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Abstract

The desire to augment our 3-dimensional perception andébd to understand multivariate problems
spawned several multidimensional visualization methogiels. Starting from early successes of visyal-

ization, like Dr. J. Snow’s dot map in 1854 showing the comilmecof cholera to a water pump in Londop,

Scatter plots, Chernoff faces, Andrews plots, Projectiorsi&it, Perceptualization of data, Data dens

ity,

Trees and Castles, Kinematic displays, Bertin Permutd#atrices and other multivariate techniques

have been developed (see Bibliography A in the Appendixné&of these will be reviewed in order {

o

establish the connection between multivariate problendsnanltidimensional geometry. Understanding
the underlying geometry of a multivariate problem provigeportant insights into what is possible and

what is not. For the unambiguous visualization of multidisienal geometry and, in turn, multivariate

relations Parallel Coordinates — the leading Multidimenal Vis Methodology — is introduced and rigd
ously developed. Relations among N real variables are ntappiguely into subsets of 2-space havi
geometrical properties enabling the visualization of theesponding N-dimensional hypersurfaces.
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After the basic representation results, associated atgosi for constructions, intersections, transforma-

tions, containment queries, proximity and others will besented. The development is interlaced W

ith

applications of the relevant results starting with demi@tigtins of Data Mining on real datasets (i.e. Fea-

ture extraction from LandSat data, Financial, Process i@hrilot Selection, Raising the Yield an
Quiality of VLSI chips, and others). They are followed by @tin Avoidance Algorithms for Air Traf+
fic Control which are based on the representation of linesultidimensional space. The detection
coplanar points and the representation of planes and higpeplead to some applications in Compu
Vision, Geometric Modeling and elsewhere. More examplédsial Data Mining are given. An efficien
geometric automaticlassifieralgorithm is motivated and is demonstrated on some chatigraptasets
Finally, the representation of curves and hypersurfacésksn up together with interactive applicatio

to Process Control, Instrumentation and Heuristic Optatiamn. Nonlinear VISUAL models, in terms of
hypersurfaces, are constructed from data and used inteigdor Decision Support, Sensitivity Analysis

studying feasibility and effect of constraints as well @sl&-off analysis.

NOTE: Do not be intimidated by the formalistic language. Dnganizer is also well known for numero-

logical anecdotes and palindromic diversions. Valuableegrwill be distributed in real-time to thos
contributing memorable and noteworthy digressions.

KEYWORDS: Multidimensional Geometry, Multidimensional/ Multivariate Visualization, Infor-
mation Visualization, Parallel Coordinates, Visual & Automatic Data Mining, Intelligent Process
Control & Instrumentation, Nonlinear Modeling, Decision Support.

d
of

ter
t

ns

e



Contents

VISUALIZATION - AnIntroduction . . . . . . . . . . .. . i 7
MULTIDIMENSIONAL VISUALIZATION . . . . . . o e 9
FORMAL OVERVIEW . . . . . . e e e 11
PARALLEL COORDINATES —Definition . . . . .. . .. .. ... ... .. . u.. 13
REPRESENTING RELATIONS - STARTWITH2-D ... ... ... .. ...... 15
A MODEL OF THE PROJECTIVEPLANE . . ... .. ... ... .. ..... 20
DETECTING ORTHOGONALITY . . . . . . e 23
THE DUALITY AS A LINEAR TRANSFORMATION . . . ... ... ... .. 24
MULTIDIMENSIONALLINES . . . . . . . . . e 27
REPRESENTATIONS & CONSTRUCTION ALGORITHMS . . . . ... . ... 27
DISPLAYING AIR TRAFFIC INFORMATION . . . . . . . . . . o e 32
DISTANCE & PROXIMITY PROPERTIES . . . . .. . . ... . ... ... ...... 36
INTERSECTIONS . . . . . . e e e e e 36
MINIMUM DISTANCE BETWEEN TWOLINES . . . . .. ... ... ..... 39
CONFLICT DETECTION & RESOLUTION FOR AIR TRAFFIC CONTROL . ... . 43
THE BASIC ALGORITHM . . . . . . . e 43
RESOLUTION OF ACONFLICTSCENARIO . . . . . . . ... ... ... ... 46
Planes, Flats & Hyperplanes . . . . . . . . . . . . . . . . . . .. .. .. 50
REPRESENTING FLATS BY INDEXED POINTS . . . . . ... ... ... ... .. 54
DETECTING RANDOMLY CHOSEN COPLANARPOINTS . . . . ... .. .. 55
HIGHER DIMENSIONAL EXAMPLES . . . .. . .. .. ... ... ...... 60
MORE ADVANCED DATAMINING . . . . . . . e e e e 5
Visual DataMining. . . . . . . . . . . e 65
CURVES . . . e 71
Conics map into conics in six differentways. . . . ... ... ... ...... 71
Algebraic Curves . . . . . . . . 47
Generalized conicSs —GCONICS . . . . . . . o o v v i e e 76
Further Dualities . . . . . . . . . . . . . 79
Operational Dualities and Convexity Algorithms . . . . . . . ... ... ... 80
LINE NEIGHBORHOODS . . . . . . . . . . e e e e 82
A Topologoly for proximity offlats . . . . . .. . ... ... ... ... . ... 82
HYPERSURFACES . .. ... ... ... ... .. . ... ... ..... 48
Interior Point Construction Algorithm . . . . . . . . .. .. ... .. ..... 84
Application to Process Control and Intelligent Instrunadiain . . . . . . . .. .. 85
DETECTING CONVEX POLYTOPES . . . . . . . . . . e 86



REPRESENTING SURFACES IN TERMS OF THEIR TANGENT PLANES . . . . . 89

DEVELOPABLE SURFACES-QUADRICS . . . . . . . ... ... ... ....
Bibliography . . . . . . . . 98
Bibliography . . . . . . . e 108

WWWSITES . . . o o e e e e e e e e e e 114



List of Figures

O~NO O WNPE

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25

26

The polygonal lin€ represents the poirft;,C,,C3,C4,C5). - . . . . oL 14
Constructing the Euclidean Distance betweentwopoints.. . . . . .. ... ... ... 15
A Point, (3,-1),in 2-Disrepresented byaline. . . . . . .. ... ... ... ..., 16
Point«— Linedualityin2-D . . . . . . . . . . . . ... 17
The x-coordinate of depends onlyontheslope6f . . . . . . ... ... ........ 19
Model of the Projective Plane . . . . . . . . . . . . . . . . . e 21
Parallel Lines are represented by pointson a verticalline. . . . . . ... ... .... 22
Reflection aboux = 1/2. Points representing lines with slopeare reflected to points
representing lineswith slope/th. . . . . . .. .. ... L 23
Circle Inversion and Reflection. Points representingsliwéh slopem are “inverted’to

points representing lines withslopem. . . . . . . .. .. .. ... ... ... ... ... 23
Duality of Transformations . . . . . . . . . . . . . . . e 25
Hypercube Representation in Parallel Coordinates . . . . . ... ... ... ..... 26
IntervalonalineiR1® . . . . ... 29
Collinearity of the points; ; , £; , £y« . ..o 30
The point, ; found by construction . . . . . ... .............. .. ..., . 31
Rotation of a line about one of it's points . . . . . . ... 31
Path(left) and trajectory(Right) ofanaircraft . . . . . ... .. ... ... ....... 32
Closest approach oftwo aircraft . . . . . .. .. .. ... .. .. . ... .. ..... 33
Two aircraft flying the same path with the same velocity ...... . . ... ....... 34
Angular deviations for assigned trajectories . . . . . . ... 35
Two lines intersecting iR® - firstexample . . . . . .. .. .. .. ... .. .. .. .. .. 37
Two lines intersecting iR® - second example . . . . . . . ... ... 38
Findingx, = a, minimizing thel, distance betweentwolines. . . . . .. ... .. ... 40
Here the.; andL, minimacoincide . . .. ... ...................... 40
Intersecting linesind-D . . . . . . . . . . . e 41

Non-intersection between two lines in 4-D. Here the mimmdistance is 20 and occurs

at time = .9. Note the maximum gap on tlieaxis formed by the lines joining thés

with the same subscript. The polygonal lines representiagbints where the minimum
distance occursare shown. . . . . . . . . ... 41
Non-intersection between two lines in 4-D. Here the mimmdistance is 10 and occurs

at time = 1.6. Note the the diminishing maximum gap onThaxis formed by the lines
joining the /’s with the same subscript and compare with Fig. 25. The poigglines
representing the points where the minimum distance ocearstown. . . . . . . .. . .. 42

4



27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Near intersection between two lines in 4-D. Here the mimmalistance is 1.5 and occurs
at time = 1.8. Note the the diminished maximum gap onTthexis formed by the lines
joining the/’s with the same subscript. The polygonal lines represgrtie points where

the minimum distance occursareshown. . . . . . . . . . . ... .. ..o 42
Protected airspace in3-D . . . . . . . . . e 43
Determining the frontand back scrapes . . . . . . . . . . ... .. L. 44
The limiting trajectories (scrapes) information in pedacoordinates . . . . . . . . .. .. 44
Relation Between Maneuver-Speed and Turn-Angle . . . . . . . . . ... ... ... 45
Six aircraft from scenario flying at the same altitude . ...... . . . ... ........ 46
Conflicts among the sixaircraft . . . . . . . . . . . .. . .. ... .. 46
Conflictintervals (CI) . . . . . . . . . . . e e 47
Conflict Parallelograms . . . . . . . . . . . . . e e e a7
Three pairs of tangentcircles . . . . . . . . . . . . . 48
Tripletangency . . . . . . . . . e 48
Resolutionin 3dimensions . . . . . . . . . . . e 49
In P2 planes are represented by two vertical lines and a polydioeah . . . . ... ... 50
Setof coplanaron aregulargridpointsin3-D . . . . . . .. ... ... L 50
Industrial Data. Note pattern between the variables ROtIR112 . . . . . . ... .. .. 51
Enlarged R111 - R112 portion of previousplot . . . . . ... ... ... ...... 51
R111vs. R112 linear relation between these 2 and ancéinemeter . . . . . . . . . ... 51
Aline/ on a planetis represented by one poini, in terms of the planar coordinat¥s

andY, which is collinear with it's two point,, and/y,. . . . . . . ... oL 52
Rotation of a plane about a lire Translation of a pointalongaline. . .. .. ... ... 53
On the first 3 axes a set of randomly chosed coplanar pgisteown . . . . . . . .. ... 55
Coplanarity . . . . . . . e e e 55
A plane in 3-dimensions is represented by 2 points . . . . ... ........... 56
Four points generated from the coplanar points . . . . . . ... .. ... ... ... 56
Reading the equation of a plane from its representation. . . . . . .. ... ... ... 57
Randomly chosed points on an approximate plane (“slaB8}dimensions on left 3 axes . 57
Approximate coplanarity obtained using the points showfig. 51. . . . . . ... .. .. 58
The point clusters indicating the approximate plane mftioe points shown in Fig. 51. . . 58
Detection of several approximate planes(slabs) . . . . .. ... ... ... ..... 59
Detecting several slabs from randomly chosenpoints . . . . .. ... ... ..... 59
Original points belongedto 3slabs . . . . . . . . . . . . .. .. ... ..., 60
Points (O-flats) on an approximate hyperplane in 6-dimo@ss . . . . . . . ... .. ... 60
Portions of Lines (1-flats) formed from the previous psint. . . . . . ... . ... ... 61
Portions of planes (2-flats) formed from the previousdine . . . . . . ... . ... ... 61
Portions of 3-Flats formed from the previous 2-flats . . ...... . . .. ... ...... 62
Portions of 4-Flats formed from the previous 3-flats . . ...... . . .. ... ...... 62
Points representing the hyperplan&®i. . . . . . ... ... ... ... ... ...... 63
Detecting points belonging to several slabsin5-D . . . ...... .. ... ... ..... 63
Number of intersections per position . . . . . . . . . . . . .. oa. e 64
Two “hits” with more than 1 intersection. Points aretao hyperplanes . . . . . . . . .. 64
The monkey dataset showing the separation achieved bypftihe 9 out 32 parameters
obtained from the dimensionality selection. . . . . .. .. . .. .. ... .. ..... 69

5



67

68

69
70
71

72
73
74
75

76
77
78
79
80
81
82
83
84
85
86
87
88

89
90
91

92

93
94
95

96
97
98
99
100
101
102

Ellipses always map into hyperbolas. Each assymptoteigitage of a point where the
tangenthasslope 1. . . . . . . . . L 71
A parabola whose ideal point does not have direction Withes1alwaystransforms to

a hyperbola with a vertical assymptote. The other assympsothe image of the point

where the parabola has tangentwithslope 1. . . . . . . ... ... ... .. .. ... 71
A parabola whose ideal point has direction with slope Adi@rms to a parabola - self-dual. 72
Hyperbola to ellipse — dual of case shown in Fig. 67 . - Y
Hyperbola to parabola. This occurs when one of the ass;tafmhas slope 1 dual of
caseshowninFig. 68 . . . . . . . . . . .. e 73
Hyperbola to hyperpola—self-dualcase. . . . . . . . .. .. .. ... ... .... 73
A 3rd degree curve with singularity maps to another 3rdeegurve. . . . . . . .. ... 74
A 3rd degree curve with different singularity maps intaladegree curve. . . . . . . . .. 75
Gconics - three types of sections: (left) bounded coneelc (right) unbounded convex
setucand (middle) hyperbola-likghregions. . . . . . . . . .. ... .. ... ...... 76
Generalization of Fig. 67 -bctogh. . . . . . . . . .. .. ... ... . 76
uctouc—self-dual . . . . . ... 77
uctogh . . . . 77
ghtobc. . . . . . e 78
ghtogh—self-dual . . . . .. .. .. . .. . . . .. . 78
Cusps are transformed into inflection points . . . . . . . . ...... ... ... .. ... 79
DualityCusps «» Inflection Points. . . . . . . .. .. .. ... .. ... ....... 79
Interior and boundary points of bounded convexset . . . ... ............ 80
Convex-Hull construction . . . . . . . . . . . . 80
Convex Union obcs corresponds to the Outer Union of theirimagks. . . . . . . . .. 81
Inner Intersection and IntersectionareDual. . . . . .. ... ... L. 81
Afamily of line transformations . . . . . . . . . ... L 82
Line neighborhood in orthogonal(doesn’t work) and pakabordinates. The unbounded
region (on the right) is replaced by a bounded one. . . .. ...... 83
Several line neighborhoods. Here the transformed nerghbds are dlstlnct ....... 83
A sphere irR® centered at the origin (0,0,0,0,0). . 84
The polygonal line represents the point found mtendthm Hyperelllpsmd in 6 D The

same algorithm applies to any piecewise convex hypersaurfac. . . . . .. ... .. .. 84
Finding a Feasible Point — state of the system — for a Psdgepresented by the Hyper-
SUrfaCe. . . . . e e 85
Adjacency relationship of the 2-faces of the convex 34ople in Parallel Coordinates . . 86

Adjacency relationship of the 2-faces of the non-convewlytope in Parallel Coordinates 87
A Sphere in 3-D represented by its tangent planes (poihts hyperbolic pattern of the

envelopes indicates that the object@wvex . . . . .. . ... .. ... ... ... ... 88
Representationisa pairofellipses . . . . . . . . . . .. . . . o oo 89
Representationisa pairof parabolas . . . . . . . ... .. .. ... ... . ... 90
Representationisa pairof hyperbolas . . . . . .. .. .. .. ... ... ..... 90
Representationisa pairof hyperbolas . . . . . .. ... ... .. ... ...... 91
Hyperbolic paraboloid - Sampling along rulings giveshes of straight lines — self-dual. . 91
Model of a country’seconomy . . . . . . . . . e e e 93

Competition for labor between the Fishing & Mining seste compare with previous figure 94

6



**

**

**

**

**

VISUALIZATION - An Introduction

Insight through Images — in the spirit of Hamming’s “we com pute to gain
insight not numbers”. Over half of our sensory neurons are dgoted to vision.
A goal of Visualization is to incorporate our tremendous patern-recognition

ability in our problem-solving loop.

Emerging Field with Huge Potential — Propelled by Technobgical Advances

and the need to Visualize the “Unseen”.

Seminal Report Visualization in Scientific ComputindgCM SIGGRAPH 1987

promoted Scientific Visualization and indirectly Visualization in other fields.

Techniques are ad hoc and application specific. Roughly smaking the field

consists of a collection of mappings :

Problen(s) Class— Visual Models

“Escaping flatland is the essential task of envisioning iformation - for all

the interesting worlds (physical, biological, imaginary,human) that we seek
to understand are inevitably and happily MULTIVARIATE in na ture. Not
flatlands.” — E. R. Tufte preface in Envisioning Information, Graphic Press,

Cheshire, Conn. 1990.



o Our goal is the visualization of complex problems with mary parameters —
Multivariate Visualization or equivalently Multidimensional Visualizationwe

shall emphasizenformation Visualization.

o Believe it or not, the fascination with Dimensionality may predate Aristotle
and Ptolemy who argued that space can only have three dimemsis. By the
nineteenth century, mathematicians like Riemann, Lobachesky and Gauss
unshackled our imagination and higher-dimensional and norEuclidean ge-
ometries came into their own. The intellectual challenge,iinited by our 3-
dimensional perceptual experience, and the abundance of ntivariate prob-
lems, spawned various methodologies to represent (encodajite sets of mul-
tivariate data points as indicated in bibliography (APPENDIX A)(It is worth-
while doing a search on WWW for “Multivariate, or Multidimen sional or In-

formation Visualization”).

o Whatis needed is aconce ptual breakthrougio enable the visualization not only

of Multivariate Data but also of RELAT ION Svithout Loss of Information.



MULTIDIMENSIONAL VISUALIZATION

We focus on the leading multidimensional methodology for te visual pre-
sentation of relationships between many variables. It is beed on a system of
Parallel Coordinategabbr. ||-coords) and provides a a systematic and rigorous way
of visualizing N-Dimensional geometry. This is in theSpirit of Descartesvhose co-
ordinate system enables us to tranform relations between 2l 3 variables (dimen-
sions) to geometric models — their graphs. However, ratherhian using orthogonal
axes we place them inparallel for orthogonality “uses up” the plane very fast. It
Is Parallelism rather than orthogonality which is the fundamental conceptin Ge-
ometry, and contrary to popular belief the concepts are not quivalen. A notion of
angleis required for orthogonality whereas for parallelism what is needed are lines
without points in common.

Based on the experience acccumulated thus far the propersawhich a desirable
multidimensional visualization methodoly should have ardisted next. You are en-

couraged to contribute your own ideas and requirements.



WANTED!
A Multidimensional Visualization Methodology which

displays multivariate/multidimensional relations

without loss of information, and low representational compexity (i.e. for Par-
allel Coordinates the complexity iSO(N) while for the common scatterplot ma-
trix itis O(N?)),

which works for any number of dimensions/variables,
and treats every variable in the same way,

enables the object being displayed to be recognized under gective transfor-

mations (i.e. translations, rotations, scaling and perspaive),

such that the properties of the relation uniquely correspoml to the properties

of its image, and

Is based on a body of rigorous mathematical and algorithmic esults (that is

theorems on how certain objects are displayed rather than athioc heurestics).
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FORMAL OVERVIEW

This part is for the more mathematicaly inclined.
Don’t let the notation intimidate you!
A RELATIONbetween N real variablesx,,X,, ..., Xy is a subsetF of RN — the

Euclidean N - Dimensional Space i.ef c R\,

In order not to lose information we want to map F uniquelyinto a planar pat-

tern i.e. a subset ofR%2 — which is a relation betweenx,, X,.

The plan, then, is to construct a mapping

7 127" 5 2P* X IndexSet

where 2% = {B | B C A} is the power set of Awhich maps subsets oPN, the
Projectiverather than the than Euclidean N - space into subsets of 2-sga.

The reasons for using the Projective space as well as thiedex Setwill be ex-

plained shortly.

Further, ¢ should beone—-to—onesothat 7 (F,) = #(F,) & F,=F,. Bythe
way, since thecardinality of 2P" and 2P° are the same, itis in principle possible

to construct an ¢ satisfying this requirement.

It will be shown that it is possible to construct such a mappig, ¢, recursively

11



on the dimensionality of the object being represented. Thats, starting
with points (0-dimensional) — this the non-recursive part drectly from the
definition, then successively taking the envelopes of the lygonal lines (1-
dimensional), p-flats (p-dimensional plane® < p < N — 1), then certain hy-

persurfaces. In this the indexing plays a crucial role.

A subsetF of PN is then representedy its image F = Z (F). We would like
F to have geometrical properties which will aid our intuition to discover the
properties of the N-dimensional subseF that it represents. This, of course, is

a cognitive and subjective requirement.

All this formalism will be clarified in the ensuing. There are a couple of miscon-
ceptions, however, that are worth clearing up at this stage.

Occassionaly, mappings between N-space and M-space, wheik > M,
are erroneously referred to as projections but not all such mappings are
projections  Specifically, a projection from N to M space takes a point

P(xl,xz,...,xM,x( ),...,XN) into the point P'(x;,X%,,...,Xy). Hence it only has in-

M+1
formation about the M variables it retains. So for our purposes, projections are not

desirable since they losall information about the N-M missing variables. Here ¢

IS not a projection and, in fact, is not even a point-to-pointmapping. This is par-

12



ticularly relevant to scatterplotswhich are a very important techniqgue commonly
used in multivariate visualization. When the number of variables is N, a scatterplot
matrix consists of the N(N — 1)/2 projections of the N variables taken pairwise.
Unfortunately, even such a plethora of projections may losenformation about the
N-dimensional object it portrays. In 3-D for example, constler the symmetric in-
tersection of 3 cylinders having the same radius r. The 3 pawise projections of this
object are identical to those of a sphere with radius r, and hece these two relatively
simple objects can not be distinguished by their projectios. It is worth coming up
with your own examples.

Also don’t let the name fool you, theProjective Plane which we will be occas-

sionally mentioning is not related to projective mappings.

PARALLEL COORDINATES — Definition

In the Euclidean plane with xy-Cartesian coordinates, N copies of the real line la-
beled X;,X,,...,Xy are placed equidistant (e.g. one unit apart) and perpendicu
lar to the x-axis. They are the axes of the parallel coordinate system rfdN-space
all having the same positive orientation as thg-axis. A point C with coordinates

(c;.C,,...,Cy) is represented by the complete polygonal lin€ (i.,e. the lines of

13
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Figure 1: The polygonal lin€ represents the poirit,, c,, C5,¢,, Cs).

which only the local segments are usually shown) whose N véres are at(i — 1,¢;)
on the Z-axis fori =1,...,N as shown in Fig. 1. In this way, a 1-1 correspondence
between points in N-space and planar polygonal lines with v&ces on the paral-
lel axes is established. The definition is deceptively simgland many people stop
here without realizing the power of Parallel Coordinates whch is really a whole

METHODOLOGY.

In Fig. 2, N = 7 with r = r, being the required distance. One of the points

shown is the origin though the construction is valid in geneal.

Here there will be a static display of a multivariate datasetwith 35 parameters

and thousands of data items. Then a set of LandSat data will bexamined showing

14
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Figure 2. Constructing the Euclidean Distance between wotg.
how feature extraction can be accomplished interactively.

REPRESENTING RELATIONS — START WITH 2-D

What distinguishes||-coords from Nomography, “Profiles”, “Glyphs”, “N-M plots” ,
“Andrews Curves”, “Chernoff’s faces”, etc is the ability to represent and display
not only points but also multivariate relationswithout losing information. We start
our exploration in 2-D not only because it is the simplest, buialso because we can

contrast ||-coords with Cartesian coordinates.

As we see from Fig. 3 gooint is represented by a lineline. And it is, therefore,

natural to ask “how is a line represented”?

15



X1 X5

Figure 3: A Point, (3, -1), in 2-D is represented by a line

16



Y L %o
L [
] —= X >><1
X4 Xo
ky L%,

S.(d . b
(0,a,)(d,may+b)| Az l'(1_m 1_m)(az,mc12+b)

Ay )91/’ a; +b)

(0,ay) {:xo=mix{+b
= X »)(1

Figure 4: Poink— Line duality in 2-D

17



In Fig. 4, the distance between the parallel axes i$. The line
| 2%, = mx +b, (1)

is a collection of its pointsA. In turn, the points are represented in||-coords by the
infinite collection of lines A on the xy plane. Remarkably, whenm # 1 these lines

intersect at the point with xy-coordinates:

m d b
"1l-m'l-m

)- (2)
This motivates the tentative (which will be modified as we golang — see Recur-
sive Definition in the previous section) definition on the repesentation of relations.
Namely, a relation, typically involving infinitely many points, will be represented
by the envelopeof the corresponding infinite family of polygonal lines representing
the points of the relation.

The point (2) represents the linearrelation, Equation (1), and is, in fact, the
envelope of the family of linesA. This point, all by itself, suffices to represent the

line for the two parameters m and b specify completely bothl and . In effect,

coords in 2-D induce aPoint = Line duality (i.e. mapping points into lines and
vice versa — this is examined more thoroughly in the next seicin ). But there is a
“little problem” when m= 1. Despite appearances, the poirit_does not “blow up”

asm— 1. Rather, when the limiting process is done carefully, one &s that I_goes

18
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Figure 5: The x-coordinate dfdepends only on the slope 6bf

farther out but in the specific direction whose slope i$/d. So lines withm= 1 are
not mapped into a poinbut into a directionand still all the information is there! The
fact that it is a direction tells us that m = 1 while the slope of the direction gives us
the value ofb. What is going on? Well, dualities properly reside in theProjective
and not the Euclidean Plane. The “directions” are in fact ponts (called “ideal”) of
the Projective Plane- which will be described shortly. One does not need experts

in Projective Geometry to do||-coords but awareness is advisable to avoid blunders.

19



In Fig. 5 we see an important property of the duality, namely he horizontal
location of I reveals the slope of. So parallel lines, having the same slope, are rep-
resented by points on the same vertical line (see Fig. 7) anddt enables us to recog-

nize (i.e. “eyeball”) parallelism in

-coords. Further, lines with slope m “meet” at

the ideal point denoted byP5 whose imageP, is the vertical line atx = 1/(1—m).

“Let no one ignorant of Geometry enter” .... At entrance tat®s Academy

A MODEL OF THE PROJECTIVE PLANE

The Projective Plane can be thought of as the Euclidean Plansith a points at
infinity assignedin every direction These are the “ideal” points. The ideal point
in the direction with slope m is denoted byPs. It's image, PZ, is the vertical line
at x = 1/(1— m) and which represents all parallel lines with slope m. With the
stereographic projection shown in Fig. 6 to every point of tle Euclidean Plane (i.e.
a “regular” point) corresponds a unique point on the hemisptere. Imagining the
limiting process as a point goes farther away from the origin(point of tangency
with the plane) in a constant direction having slope m, yield that anideal pointis
represented by the diameter, on the top disk with direction laving slope m. Further,
as shown in Fig 7, Lines map into great semi-circles. Semifcies representing

parallel lines share thesame diamete(i.e. “meet at the ideal point corresponding
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Figure 6: Model of the Projective Plane

to their directiort).
For a change of pace here we will interactively study a finaneil dataset. We will
see some occurrences and the significance of the duality inaledata. Also we will

discuss the permutations of the axis in the display and dises@r some surprising

evidence about the gold market.
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Figure 7: Parallel Lines are represented by points on acatitne

22



DETECTING ORTHOGONALITY

With the following two constructions we show that the information on orthogonality

-coords.

Is also preserved in

pe AY [

Figure 8: Reflection about = 1/2. Points representing lines with slopeare reflected to points repre-

senting lines with slope/n

E]oo Yi §1:?1 p_of
m

e
.

Figure 9: Circle Inversion and Reflection. Points repraseritnes with slopan are “inverted”to points

representing lines with slopem.

Hence the reflection shown in Fig. 8 together with the circlenversion provide

the points representing mutually orthogonal families of Ines.
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THE DUALITY AS A LINEAR TRANSFORMATION
In Homogeneous Coordinates

the triple ¢ : [a;,a,,85] are theline coordinatesf the line

which is mapped into the point? : (da,,—ag,a, + a,).

Considering the triples for ¢ and ¢ as column vectors vyields the
correlation (not to be confused with the same term used in Statistics — Irhe

language of Projective Geometry this means a linear transfonation between

line coordinates and point coordinates):

i =A , ¢ =AY

where
-Od o_ -—1/d 01_
A=100-1|-A'=| 174d 00
_11 O_ I 0 -1 O_

and d is the horizontal distance between the parallel axes
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Figure 10: Duality of Transformations

Rotations of a line about a point and translations of a point dong a line are dual.

Picture of a square (a), cube in 3-D (b) and Cube in 5-D (c) all &ving unit side.
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YA 2
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(a)
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— X 1
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YA E:(1,0,0
indicated by = = =
1
\
X1 X2

Ya _
A F.0.00,1,0)

indicated by = = =

X X2 X3 X4 X5

Figure 11: Hypercube Representation in Parallel Coordmat
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“Out of nothing | have created a strange new universe”

Bolyai 1823 .... On discovering non-Euclidean Geometry

MULTIDIMENSIONAL LINES

REPRESENTATIONS & CONSTRUCTION ALGORITHMS

A line ¢ in RV is represented by N — 1 points with two indices

i,j €112 ...,N].
There are two common ways to describe lines.

Either in terms of ad jacentvariables :

lig @ X = My + b,

lr3 @ X3 = MgX, + by

bgj @ % = mx_; + 0D

INoaN XN = MyXyop + by

27



or in terms of a single variable, thebase variablavhich can be taken a,, i.e.

. 1
lip 7 % = mMpxy + b3

. 1
lig @ X3 = “%X1+ b3

lyj @ % = mx + b

. 1
lin & XN = MiXy + biy

The N — 1 indexed points (in homogeneous coordinates) are :

in the first case
bgi = ((1-2)(1-m) + 1,0, 1-m),
and in the second case
= (-1} 1-m).

The indexingof the points is an essential part of the representation andtiis
crucially used in the subsequent algorithms. Though the inexing is often not shown

to save display space, it needs to be accessible.
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/
7 \
10
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Figure 12: Interval on a line iR°

The polygonal lines through all the points represent pointson on the line with

the heavier polygonal lines indicating the endpoints. The gints shown here rep-

resenting the line correspond to the adjacent variables pametrization. Here the

indexing, of the points representing the line, can be foundrbm the intersecting seg-

ments of the polygonal line. For example, ifﬁ_12 was shown it would lie to the right

of the X2 axis, 6_7 g lies between theX7 and X8 axes etc.
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(i=1,p; 5)

=

lik

Figure 13: Collinearity of the poinufg’j , Z_jk, i\

The three point collinearity property plays a fundamental role in the represen-
tation algorithms for higher dimensional objects. It is found by an application of
Desargues theorem of Projective Geometry . The two triangeeshown are in per-

spective with respect to the ideal point in the vertical diretion.
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512 525

Figure 14: The point_2 5 found by construction

For a line ¢ in RY the linear relation between any pair of variables can be foud
geometricalyfrom the N — 1 points representing the line. Hereé_2 5 IS constructed as
the intersection of the segments joining the coordinates dfvo points (on the line)

on the X, and X; axes.

/ (12 7
23 Las - X
/.

Figure 15: Rotation of a line about one of it’s points
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“It was recently discovered that the rings of Saturn are nuddiest airline

luggage ... that’'s why more of them are discovered every Week

DISPLAYING AIR TRAFFIC INFORMATION

o1 II®2:3

TIME X1 X2 X3

Figure 16: Path(left) and trajectory(Right) of an aircraft

The 3-D picture shows the path and position while the polygoal line in parallel
coordinates shows the position at a given time. The poink : 1 represents the linear
relation between timeT and the X;-coordinate while 1 : 2 and 2 : 3 represent the

path, i.e. the pairwise linear relation betweerx, , X, , X .
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Figure 17: Closest approach of two aircraft

The time at which this occursand their corresponding positions. On the four
parallel axes a polygonal line shows the time, value on the dxis, when the two

positions in ( X; , X, , X5 ) is attained.
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Figure 18: Two aircraft flying the same path with the sameaiglo

34

T:1
////
(4
1:2
T:1 10 4
2:3
T X1 X2

Note that the 1 : 2, 2 : 3 points indicated by boxes (these are th&s) are shared
indicating that the paths in 3-D are the same. When that occws, the leftmostT : 1
corresponds to the greater speed. Here the airplanes havedlsame velocity since

the two T : 1 points have the same horizontal position.
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of:1 oT:11
I . 2:3@
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oT:1 T X1 X2 X3 °

Figure 19: Angular deviations for assigned trajectories

A deviation of £60 degrees transforms into a lateral deviation centered abouihe
appropriate point. Here a deviation of +5 degrees in ground heading is shown when

X4 is the altitude scale.
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DISTANCE & PROXIMITY PROPERTIES

INTERSECTIONS
The pair of lines ¢, ¢ given by

g/’ /1i X = n"xl + bf,

and represented in xy-coordinates by the points

7w i—1 b
= .. i-1 _ o
éll.x 1—m|!’y_1—n’(
intersectwith /N/¢' =P &
b _ b
a=—1—>-=p,%i=2..,N
m—m

wherex,(P) = p;.

Analogous criteria exist for different parametrizations.
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Figure 20: Two lines intersecting IR° - first example

Common parameter isx;. One line, / is represented by the points@1i and the
other, ¢/ by 7y for i = 2, 3, 4, 5. The two lines intersectss the linesP”, joining 0y
and lei, intersect at the same point of thex;-axis. The polygonal line represents the

point of intersection.
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Figure 21: Two lines intersecting R - second example

Here the representation is based on consecutive adjacent ips of coordinates.
The two lines/, ¢’ are represented by the pointg; ;. ; and Zf’iﬂi = 1,2 3, 4. The

two lines intersect< the line P, joining ¢, .., and Z{7i+1, intersects thex;-axis

i, i+

—i+1i+2

at the same point as the lineP , joining joining 7, ;,, and Zi'Jrl’ iro, forall i.

The polygonal line shown represents the point of interseabin.
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“Law of Attraction of Unfortunate Events”

“Unfortunate events tend to attract others of their kind.”.................

MINIMUM DISTANCE BETWEEN TWO LINES
For the pair of lines ¢ , ¢’ previously described in terms of the base variable,
the L, distance between two points one on each of the lines is givew b
N N
Li(xg) = _ZZ‘Xi_XH: ';‘Ami [ X— 0|
i= I=
The minimum of L,(x,) occurs atanx; = a;.

The value ofx; at which the minimum Euclidean distanceL, occurs is

* ZaiAn\z
- 3oy

where the summation is only over those values ofwhere Am, # O.

a

It turns out that the minimum L, occurs very close or ata*.

For comparison the minimum L, distance occurs atx; = a*. The | Am | are
added on the bar chart (to the right of the x; axis) in the order 6, 2, 4, 3, 6 obtained
from the order of increasing a (as shown on thex;-axis). Thel where the mid-point
value of they | Am | occurs provides the correctx; = a,. Here | A, | dominates the

sum yieldingl = 4.

All joint intercepts are equal.
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N1

Figure 22: Finding; = a; minimizing thel, distance between two lines

Figure 23: Here thé&; andL, minima coincide
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Figure 24: Intersecting lines in 4-D

o

Figure 25: Non-intersection between two lines in 4-D. Haeerhinimum distance is 20 and occurs at time
=.9. Note the maximum gap on tHeaxis formed by the lines joining thés with the same subscript.

The polygonal lines representing the points where the minmirdistance occurs are shown.
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X
Ry
X

Figure 26: Non-intersection between two lines in 4-D. Haeerhinimum distance is 10 and occurs at time
= 1.6. Note the the diminishing maximum gap on fhexis formed by the lines joining théss with the
same subscript and compare with Fig. 25. The polygonal eg®senting the points where the minimum

distance occurs are shown.

=
X
X
X

Figure 27: Near intersection between two lines in 4-D. Haeerhinimum distance is 1.5 and occurs at
time = 1.8. Note the the diminished maximum gap onThaxis formed by the lines joining thés with
the same subscript. The polygonal lines representing th#pehere the minimum distance occurs are

shown.
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“Law of Inopportune Timing”

“If a fortunate event occurs at all it tends to happen a bitdoon or a bit too late”

CONFLICT DETECTION & RESOLUTION FOR AIR TRAF-

FIC CONTROL

THE BASIC ALGORITHM

tangent to safety airspace

Figure 28: Protected airspace in 3-D
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X2

intersection at t-tB
ik

intersection at t-tFik

X1

0
=X, at t=0
P 1

Figure 29: Determining the front and back scrapes

At t = 0 all particles on the vertical line x, = p3, are poised to move with the
same velocity asAC,. Particles which just scrape the circle from the front (i.e.start-
ing at x, = fiﬂ) and back (i.e. starting atx, = bff( define thelimiting trajectories

Here there is a conflict betweemAG, and AC since fQ < pJ, < bf.

Y
bik
Py x
T2
il I \p !
T ><'| 21 ><2 1:2

Figure 30: The limiting trajectories (scrapes) informatio parallel coordinates

The ordinates of the pointsP,, and P,, are the coordinates of the intersection of

B, with the conflict parallelogram.
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t=0
(k3,0)

X1

TR0

ACK>p(K3, kS

(. f5)

Figure 31: Relation Between Maneuver-Speed and Turn-Angle
Maneuver with no speed changean be done with turn anglea. Turn angles

greater or less thana require a slower or faster speed respectively thanV, |.
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RESOLUTION OF A CONFLICT SCENARIO

Figure 32: Six aircraft from scenario flying at the same wadhé

Initial positions (T = 0 sec.) and circles centered at each airaft with radius 2.5
nm (5 nm separation standard) are shown to scale with arrowsepresenting velocity

vectors.

>

Figure 33: Conflicts among the six aircraft

A conflict occurs when the separation between any two aircradfs less than 5 nm
(i.e. two circles intersect). Several conflicts occur wittm the first 5 minutes (time

elapsed in seconds is indicated in the lower left hand corngr
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260 132
250 4B T=580 659
240
3F T1518.7 597.7
230
220
210
200
28 T4398.9 502.6 0 | 10-8 814.7
190 F T=316.5 395.6
180 4F T=319.9 399
F T=285.7 389.6
170 68 T=237.9 317
1 L
160 F T1207.6) 311.3
150 3B T§200.1 271.6

AIRCRAFT 1 VERSUS THE REMAINDER

Figure 34: Conflict intervals (CI)

Using the data of conflict scenario theCl,, , k = 2,3,4,5,6 (i.e. of aircraft

2,3,4,5,6 versus 1) are plotted. Vertical scale units of dence are representing

specific paths parallel to those of aircraft 1. Times shown idicate entry and exit

from corresponding conflict parallelogram.

? =<

\

Figure 35: Conflict Parallelograms

]
i
1
i
T
i
i
1
1
1
i
i
I
.
1
i

Parallelograms are with respect to aircraft 4 where the two éshed lines (repre-

senting the “particle” lines) intersect and for circles whaose radius isdoubled
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T = 3317

Figure 36: Three pairs of tangent circles

Resolution with equal speed parallel offset maneuvers.

T = 421.%

Figure 37: Triple tangency
Scraping circles indicate that the minimum displacement fom original course is

used.
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Figure 38: Resolution in 3 dimensions

Aircraft are at different altitudes and the protected spaceis cylindrical.
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Planes, Flats & Hyperplanes

REPRESENTING HYPERPLANES WITH VERTICAL LINES
Y 2 }{3
w
5 \
/ ¥
4 .

e

yl
X1Y1 X2Ye X3 X1

1

Figure 39: InP3 planes are represented by two vertical lines and a polydireah

This generalizes to N-dimensions where hyperplanes are regsented by N-1 par-

allel lines and a palygonal line representing one of its pois.

Figure 40: Set of coplanar on a regular grid points in 3-D
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EXAMPLE — INDUSTRIAL DATA

Figure 43: R111 vs. R112 linear relation between these 2 aothar parameter
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DUALITY BETWEEN TRANSLATIONS OF A POINT ALONG A LINE AND ROTA TIONS OF

A LINE ABOUT A POINT

Y
A

Figure 44: A linel on a planertis represented by one point, in terms of the planar coordinat%and

Y, which is collinear with it's two point?_12 and£_23.
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Figure 45: Rotation of a plane about a lire Translation of a point along a line.
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REPRESENTING FLATS BY INDEXED POINTS
From Ph. D. Thesis of J. Eickemeyer @ UCLA

A p— flat in RN specified byN — p linearly independent equations of the form

p+1

Z Cikxik = G

75 i

(p+1)

can be represented by théN — p) x p points :

p+1 p+1
Myt (kzldikcika Co , Zlq )

forO<p<N

where
1. each variablex appears ontwo parallel axesX; and X';,
2. d* is the distance from the y-axis to theX; axes,
3. Permutations such as,i, . ..iq consists of unique integers inl, 2, ... ,N],
4. andiy = i, whenj <kori; =i, for j > k.
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DETECTING RANDOMLY CHOSEN COPLANAR POINTS

Figure 46: On the first 3 axes a set of randomly chosed copfariats is shown

71N

Figure 47: Coplanarity

From the points in Fig. 46 the two point representation of thdines is constructed.
The lines on these points form the pencil of lines shown in Figd7 — this occurrs only

the original points are coplanar.
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=

X1 X2 X3 X1’

Figure 48: A plane in 3-dimensions is represented by 2 points

Second point is generated by translating the, to the Y’l axis and repeating the

process.

G740 NN

Figure 49: Four points generated from the coplanar points

The points are generated with theX; (i = 1,2,3) axes.
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el

X1 X2

X3

N
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/I

X1’

X2’

X3’

Figure 50: Reading the equation of a plane from its represient

Aplane 1T : ¢;X; + CX, + C3X3 = Co. The coefficients are the distances between

adjacent (by indices) points.

Figure 51: Randomly chosed points on an approximate platal*) in 3-dimensions on left 3 axes
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|

X1 X2 X3 X

Figure 52: Approximate coplanarity obtained using the fsogfown in Fig. 51.

X1 X2 X3 X1’

Figure 53: The point clusters indicating the approximasspl— from the points shown in Fig. 51.
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X1 X2 X3

Figure 54: Detection of several approximate planes (slabs)

Starting from a set of points, represented by polygonal lins, lines are formed.

No pattern is seen since points are not from a single slab.
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'J.1."f'£11‘:1iqliml-"'.i')l!j.3:‘:1“1}'1*111 IR 1 .12 G
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: 1
1
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Figure 55: Detecting several slabs from randomly chosentgoi
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A histogram giving the number of intersections per point.

¥

X1 X2 X3

Figure 56: Original points belonged to 3 slabs

Histogram is queried for points with more than 2 hits.

HIGHER DIMENSIONAL EXAMPLES

¥

Figure 57: Points (O-flats) on an approximate hyperplanedm@&nsions
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Figure 58: Portions of Lines (1-flats) formed from the prexaoints

No “structure” is evident
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Figure 59: Portions of planes (2-flats) formed from the prasilines

Again no pattern is seen.
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Figure 60: Portions of 3-Flats formed from the previous &fla

No apparent “structure”

Y
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SuE A
j

X1 X2 X3 X4 X5 X6

Figure 61: Portions of 4-Flats formed from the previous &fla

Pencil of lines showing that the original points are very neato a hyperplane

(5-Flat) in 6-dimensions.
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Figure 62: Points representing the hyperplanBin

Repeating the process in terms of the auxiliary axeXf , 1 =12,...,6yields the
points representing the hyperplane. As in the 3-D example #adistance between ad-

jacent by index pair of points provides the coefficients of tle hyperplanes equation.
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X1 X2 X3 X4 X5

Figure 63: Detecting points belonging to several slabsih 5-

Portions of 4-flats formed from original set of 5-D points.
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Figure 64: Number of intersections per position
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Figure 65: Two “hits” with more than 1 intersection. Pointe antwo hyperplanes
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MORE ADVANCED DATAMINING

Visual Data Mining

Selected Examples — an effort will be made to match the audiee’s interests

A Geometric Classifier

Classification is a basic task in data analysis and pattern @gnition and an al-
gorithm accomplishing it is called a Classifier. The input isa datasetP and a
designated subseB. The output is a characterization, that is a set of conditios
or rules, to distinguish elements ofS from all other members of P. With paral-

lel coordinates a dataseP with N variables is transformed into a set of points in
N-dimensional space. In this setting, the designated sulis8 can be described by
means of a hypersurface which encloses just the points &f In practical situations

the strict enclosure requirement is dropped and some pointef S may be omitted
(“false negatives”), and some points oP — S are allowed (“false positives”) in the
hypersurface. The description of such a hypersurface is edualent to the rule for

identifying, within some acceptable error, the elements o8 This is the geometrical

basis for the classifier presented here. The algorithm accopifishing this entails:
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use of an efficient “wrapping” algorithm to enclose the poins of Sin a hyper-
surface S; containing S and typically also some points of°P —S so SC S, of

course such ars, is not unique.

the points in (P— S NS, are isolated and the wrapping algorithm is applied to

enclose them, and usually also a few points &, producing a new hypersur-

faceS, with SO (§, - S,),

the points in Snot included in S, — S, are next marked for input to the wrap-
ping algorithm, a new hypersurfaces; is produced containing these points as

well as some other points irP — (S, — S,) resulting in SC (S, —-S,) US;,

the process is repeated alternatively producing upper andawer containment
bounds for S, termination occurs when an error criterion (which can be user
specified) is satisfied or when convergence is not achieved.

It can and does happen that the process does not converge whéndoes not
contain sufficient information to characterize S. It may also happen thatSis so
“porous” (i.e. sponge-like) that an inordinate number of iterations are required.
On convergence the output is a description of the hypersurfee containing S the
rule is given in terms of the minimum number of variables nee@d to describeS

without loss of information Unlike other methods, like the Principal Component
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Analysis (PCA), the classifier discards only the redundant ariables. It is impor-
tant to clarify this point. A subset Sof a multidimensional setP is not necessarily of
the same dimensionality a$. So the classifier finds the dimensionality o&in terms
of the original variables and retains only those describingS. That is, it finds the
basisin the mathematical sense of the smallest subspace contaigiS, or more pre-
cisely the current approximation for it. This basis is the mnimal setM; of variables
needed to describeS. We call this dimensionality selection to distinguish it fom
dimensionality reductionwhich is usually donewith loss of information. Retaining
the original variables is important in the applications where the domain experts
have developed intuition about the variables they measureThe classifier presents
M, ordered according to a criterion which optimizes the claribf separation This
may be appreciated with the example provided in the attachedigure, in addition.
The implementation allows the user to select a subset of thevailable variables
and restrict the rule generation to these variables. In cerin applications, as in
process control, not all variables can be controlled and hee it would be useful
to have a rule involving such variables that are “accessiblein a meaningful way.

There are also two options available :

either minimize the number of variables used in the rule, or
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minimize the number of steps, in terms of the unions and (relave) comple-

ments, in the rule.

The classifier provides:

an approximate convex-hull boundary for each cavity is obt&ned,

utilizing properties of the representation of multidimensional objects in

coords, a very low polynomial worst case complexity o®(N?|P|?) in the num-
ber of variables N and dataset sizgP| is obtained; it is worth contrasting this
with the often unknown, or unstated, or very high (even expoential) complex-

ity of other classifiers,

an intriguing prospect, due to the low complexity, is that tre rule can be de-

rived in near real-time making the classifier adaptive to chaging conditions,

the minimal subset of variables needed for classification ®und,

the rule is given explicitly in terms of conditions on these ariables, i.e. in-
cluded and excluded intervals, and provides “a picture” shaving the complex
distributions with regions where there is data and “holes” with no data; that

can provide significant insights to the domain experts,
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ParallAX - I:/Program Files/DevStudio/MyProjects/parallax/dat/MONEKEY1.DAT

File | Amows  CQuery Wars Types wlew Scales Window abalysis  Classifiers  sEtup  Help
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Figure 66: The monkey dataset showing the separation ahigwtwo of the 9 out 32 parameters obtained

from the dimensionality selection.

The dataset chosen to illustrate has two classes to be disgumshed consisting of
pulses measured on two types of neurons in a monkey'’s brain gor thing!). There

are 600 samples with 32 variables. Remarkably, convergenagas obtained and
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required only 9 of the 32 parameters. The resulting orderingshows a striking sep-
aration. In the attached figure the first pair of variables x;,x, originally given is

plotted showing no separation. In the adjoining plot the bespair X,4,X,4, as chosen
by the classifier’'s ordering, shows remarkable separation.The result shows that
the data consists of two “banana-like? clusters in 9-D one (the complement in this
case) enclosing the other (class for which the rule was fouidNote that the clas-
sifier can actually describe highly complex regions. It can bild and “carve” the

cavity shown. It is no wonder that separation attempts in tems of hyperplanes or
nearest-neighbor techniques can fail badly on such datasetThe rule gave an error

of 3.92 % using train-and-test with 66 % of the data for training).

Lperhaps the monkey was dreaming about bananas duringtfisl xperiment ...
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CURVES

point-curve— line-curve- envelope of it's tangents.

Conics map into conics in six different ways.

Figure 67: Ellipses always map into hyperbolas. Each astymjs the image of a point where the tangent

has slope 1.

Figure 68: A parabola whose ideal point does not have doeatiith slope lalways transforms to a
hyperbola with a vertical assymptote. The other assymmdtee image of the point where the parabola

has tangent with slope 1.
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Figure 69: A parabola whose ideal point has direction witipsl1 transforms to a parabola - self-dual.

Figure 70: Hyperbola to ellipse — dual of case shown in Fig. 67
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Figure 71: Hyperbola to parabola. This occurs when one oa#isymptotes has slope 1 — dual of case
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shown in Fig. 68

Figure 72: Hyperbola to hyperpola — self-dual case.
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Algebraic Curves

From M.Sc. Thesis Tsur Itshakian, CS Dept. Tel Aviv Univ. 20Q

Degreen— n(n— 1) and less when there are singularities. An efficient algoritm
was found which gives the exact equation of the image even fanplicitly defined
polynomials. Here a mappingpoint-curve — point-curveis used which overcomes

the over-plotting problem.

X3 X,

Figure 73: A 3rd degree curve with singularity maps to anoBne degree curve.
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Figure 74: A 3rd degree curve with different singularity reamto a 4th degree curve.
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Generalized conics — Gconics

Like conics, gconics map into gconics in 6 different ways

Figure 75: Gconics - three types of sections: (left) bounztetex sebc, (right) unbounded convex set

ucand (middle) hyperbola-likgh regions.
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Figure 76: Generalization of Fig. 67 beto gh.
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Figure 77:ucto uc— self-dual

Figure 78:ucto gh
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Figure 79:ghto bc.

Figure 80:ghto gh— self-dual
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Further Dualities
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Figure 81: Cusps are transformed into inflection points
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Figure 82: DualityCusps < Inflection Points
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Operational Dualities and Convexity Algorithms

Figure 83: Interior and boundary points of bounded convéx se

Figure 84: Convex-Hull construction

The boundary of the gh of a set of points corresponds to it's CONVEX-HULL.

80



>

A TZR
TR

o

R
%
o%es
03
o&@»
%%
%%
<%

B RIS
RS
L]
S\ s 0ot
SR IKIRIKHKIK X RQKIKKA
B R 1/}
RIS /1
IS

<J
f

3RS
LXK

Sosotatetetetetes
SaSoteteds

0950588
3L

<X

;;r-\\
SRTI
RRIKS
0%
KL
XSRS
RS
S5 %e%e%!
XX
RRRIKES
.:‘:.‘
RS
%
%
ool
ool
%%
o2
S5
LR
otototetetess
RIS
LK
R

00000500 XSRS ISK KR IR KK X X
o35 e
Mg SIS K KXt
LS

X

7

%%

ir imagés.

Convex Union dfcs corresponds to the Outer Union of the

Figure 85

X1

Dual.

Ion are

Inner Intersection and Intersecti

Figure 86

81



LINE NEIGHBORHOODS

A Topologoly for proximity of flats

How can measure “closeness” between lines and more generativeen planes?

N
E
Z

Figure 87: A family of line transformations
Fixing r and varying O defines a family of lines tangent to the circle whose paral-
lel coordinate representation is a hyperbola while fixing® and varying r produces

vertical lines.
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Figure 88: Line neighborhood in orthogonal(doesn’t workyl gparallel coordinates. The unbounded

region (on the right) is replaced by a bounded one.

Figure 89: Several line neighborhoods. Here the transfdmesghborhoods are distinct.
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HYPERSURFACES
Y

X1 X2 X3 X4 X5

Figure 90: A sphere iR centered at the origin (0,0,0,0,0).

Interior Point Construction Algorithm
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-20}

X1 X2 X3 X4 X5 X6

Figure 91: The polygonal line represents the point foundriat to the Hyperellipsoid in 6-D. The same

algorithm applies to any piecewise convex hypersurface.
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Application to Process Control and Intelligent Instrumentation

x1 x2 xd x4 x5 x6 x7 x& x6 xioxiixizxisxia xisxis xi7 xisxis xzo

Figure 92: Finding a Feasible Point — state of the system a Rnocess Represented by the Hypersurface.
A process being a relation among several variables can bbesemted by a hypersurface. A feasible state
of the system involved corresponds to an interior point @f liypersurface — since all the constraints
are satisfied simultaneously. The intermediate envelopdsith sides of the polygonal line indicate the
local curvature of the hypersurface in a neighborhood ofpihiat. Notice that her&X;5, X, , X;5 are

the critical variablessince the available ranges involved — for maintaining cantrare the narrowest.
The display shown can serve as the systems intrumentatism \&lue of a variable is fixed the display

provides theavailable rangefor the remaining variables.
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DETECTING CONVEX POLYTOPES

Ph.D. thesis A. Chatterjee @ USC

Figure 93: Adjacency relationship of the 2-faces of the ex8-polytope in Parallel Coordinates
The 123 representation of the 6 2-flats containing the 6 8sfa¢the 3-polytope is shown. The 3-polytope

in this example being convex, all the adjacency relatiqmshre represented by line segments.
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Figure 94: Adjacency relationship of the 2-faces of the nonvex 3-polytope in Parallel Coordinates

The 123 representation of the 6 2-flats containing the 6 8sfatthe 3-polytope is shown. The 3-polytope
in this example being non-convex has some adjacency retdtips (74,3 and 7T 3, T3 AN T 5s, T3

andﬁ‘l"zg) which are represented by lines instead of line-segments.
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Representing surfaces by their tangent planes — see also meection.

Figure 95: A Sphere in 3-D represented by its tangent plapests). The hyperbolic pattern of the

envelopes indicates that the object@mvex

The conjecture is that with the tangent plane representa&iimvex objects in N-D are represented by

generalized hyperbolas — see gconics.
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REPRESENTING SURFACES IN TERMS OF THEIR

TANGENT PLANES

Chao-Kuei Hung @ USC

DEVELOPABLE SURFACES — QUADRICS

CONICS — CONICS

Figure 96: Representation is a pair of ellipses

Cone vertex is (0,0,1), axis vector is (6,8,7), circle ceigat (6,8,8), radius is 5.
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Figure 97: Representation is a pair of parabolas

Cone vertex is (0,0,1), axis vector is (-0.6,0.8,5), ciadater is at (-0.6,0.8,6), radius is 7.

Figure 98: Representation is a pair of hyperbolas

Cone vertex is at (0,0,1), axis vector is (6,8,7), circleteers at (6,8,8), radius is 1.
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Figure 99: Representation is a pair of hyperbolas

Representation of cylinder with axis defined by the poini2,8), (2,3,3), radius is 5.

Ruled Surfaces

QOALH 7]
ST
R

Figure 100: Hyperbolic paraboloid - Sampling along ruliggges meshes of straight lines — self-dual.
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VISUAL & COMPUTATIONAL DECISION SUPPORT SYSTEMS

Finally we illustrate the methodology’s ability to model multivariate relations in
terms of hypersurfaces — just as we model a relation betweerwb variables by a
planar region. Then by using the interior point algorithm, with the model we can
do trade-off analyses, discover sensitivities, understahnthe impact of constraints,
and in some cases do optimization. For this purpose we shalsa a dataset consisting
of the outputs of various economic sectors and other expendres of a particular
(and real) country. It consists of the monetary values over everal years for the
Agricultural, Fishing, and Mining sector outputs, Manufacturing and Construction
industries, together with Government, Miscellaneous speating and resulting GNP;
eight variables altogether. We will not take up the full ramifications of constructing
a model from data. Rather, we want to illustrate how ||-coords may be used as a
modeling tool. Using the Least Squares technique we “fit” a faction to this dataset
and we are not concerned at this stage whether the choice ofration is a “good”
choice or not. The function we obtained bounds a region ifRe and is represented

by the upper and lower curves shown in Fig. 101.

The picture is in effect a simplisticvisual model of the country’s economy, incor-

porating it's capabilities, limitations and interelation ships among the sectors etc. A
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Figure 101: Model of a country’s economy

point interior to the region, satisfies all the constraints gmultaneously, and there-
fore represents (i.e. the 8-tuple of values) Beasible economic policfor that country.
Using the interior point algorithm we can construct such ponts. It can be done in-
teractively by sequentially choosing values of the varialeds and we see the result
of one such choice in Fig. 101. Once a value of the first variablis chosen (in this

case the agricultural output) within it's range, the dimengonality of the region is
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reduced by one. In fact, the upper and lower curves between th2nd and 3rd
axes correspond to the resulting 7-dimensional hypersurf@e and show theavail-
ablerange of the second variable (Fishing) reduced by the consaimt. In fact, this
can be seen (but not shown here) for the rest of the variablesl'hat is, due to the
relationship between the 8 variables, a constraint on one dhem impacts all the
remaining ones and restricts their range. The display allows us to experiment and
actually see the impact of such decisions “downstream”. Bynteractively varying
the chosen value for the first variable we found, that it not pssible to have a policy

that favors Agriculture without also favoring Fishing and vice versa.

Y
547 52.25 572.8 1284

=N AN

S~
T

V]
L

358.8 1977 4859

W
o
n
K H

|

291.4 -3.274 264.1 452 216.2 961.8 2676
Ag Fsh Min Man Conc Gov Oth Gnp

Figure 102: Competition for labor between the gighing & Minisectors — compare with previous figure



Proceeding, a very high value from the available range of Fling is chosen and
it corresponds to very low values of the Mining sector. By cotrast in Fig. 101 we
see that a low value in Fishing yields high values for the Mimg sector. This inverse
correlation was examined and it was found that the country inquestion has a large
number of migrating semi-skilled workers. When the fishing industry is doing wdl
most of them are attracted to it leaving few available to workin the mines and vice
versa. The comparison between the two figures shows tleempetition for the same
resourcebetween Mining and Fishing. It is especially instructive todiscover this

interactively. The construction of the interior point proc eeds in the same way.

A theorem guarantees that a polygonal line which is in-betwen all the inter-
mediate curves/envelopes represents an interior point ohe hypersurface and all
interior points can be found in this way. If the polygonal line is tangent to anyone of
the intermediate curves then it represents éoundary point while if it crosses any-
one of the intermediate curves it represents aexterior point The later enables us to
see, in an application, the first variable for which the congtuction failed and what is
needed to make corrections. By varying the choice of value evthe available range
of the variable interactively, sensitive regions (where sl changes produce large

changes downstream) and other properties of the model can beasily discovered.
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Once the construction of a point is completed it is possibleot vary the values of
each variable and see how this effects the remaining variaés. So one can dirade-
off analysisin this way and provide a powerful tool for, Decision Support Process
Control and other applications. As new data becomes availde the model can be

updated with the Decision Making being based on the most rec¢ information.
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APPENDIX A - BIBLIOGRAPHY ON

MULTIVARIATE MULTI-DIMENSIONAL

VISUALIZATION
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Milestones in the history of thematic cartography, statisical graph-
ics, and data visualization — M.Friendly and D. J. Denis 2001

http://www.math.yorku.ca/SCS/Gallery/milestone/
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Visualization of domain and concept descriptions — www-

ai.ijs.si/DunjaMladenic/papers/abstract/ascai92.htrh

Directions in Spatial Spectroscopy —

www.math.yorku.ca/Who/Faculty/Monette/pub/s-99a

Welcome to Starlight - Remote Sensing Group Project —

www.pnl.gov/remote/projects/starlight/theory.html

Breaking the Barriers of 3D Visualization -

www.sv.vt.edu/future/muri/white/white.html

Extruded Parallel Coordinates — www.cg.tuwien.ac.at/ ru-

bik/extruded.htm

Links to my Master’s Thesis —
www.ifs.tuwien.ac.at/ rkosara/thesislinks.html (In this site there

a particularly well organized literature review)

Hierarchical Parallel Coordinates —

avis.wpi.edu/ matt/courses/parcoord

Parallel Coordinates for Power Stability —

www.caip.rutgers.edu/ peskin/epriRpt/PowerStabilityhtml
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Thermodynamic Cycle Data - www.caip.rutgers.edu/ pe-
skin/epriRpt/ThermoCycle.html

Parallel Coordinates in MATHLAB -

www.math.tau.ac.il/ nin/learn98/Nauman/parplot.html

The PARCOVI Project-The Parallel Coordinates Visualizer —
atkosoft.com/statparcovi.htm

Visualization of a THERMOPOT —
www.inf.ethz.ch/personal/lindenme/thermoprot

DNA VISUAL AND ANALYTIC DATA MINING -
www.cs.uml.edu/ phoffman/dnal

Kohonen neural network visualizations —
www.anvilinformatics.com/portfolio/yeast/yeaste.htrh

A Visual Approach for Monitoring Logs —
www.usenix.org/publications/library/proceedings/li®98

Visualizing Large Datasets — wwwl.math.uni-augsburg.deftn-

win/AntonyArts/visualising.html

Visualisation Techniques for Statistics — wwwl.math.uni-

augsburg.de/  unwin/AntonyArts/VisTechNTTS.html  (Excelent
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site)

Exploratory Data Visualiser — www.1.bell-

labs.com/user/gwills/EDVguide/guide/guide.html

Nonlinear Feature Space Transformations — www.cs.unc.edwcog-

gins/Research/Nonlinear/NonlinearPaper.html

AN INVESTIGATION OF FUNDAMENTAL FREQUENCIES OF

LAMINATED CIRCULAR CYLINDERS— www.knowledgestor.com

Evaluation of Marine Data by visual means —www.egd.igd.fhgle

Manual Endmember Selection Tool —

cires.colorado.edu/cses/research

Vizcraft - Multidimensional Visualization of Aircraft Des ign — cs-

grad.cs.vt.edu/ agoel/vizcraft.ntml

Parallel Coordinates Visualization Applet — CS-

grad.cs.vt.edu/ agoel/parallel-coordinates

Public Policy Analysis —www.ppm.ohio-state.edu/ppm/re=arch-

groups/pubpolan.html

ACM Digital Library Reconnaissance sup-
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port for juggling multiple processing

www.acm.org/pubs/citations/proceedings/uist/19242627-lunzer
Information Visualization: Data Types

www.cs.umd.edu/hcil/pubs/presentations/eyeshaveglti013.htm

(This is an important site for InfoVis)
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