_ | \. |EURO

Neural Networks EZY

o
Prof. Dr. Rudolf Kruse f’

Computational Intelligence Group
Faculty for Computer Science

kruse@iws.cs.uni-magdeburg.de

Rudolf Kruse Neural Networks 1

Recurrent Neural Networks

Rudolf Kruse Neural Networks

N}

Recurrent Networks: Cooling Law

A body of temperature ¥ that is placed into an environment with temperature 4.

The cooling /heating of the body can be described by Newton’s cooling law:

d

= 0= k() —).

Exact analytical solution:
D(t) = Vg + (D — Dg)eFI0)
Approximate solution with Euler-Cauchy polygon courses:
01 = 9(t1) = 9(tg) + D(tg) At = ¥y — k(9y — 94)At.
09 = V(tg) = I(t1) + I(t])At = 9] — k(9] — 94)At.

(General recursive formula:

9 = 0(t;) = I(ti—1) + (1) At = ;1 — k(01 — U4) At

Rudolf Kruse Neural Networks

Recurrent Networks: Cooling Law

Euler—Cauchy polygon courses for different step widths:

190_‘19 At =4

t

0 5 10 15 20

9047

At =2

The thin curve is the exact analytical solution.

Recurrent neural network:

94 t
0 5 10 15 20
-

Rudolf Kruse

Neural Networks

947

VA

At =1

t

0

()

5 10 15 20

Recurrent Networks: Cooling Law

More formal derivation of the recursive formula:

Replace differential quotient by forward difference

A0(t) AO(E) 9+ At) — 9(t)

dt At At

with sufficiently small At. Then it is
Wt + At) — 9(t) = Ad(t) = —k(I(t) — ¥y)At,
V(t + At) — 9(t) = AJ(t) = —kAtI(t) + k94 At
and therefore

?92' N 197;_1 — kﬂtﬁi_l -+ kﬁAAt.

Rudolf Kruse Neural Networks

Recurrent Networks: Mass on a Spring

T A
O £
m
Governing physical laws:
e Hooke’s law: F' = cAl = —cx (c is a spring dependent constant)

e Newton’s second law: F' = ma = ma (force causes an acceleration)

Resulting differential equation:

mi = —cx or r=——21.

Rudolf Kruse Neural Networks

Recurrent Networks: Mass on a Spring

General analytical solution of the differential equation:
x(t) = asin(wt) + b cos(wt)

with the parameters

With given initial values z(tg) = xg and v(¢g) = 0 and
the additional assumption ¢y = 0 we get the simple expression

x(t) = xqcos (° t) :

m

Rudolf Kruse Neural Networks

Recurrent Networks: Mass on a Spring

Turn differential equation into two coupled equations:

T =" and V= ——21.

Approximate differential quotient by forward difference:

g_az(t%—At)—x(t)_v i Av o(t+ At) — v(t) c
At At) At At m

Resulting recursive equations:

x(t;) = x(ti—1) +Ax(ti—1) = x(ti—1) +At-o(ti—)) and

o(t;) = v(ti1) +Av(ti1) = (1) — —At-atiy).

Rudolf Kruse Neural Networks

Recurrent Networks: Mass on a Spring

Rudolf Kruse

Neuron wu7:

Neuron u9:

U3
C
fégtl)@], wU1U2) — Wy ugV = _EAt (Y and
fggggl)<aCtU17 netU17 Q’U,l) — aCtul -+ netul _H’U,ly
fr(lg’g) (CB, wU2U1> — Wyugui ¥ = At x and
f<u2)(act nety,, Ouy) = acty, + nety, —0
act (% ugs Yug) — U9 U9 U9 -

Neural Networks

9

Recurrent Networks: Mass on a Spring

Some computation steps of the neural network:

t v T
0.0 0.0000 | 1.0000
0.1 | —0.5000 | 0.9500
0.2 | —0.9750 | 0.8525
0.3] —1.40121{0.7124
0.4 —1.7574 | 0.5366
0.5 —2.0258 | 0.3341
0.6 —2.1928 | 0.1148

e The resulting curve is close to the analytical solution.

e The approximation gets better with smaller step width.

Rudolf Kruse

Neural Networks

10

Recurrent Networks: Differential Equations

General representation of explicit n-th order differential equation:

2 = flt,x,z,%,... ,x(”_l))
Introduce n — 1 intermediary quantities
ylzﬁb, y2:5é7 Yn—-1—7%2

to obtain the system

r = Yy,
Y1 = y2,
Un—2 = Yp—1,

yn—l — f(tamayby% ce e >yn—1>

of n coupled first order differential equations.

Rudolf Kruse Neural Networks

11

Recurrent Networks: Differential Equations

Replace differential quotient by forward distance to obtain the recursive equations

x(t;) = w(ti—1) + At-yi(ti—1),

y1(ti) = yiti—1) + At - yo(ti—1),

Yn—2(t;) = ypn—o(ti—1) + At-yp_3(t;i—1),

Yn—1(ti) = yn—1(ti—1) + [, 2(t-1), y1(ti=1)s - Yn—1(ti=1))

e Fach of these equations describes the update of one neuron.

e The last neuron needs a special activation function.

Rudolf Kruse Neural Networks

12

Recurrent Networks: Differential Equations

20 ——(0)—= (1)
At]
0 @
At]
Z0 @
At]
At]
mén—l) _»
tg —(—=At

Rudolf Kruse Neural Networks

13

Recurrent Networks: Diagonal Throw

|
M v Sin @ Diagonal throw of a body.
yo4-—4=T1

Two differential equations (one for each coordinate):

=0 and Y= —g,

where g = 9.81 ms™2.

[nitial conditions x(ty) = xq, y(tg) = yo, ©(tg) = vgcos ¢ and y(ty) = vgsin .

Rudolf Kruse Neural Networks 14

Recurrent Networks: Diagonal Throw

Introduce intermediary quantities
Vy =X and Vy =Y
to reach the system of differential equations:
T = Uy, vy = 0,
Yy = Uy, @y — 9,
from which we get the system of recursive update formulae
z(t;) = x(ti—1) + At vg(ti—1), ve(ti) = va(ti-1),

y(ti) = y(ti—1) + At vy(ti—1), vy(ti) = vy(ti-1) — At g.

Rudolf Kruse Neural Networks

Recurrent Networks: Diagonal Throw

Better description: Use vectors as inputs and outputs
where €, = (0,1).

[nitial conditions are 7(tg) = 7y = (g, yg) and ?(to) = 1y = (vg cos p, vgsin).
Introduce one vector-valued intermediary quantity v = 7 to obtain

—

r=, U= —g¢y

r(t;) = r(ti—1) + At Ulti_y),

vlt;) = U(ti—1) — At gey

Rudolf Kruse Neural Networks

Recurrent Networks: Diagonal Throw

Advantage of vector networks becomes obvious if friction is taken into account:
i=—P0=—pr

[is a constant that depends on the size and the shape of the body.
This leads to the differential equation

Introduce the intermediary quantity @ = 7 to obtain
=7, 7= —Bi — géy,

from which we obtain the recursive update formulae

r(t) = mti—1) + At (t;—1),

ult;) = O(tio1) — At Bu(t;_1) — At géy.

Rudolf Kruse Neural Networks

Recurrent Networks: Diagonal Throw

Resulting recurrent neural network:

7 ~(§)—-= 7(t)
At‘

e There are no strange couplings as there would be in a non-vector network.

e Note the deviation from a parabola that is due to the friction.

Rudolf Kruse Neural Networks 18

Recurrent Networks: Planet Orbit

ot r L : r
T = —fymW, = =1, U= —YM—=3

Recursive update rules:

7 ~(§)—-= (1
fymAt<)At

o —0) = u(t) 1 0.5 0 0.5

Rudolf Kruse Neural Networks

Recurrent Networks: Backpropagation through Time

Idea: Unfold the network between training patterns,
i.e., create one neuron for each point in time.

Example: Newton’s cooling law

1—kAt 1—kAt 1—kAt 1—kAt
tO _,O F\ F\ /é\ =@_, ?9(75)

-0 A\
Unfolding into four steps. It is 6 = —k 4 At.

e Training is standard backpropagation on unfolded network.
e All updates refer to the same weight.

e updates are carried out after first neuron is reached.

Rudolf Kruse Neural Networks

20

