
ered documents. However, due to the statistical peculi-

seism mountain
rock

wave effect

(..., 2, 4, 1, 2, ...)

preprocessing (stemming, filtering)

seism electr effect study mountain rock measure seism electr effect mountain rock
laboratory guide wave collect special prepare sample ...

indexing = counting words/buckets

vector = “document fingerprint”

Seismic-electric effect study of mountain rocks
Measurements of seismic-electric effect (SEE) of mountain rocks in laboratory on guided
waves were continued with very wide collection of specially prepared samples ...

Figure 3. Document pre-processing and encoding

arities of the approach and the rather weak semantic
clues the context vectors give, there are often addi-
tional words in the clusters that stand in no under-
standable relation to the others. The main drawback of
this approach is that the words in one cluster become
indistinguishable for the document indexing.

3.4. Generating characteristic document vectors
Figure 3 shows the principle of the proposed document
encoding. At first, the original documents are pre-
processed, i.e. they are split into words, then stop
words are filtered and the word stems are generated
(Sect. 3.1). Afterwards the considered vocabulary is
reduced to a number of groups or buckets. These buck-
ets are the index words from Sect. 3.2 or the word
category maps from Sect. 3.3. The words of every
document are then sorted into the buckets, i.e. the oc-
currences of the word stems associated with the buck-
ets are counted. Each of the n buckets builds a compo-
nent in a n-dimensional vector that characterizes the
document. These vectors can be seen as the finger-
prints of each document.
For every document in the collection such a fingerprint
is generated. Using a self-organizing map, these docu-
ment vectors are then clustered and arranged into a
hexagonal grid, the so-called document map. Further-
more, each grid cell is labeled by a specific keyword
that describes the content of the assigned documents.
The labeling method we used is based on methods pro-
posed in [12]. It focuses on the distribution of words
used in the documents assigned to the considered grid
cell compared to the whole document database. The
labeled map can then be used in visual exploration of
the document collection, as shown in the following
section.

4. Using the maps to explore document collections
To assess the usability of this approach a software pro-
totype has been developed. The interactive user inter-
face has been implemented in Java. The tool processes
the documents as described above and stores the in-
dexes and maps in a simple database. So we finally
have a document map, where similar documents are
grouped, and a word category map (if this approach is
chosen) where the grouping of words is shown. In
Figure 4 a screenshot of the software tool is shown.
The document map opens up several appealing naviga-
tion possibilities. Most important, the surrounding grid
cells of documents known to be interesting can be
scanned for further (similar) documents. Furthermore,
a keyword search method has been implemented that –
besides providing an ordered result set – visualizes the
distribution of keyword search results by coloring the
grid cells of the document map with respect to the

number of hits for specific keywords or combinations
of keywords. This allows a user to judge e.g. whether
the search results are assigned to a small number of
(neighboring) grid cells of the map, or whether the
search hits are spread widely over the map and thus the
search was – most likely – too unspecific and should
be further refined.
If the highlighted nodes build clusters on the map we
can suppose that the corresponding search term was
relevant for the neighborhood relations in the learning
of the self-organizing map. In this case the probability
to find documents with similar topics in adjacent nodes
can be expected to be higher.
Furthermore, the labels (index terms) assigned to the
grid cells can be used to search for specific topics and
thus supports the user in navigating through the docu-
ment collection.

4.1. Using the word category map
The word category map can be used e.g. to look for
related keywords for searching. If, for example, the
number of search hits seems to be very small, so we
would like to broaden our search. On the other hand,
we would like the query to be still specific. In the word
category map we can visualize the fingerprints of the
matching documents. The highlighted nodes give us
visual hints on which important keywords the docu-
ment contains in addition to those keywords we have
been searching for. Furthermore, we may find groups
of documents with visually similar fingerprints (i.e.
similar highlighted regions) and thus similar content.
Therefore, we are supported in finding some keywords
which describe the document content and which can
then be used to refine the search by adding (or prohib-
iting) these keywords.

Figure 4. Screenshot of the software tool: Ranked

search results (top left), word category map (top
right), query window (bottom left), and docu-
ment map with colored grid cells according to
search results (bottom right)

5. Conclusions
The presented approach enables a user to search for
specific documents, but also to enlarge obtained result
sets (without the need to redefine search terms) by
navigating through groups of documents with similar
contents surrounding the search hits. Furthermore, the
user is supported in finding appropriate search key-
words to reduce or increase the documents under con-
sideration by using a word category map, which groups
together words used in similar contexts.
The methods proposed in this article combine (itera-
tive) keyword search with grouping of documents
based on a similarity measure in an interactive envi-
ronment without the need to manually define lists of
index terms or a classification hierarchy, which usually
require expensive maintenance. Especially in rapidly
changing document collections – like collections of
publications of scientific research – classification sys-
tems that are not frequently updated are usually not
accepted by the users, for whom especially new topics
are of high importance.

Acknowledgements
The work presented in this article was partially sup-
ported by BTexact Technologies, Adastral Park, Mart-
lesham, UK.

References

[1] D. Alahakoon, S. K. Halgamuge, and B. Sriniva-
san, Dynamic Self-Organizing Maps with Con-
trolled Growth for Knowledge Discovery, IEEE
Transactions on Neural Networks, 11(3), pp. 601-
614, 2000.

[2] S. Deerwester, S. T. Dumais, G. W. Furnas, and
T. K. Landauer, Indexing by latent semantic
analysis, Journal of the American Society for In-
formation Sciences, 41, pp. 391-407, 1990.

[3] W. B. Frakes, and R. Baeza-Yates, Information
Retrieval: Data Structures & Algorithms, Prentice
Hall, New Jersey, 1992.

[4] B. Fritzke, Growing cell structures - a self-
organizing network for unsupervised and super-
vised learning, Neural Networks, 7(9), pp. 1441-
1460, 1994.

[5] T. Honkela, Self-Organizing Maps in Natural
Language Processing, Helsinki University of
Technology, Neural Networks Research Center,
Espoo, Finland, 1997.

[6] T. Honkela, S. Kaski, K. Lagus, and T. Kohonen,
Newsgroup Exploration with the WEBSOM
Method and Browsing Interface, Technical Re-
port, In: Helsinki University of Technology, Neu-

ral Networks Research Center, Espoo, Finland,
1996.

[7] C. L. Isbell, and P. Viola, Restructuring sparse
high dimensional data for effective retrieval, In:
Proc. of the Conference on Neural Information
Processing (NIPS'98), pp. 480-486, 1998.

[8] S. Kaski, Dimensionality reduction by random
mapping: Fast similarity computation for cluster-
ing, In: Proc. Of the International Joint Confer-
ence on Artificial Neural Networks (IJCNN'98),
pp. 413-418, IEEE, 1998.

[9] A. Klose, A. Nürnberger, R. Kruse, G. K. Hart-
mann, and M. Richards, Interactive Text Retrieval
Based on Document Similarities, Physics and
Chemistry of the Earth, Part A: Solid Earth and
Geodesy, 25(8), pp. 649-654, Elsevier Science,
Amsterdam, 2000.

[10] T. Kohonen, Self-Organized Formation of Topo-
logically Correct Feature Maps, Biological Cy-
bernetics, 43, pp. 59-69, 1982.

[11] T. Kohonen, Self-Organization and Associative
Memory, Springer-Verlag, Berlin, 1984.

[12] K. Lagus, and S. Kaski, Keyword selection
method for characterizing text document maps, In:
Proceedings of ICANN99, Ninth International
Conference on Artificial Neural Networks, pp.
371-376, IEEE, 1999.

[13] T. K. Landauer, P. W. Foltz, and D. Laham, An
Introduction to Latent Semantic Analysis, Dis-
course Processes, 25, pp. 259-284, 1998.

[14] K. E. Lochbaum, and L. A. Streeter, Combining
and comparing the effectiveness of latent semantic
indexing and the ordinary vector space model for
information retrieval, Information Processing and
Management, 25(6), pp. 665-676, 1989.

[15] A. Nürnberger, A. Klose, R. Kruse, G. Hartmann,
and M. Richards, Interactive Text Retrieval Based
on Document Similarities, In: G. Hartmann, A.
Nölle, M. Richards, and R. Leitinger (eds.), Data
Utilization Software Tools 2 (DUST-2 CD-ROM),
Max-Planck-Institut für Aeronomie, Katlenburg-
Lindau, Germany, 2000.

[16] M. Porter, An algorithm for suffix stripping, Pro-
gram, pp. 130-137, 1980.

[17] H. Ritter, and T. Kohonen, Self-organizing se-
mantic maps, Biological Cybernetics, 61(4),
1989.

[18] G. Salton, A. Wong, and C. S. Yang, A vector
space model for automatic indexing, Communica-
tions of the ACM, 18(11), pp. 613-620, (see also
TR74-218, Cornell University, NY, USA), 1975.

