
Rudolf Kruse Neural Networks 1

Neural Networks

Prof. Dr. Rudolf Kruse

Computational Intelligence Group
Faculty for Computer Science

kruse@iws.cs.uni-magdeburg.de

Rudolf Kruse Neural Networks 2

Supervised Learning / Support Vector Machines

Supervised Learning, Diagnosis System for Diseases

Rudolf Kruse Neural Networks 3

Training data: Expression profiles of patients with known diagnosis

The known diagnosis gives us a structure within the data, which we want to generalize
for future data.

Learning/Training: Derive a decision rule from the training data which separates
the two classes.

Ability for generalization: How useful is the decision rule when it comes to dia-
gnosing patients in the future?

Aim: Find a decision rule with high ability for generalization!

Learning from Examples

Rudolf Kruse Neural Networks 4

Given: X = {xi, yi}ni=1, training data of patients with known diagnosis

consists of:
xi ∈ Rg (points, expression profiles)

yi ∈ {+1,−1} (classes, 2 kinds of cancer)

Decision function:
fX : Rg → {+1,−1}

diagnosis = fX(new patient)

Underfitting / Overfitting

Rudolf Kruse Neural Networks 5

Linear Separation of Training Data

Rudolf Kruse Neural Networks 6

Begin with linear separation and increase the complexity in a second
step with a kernel function.

A separating hyperplane is defined by

• a normal vector w and
• an offset b:

Hyperplane H = {x|〈w, x〉 + b = 0}

〈·, ·〉 is called the inner product
or scalar product.

Predicting the class of a new point

Rudolf Kruse Neural Networks 7

Training: Choose w and b in such a way that the hyperplane
separates the training data.

Prediction: Which side of the hyperplane
is the new point located on?

Points on the side that the normal vector
points at are diagnosed as POSITIVE.

Points on the other side are diagnosed
as NEGATIVE.

Motivation

Rudolf Kruse Neural Networks 8

Origin in Statistical Learning Theory; class of optimal classifiers

Core problem of Statistical Learning Theory: Ability for generalization.
When does a low training error lead to a low real error?

Binary Class Problem:
Classification ≡ mapping function f(x, u) : x → y ∈ {+1,−1}
x: sample from one of the two classes
u: parameter vector of the classifier

Learning sample with l observations x1, x2, . . . , xl
along with their class affiliation y1, y2, . . . , yl
→ the empirical risk (error rate) for a given training dataset:

Remp(u) =
1

2l

l∑

i=1
|yi − f(xi, u)| ∈ [0, 1]

A lot of classifiers do minimize the empirical risk, e.g. Neural Networks.

Motivation

Rudolf Kruse Neural Networks 9

Expected value of classification error (expected risk):

R(u) = E{Rtest(u)} = E{1
2
|y − f(x, u)|} =

∫ 1

2
|y − f(x, u)|p(x, y) dxdy

p(x, y): Distribution density of all possible samples x along with their class affiliation
y (Can’t evaluate this expression directly as p(x, y) is not available.)

Optimal sample classification:
Search for deterministic mapping function f(x, u) : x → y ∈ {+1,−1} that minimizes
the expected risk.

Core question of sample classification:

How close do we get to the real error after we saw l training samples? How
well can we estimate the real risk R(u) from the empirical risk Remp(u)?
(Structural Risk Minimization instead of Empirical Risk Minimization)

The answer is given by Learning Theory of Vapnik-Chervonenkis → SVMs

SVMs for linear separable classes

Rudolf Kruse Neural Networks 10

Previous solution:
• General hyperplane: wx + b = 0

• Classification: sgn(wx + b)

• Training, e.g. by perceptron-algorithm
(iterative learning, correction after every misclassification; no unique solution)

Which hyperplane is the best - and why?

Rudolf Kruse Neural Networks 11

No exact cut, but a . . .

Rudolf Kruse Neural Networks 12

Separate the training data with maximal separation margin

Rudolf Kruse Neural Networks 13

Separate the training data with maximal separation margin

Rudolf Kruse Neural Networks 14

Try linear separation, but accept errors:

Penalty for errors: Distance to hyperplane times error weight C

SVMs for linearly separable classes

Rudolf Kruse Neural Networks 15

• With SVMs we are searching for a separating hyperplane with maximal margin.
Optimum: The hyperplane with the highest 2δ of all possible separating hyper-
planes.

• This is intuitively meaningful
(At constant intra-class scattering, the confidence of right classification is growing
with increasing inter-class distance)

• SVMs are theoretically justified by Statistical Learning Theory.

SVMs for linearly separable classes

Rudolf Kruse Neural Networks 16

Large-Margin Classifier: Separation line 2 is better than 1

SVMs for linearly separable classes

Rudolf Kruse Neural Networks 17

!

"

!
!

!

!

!

!"x1

!"

#"

#"x2
#

#

#

#
#

wx + b = +1

wx + b = 0

wx + b = −1

!δ

!δ

Training samples are classified
correctly, if:

yi(wxi + b) > 0
Invariance of this expression to-
wards a positive scaling leads
to:

yi(wxi + b) ≥ 1
with canonical hyperplanes:{

wxi + b = +1; (class with yi = +1)
wxi + b = −1; (class with yi = −1)

The distance between the canonical hyperplanes results from projecting x1−x2 to the
unit length normal vector w

||w||:

2δ =
2

||w||; d.h. δ =
1

||w||
→ maximizing δ ≡ minimizing ||w||2

SVMs for linearly separable classes

Rudolf Kruse Neural Networks 18

Optimal separating plane by minimizing a quadratic function to linear constraints:

Primal Optimization Problem:
minimize: J(w, b) = 1

2||w||
2

to the constraints ∀i [yi(wxi + b) ≥ 1], i = 1, 2, . . . , l

Introducing a Lagrange-Function:

L(w, b,α) =
1

2
||w||2 −

l∑

i=1
αi[yi(wxi + b)− 1]; αi ≥ 0

leads to the dual problem :
maximize L(w, b,α) with respect to α, under the constraints:

∂L(w,b,α)
∂w = 0 =⇒ w =

l∑

i=1
αiyixi

∂L(w,b,α)
∂b = 0 =⇒

l∑

i=1
αiyi = 0

SVMs for linearly separable classes

Rudolf Kruse Neural Networks 19

Insert this terms in L(w, b,α):

L(w, b,α) =
1

2
||w||2 −

l∑

i=1
αi[yi(wxi + b)− 1]

=
1

2
w · w − w ·

l∑

i=1
αiyixi − b ·

l∑

i=1
αiyi +

l∑

i=1
αi

=
1

2
w · w − w · w +

l∑

i=1
αi

= −1

2
w · w +

l∑

i=1
αi

= −1

2

l∑

i=1

l∑

j=1
yiyjαiαjxixj +

l∑

i=1
αi

SVMs for linearly separable classes

Rudolf Kruse Neural Networks 20

Dual Optimization Problem:

maximize: L′(α) =
l∑

i=1
αi −

1

2

l∑

i=1

l∑

j=1
yiyjαiαjxixj

to the constraints αi ≥ 0 and
l∑

i=1
yiαi = 0

This optimization problem can be solved numerically with the help of standard qua-
dratic programming techniques.

SVMs for linearly separable classes

Rudolf Kruse Neural Networks 21

Solution of the optimization problem:

w∗ =
l∑

i=1
αiyixi =

∑

xi∈SV
αiyixi

b∗ = −1

2
· w∗ · (xp + xm)

for arbitrary xp ∈ SV, yp = +1, und xm ∈ SV, ym = −1

where
SV = {xi | αi > 0, i = 1, 2, . . . , l}

is the set of all support vectors.

Classification rule:
sgn(w∗x + b∗) = sgn[(

∑

xi∈SV
αiyixi)x + b∗]

The classification only depends on the support vectors!

SVMs for linearly separable classes

Rudolf Kruse Neural Networks 22

Example: Support Vectors

SVMs for linearly separable classes

Rudolf Kruse Neural Networks 23

Example: class +1 contains x1 = (0, 0) and x2 = (1, 0);
class -1 contains x3 = (2, 0) and x4 = (0, 2)

!

"

$ $ %

%

1 2

1

2

$
$

$
$

$
$

$
$

$
$

$
$

$
$

$
$

$
$

$
$

$
$

$
$

$
$

$
$

SVMs for linearly separable classes

Rudolf Kruse Neural Networks 24

The Dual Optimization Problem is:

maximize: L′(α) = (α1 + α2 + α3 + α4)− 1
2(α

2
2 − 4α2α3 + 4α23 + 4α24)

to the constraints αi ≥ 0 and α1 + α2 − α3 − α4 = 0

Solution: α1 = 0, α2 = 1, α3 =
3
4, α4 =

1
4

SV = {(1, 0), (2, 0), (0, 2)}
w∗ = 1 · (1, 0)− 3

4 · (2, 0)−
1
4 · (0, 2) = (−1

2,−
1
2)

b∗ = −1
2 · (−

1
2,−

1
2) · ((1, 0) + (2, 0)) = 3

4

Optimal separation line: x + y = 3
2

SVMs for linearly separable classes

Rudolf Kruse Neural Networks 25

Observations:
• For the Support Vectors holds: αi > 0
• For all training samples outside the margin holds: αi = 0
• Support Vectors form a sparse representation of the sample; They are sufficient
for classification.

• The solution is the global optima and unique
• The optimization procedure only requires scalar products xixj

SVMs for non-linearly separable classes

Rudolf Kruse Neural Networks 26

In this example there is no separating line such as ∀i [yi(wxi + b) ≥ 1]

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

All three cases can be interpreted
as: yi(wxi + b) ≥ 1− ξi
A) ξi = 0
B) 0 < ξi ≤ 1
C) ξi > 1

Three possible cases:
A) Vectors beyond the margin, which

are correctly classified, i.e.
yi(wxi + b) ≥ 1

B) Vectors within the margin, which are
correctly classified, i.e.

0 ≤ yi(wxi + b) < 1
C) Vectors that are not correctly classi-

fied, i.e.
yi(wxi + b) < 0

SVMs for non-linearly separable classes

Rudolf Kruse Neural Networks 27

Motivation for generalization:
• Previous approach gives no solution for classes that are non-lin. separable.
• Improvement of the generalization on outliers within the margin

Soft-Margin SVM: Introduce “slack”-Variables

!

"

!
!

!

!

!

!"

!"

!"ξi

#"

#"
#

#

#

#
#

#" ξj

SVMs for non-linearly separable classes

Rudolf Kruse Neural Networks 28

Penalty for outliers via “slack”-Variables

Primale Optimization Problem:

minimize: J(w, b, ξ) = 1
2||w||

2 + C
l∑

i=1
ξi

to the constraints ∀i [yi(wxi + b) ≥ 1− ξi, ξi ≥ 0]

Dual Optimization Problem:

maximize: L′(α) =
l∑

i=1
αi −

1

2

l∑

i=1

l∑

j=1
yiyjαiαjxixj

to the constraints 0 ≤ αi ≤ C and
l∑

i=1
yiαi = 0

(Neither slack-Variables nor Lagrange-Multiplier occur in the
dual optimization problem.)

The only difference compared to the linear separable case: Constant C in the constraints.

SVMs for non-linearly separable classes

Rudolf Kruse Neural Networks 29

Solution of the optimization problem:

w∗ =
l∑

i=1
αiyixi =

∑

xi∈SV
αiyixi

b∗ = yk(1− ξk)− w∗xk; k = argmax
i

αi
where

SV = {xi | αi > 0, i = 1, 2, . . . , l}

describes the set of all Support Vectors.

SVMs for non-linearly separable classes

Rudolf Kruse Neural Networks 30

Example: non-linearly
separable classes

Non-linear SVMs

Rudolf Kruse Neural Networks 31

Non-linear class boundaries → low precision

Example: Transformation Ψ(x) = (x, x2) → C1 and C2 linearly separable

& & & & & &' ' ' =⇒

& &

& &
& &' ''

Idea:
Transformation of attributes x ∈ -n in a higher dimensional space -m, m > n by

Ψ : -n −→ -m

and search for an optimal linear separating hyperplane in this space.

Transformation Ψ increases linear separability.

Separating hyperplane in -m ≡ non-linear separating plane in -n

Non-linear SVMs

Rudolf Kruse Neural Networks 32

Problem: High dimensionality of the attribute space -m

E.g. Polynomes of p-th degree over -n → -m, m = O(np)

Trick with kernel function:

Originally in -n: only scalar products xixj required
new in -m: only scalar products Ψ(xi)Ψ(xj) required

Solution
No need to compute Ψ(xi)Ψ(xj), but express them at reduced complexity with the
kernel function

K(xi, xj) = Ψ(xi)Ψ(xj)

Non-linear SVMs

Rudolf Kruse Neural Networks 33

Example: For the transformation Ψ : -2 −→ -6

Ψ((y1, y2)) = (y21, y
2
2,

√
2y1,

√
2y2,

√
2y1y2, 1)

the kernel function computes

K(xi, xj) = (xixj + 1)2

= ((yi1, yi2) · (yj1, yj2) + 1)2

= (yi1yj1 + yi2yj2 + 1)2

= (y2i1, y
2
i2,

√
2yi1,

√
2yi2,

√
2yi1yi2, 1)

·(y2j1, y2j2,
√
2yj1,

√
2yj2,

√
2yj1yj2, 1)

= Ψ(xi)Ψ(xj)
the scalar product in the new attribute space -6

Non-linear SVMs

Rudolf Kruse Neural Networks 34

Example: Ψ : -2 −→ -3

Ψ((y1, y2)) = (y21,
√
2y1y2, y

2
2)

The kernel function
K(xi, xj) = (xixj)

2 = Ψ(xi)Ψ(xj)
computes the scalar product in the new attribute space -3. It is possible to compute
the scalar product of Ψ(xi) and Ψ(xj) without applying the function Ψ.

Nonlinear SVMs

Rudolf Kruse Neural Networks 35

Commonly used kernel functions:

Polynomial-Kernel: K(xi, xj) = (xixj)
d

Gauss-Kernel: K(xi, xj) = e−
||xi−xj||2

c

Sigmoid-Kernel: K(xi, xj) = tanh(β1xixj + β2)

Linear combination of valid kernels → new kernel functions

We do not need to know what the new attribute space -m looks like. The only thing
we need is the kernel function as a measure for similarity.

Non-linear SVMs

Rudolf Kruse Neural Networks 36

Example: Gauss-Kernel (c = 1). The Support Vectors are tagged by an extra circle.

Non-linear SVMs

Rudolf Kruse Neural Networks 37

Example: Gauss-Kernel (c = 1) for Soft-Margin SVM.

Final Remarks

Rudolf Kruse Neural Networks 38

Advantages of SVMs:
• According to current knowledge SVMs yield very good classification results; in
some tasks they are considered to be the top-performer.

• Sparse representation of the solution by Support Vectors
• Easily practicable: few parameters, no need for a-priori-knowledge
• Geometrically intuitive operation
• Theoretical statements about results: global optima, ability for generalization

Disadvantages of SVMs
• Learning process is slow and in need of intense memory
• “Tuning SVMs remains a black art: selecting a specific kernel and parameters is
usually done in a try-and-see manner”

Final Remarks

Rudolf Kruse Neural Networks 39

• List of SVM-implementations at
http://www.kernel-machines.org/software

• The most common one is LIBSVM:
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

