
Rudolf Kruse Neural Networks 1

Neural Networks

Prof. Dr. Rudolf Kruse

Computational Intelligence Group
Faculty for Computer Science

kruse@iws.cs.uni-magdeburg.de

Rudolf Kruse Neural Networks 2

Recurrent Neural Networks

Recurrent Networks: Cooling Law

Rudolf Kruse Neural Networks 3

A body of temperature ϑ0 that is placed into an environment with temperature ϑA.

The cooling/heating of the body can be described by Newton’s cooling law:

dϑ

dt
= ϑ̇ = −k(ϑ− ϑA).

Exact analytical solution:

ϑ(t) = ϑA + (ϑ0 − ϑA)e
−k(t−t0)

Approximate solution with Euler-Cauchy polygon courses:

ϑ1 = ϑ(t1) = ϑ(t0) + ϑ̇(t0)∆t = ϑ0 − k(ϑ0 − ϑA)∆t.

ϑ2 = ϑ(t2) = ϑ(t1) + ϑ̇(t1)∆t = ϑ1 − k(ϑ1 − ϑA)∆t.

General recursive formula:

ϑi = ϑ(ti) = ϑ(ti−1) + ϑ̇(ti−1)∆t = ϑi−1 − k(ϑi−1 − ϑA)∆t

Recurrent Networks: Cooling Law

Rudolf Kruse Neural Networks 4

Euler–Cauchy polygon courses for different step widths:

t

ϑ

ϑA

ϑ0

0 5 10 15 20

t

ϑ

ϑA

ϑ0

0 5 10 15 20

t

ϑ

ϑA

ϑ0

0 5 10 15 20

∆t = 4 ∆t = 2 ∆t = 1

The thin curve is the exact analytical solution.

Recurrent neural network:

ϑ(t0) ϑ(t)−kϑA∆t

−k∆t

Recurrent Networks: Cooling Law

Rudolf Kruse Neural Networks 5

More formal derivation of the recursive formula:

Replace differential quotient by forward difference

dϑ(t)

dt
≈ ∆ϑ(t)

∆t
=

ϑ(t +∆t)− ϑ(t)

∆t

with sufficiently small ∆t. Then it is

ϑ(t +∆t)− ϑ(t) = ∆ϑ(t) ≈ −k(ϑ(t)− ϑA)∆t,

ϑ(t +∆t)− ϑ(t) = ∆ϑ(t) ≈ −k∆tϑ(t) + kϑA∆t

and therefore

ϑi ≈ ϑi−1 − k∆tϑi−1 + kϑA∆t.

Recurrent Networks: Mass on a Spring

Rudolf Kruse Neural Networks 6

m

x

0

Governing physical laws:

• Hooke’s law: F = c∆l = −cx (c is a spring dependent constant)

• Newton’s second law: F = ma = mẍ (force causes an acceleration)

Resulting differential equation:

mẍ = −cx or ẍ = − c

m
x.

Recurrent Networks: Mass on a Spring

Rudolf Kruse Neural Networks 7

General analytical solution of the differential equation:

x(t) = a sin(ωt) + b cos(ωt)

with the parameters

ω =
√

c

m
,

a = x(t0) sin(ωt0) + v(t0) cos(ωt0),

b = x(t0) cos(ωt0) − v(t0) sin(ωt0).

With given initial values x(t0) = x0 and v(t0) = 0 and
the additional assumption t0 = 0 we get the simple expression

x(t) = x0 cos
(√

c

m
t
)
.

Recurrent Networks: Mass on a Spring

Rudolf Kruse Neural Networks 8

Turn differential equation into two coupled equations:

ẋ = v and v̇ = − c

m
x.

Approximate differential quotient by forward difference:

∆x

∆t
=

x(t +∆t)− x(t)

∆t
= v and

∆v

∆t
=

v(t +∆t)− v(t)

∆t
= − c

m
x

Resulting recursive equations:

x(ti) = x(ti−1) +∆x(ti−1) = x(ti−1) +∆t · v(ti−1) and

v(ti) = v(ti−1) +∆v(ti−1) = v(ti−1)−
c

m
∆t · x(ti−1).

Recurrent Networks: Mass on a Spring

Rudolf Kruse Neural Networks 9

0

0x(t0)

v(t0)

x(t)

v(t)

∆t− c
m∆t

u2

u1

Neuron u1: f
(u1)
net (v, wu1u2) = wu1u2v = − c

m
∆t v and

f
(u1)
act (actu1, netu1, θu1) = actu1 +netu1 −θu1,

Neuron u2: f
(u2)
net (x,wu2u1) = wu2u1x = ∆t x and

f
(u2)
act (actu2, netu2, θu2) = actu2 +netu2 −θu2.

Recurrent Networks: Mass on a Spring

Rudolf Kruse Neural Networks 10

Some computation steps of the neural network:

t v x

0.0 0.0000 1.0000
0.1 −0.5000 0.9500
0.2 −0.9750 0.8525
0.3 −1.4012 0.7124
0.4 −1.7574 0.5366
0.5 −2.0258 0.3341
0.6 −2.1928 0.1148

x

t

1 2 3 4

• The resulting curve is close to the analytical solution.

• The approximation gets better with smaller step width.

Recurrent Networks: Differential Equations

Rudolf Kruse Neural Networks 11

General representation of explicit n-th order differential equation:

x(n) = f(t, x, ẋ, ẍ, . . . , x(n−1))

Introduce n− 1 intermediary quantities

y1 = ẋ, y2 = ẍ, . . . yn−1 = x(n−1)

to obtain the system
ẋ = y1,

ẏ1 = y2,
...

ẏn−2 = yn−1,

ẏn−1 = f(t, x, y1, y2, . . . , yn−1)

of n coupled first order differential equations.

Recurrent Networks: Differential Equations

Rudolf Kruse Neural Networks 12

Replace differential quotient by forward distance to obtain the recursive equations

x(ti) = x(ti−1) + ∆t · y1(ti−1),

y1(ti) = y1(ti−1) + ∆t · y2(ti−1),

...

yn−2(ti) = yn−2(ti−1) + ∆t · yn−3(ti−1),

yn−1(ti) = yn−1(ti−1) + f(ti−1, x(ti−1), y1(ti−1), . . . , yn−1(ti−1))

• Each of these equations describes the update of one neuron.

• The last neuron needs a special activation function.

Recurrent Networks: Differential Equations

Rudolf Kruse Neural Networks 13

x0

ẋ0

ẍ0

...

x
(n−1)
0

t0

0

0

0

...

θ

−∆t

x(t)

∆t

∆t

∆t

∆t

Recurrent Networks: Diagonal Throw

Rudolf Kruse Neural Networks 14

y

x
y0

x0

ϕ

v0 cosϕ

v0 sinϕ Diagonal throw of a body.

Two differential equations (one for each coordinate):

ẍ = 0 and ÿ = −g,

where g = 9.81ms−2.

Initial conditions x(t0) = x0, y(t0) = y0, ẋ(t0) = v0 cosϕ and ẏ(t0) = v0 sinϕ.

Recurrent Networks: Diagonal Throw

Rudolf Kruse Neural Networks 15

Introduce intermediary quantities

vx = ẋ and vy = ẏ

to reach the system of differential equations:

ẋ = vx, v̇x = 0,

ẏ = vy, v̇y = −g,

from which we get the system of recursive update formulae

x(ti) = x(ti−1) +∆t vx(ti−1), vx(ti) = vx(ti−1),

y(ti) = y(ti−1) +∆t vy(ti−1), vy(ti) = vy(ti−1)−∆t g.

Recurrent Networks: Diagonal Throw

Rudolf Kruse Neural Networks 16

Better description: Use vectors as inputs and outputs

%̈r = −g%ey,

where %ey = (0, 1).

Initial conditions are %r(t0) = %r0 = (x0, y0) and %̇r(t0) = %v0 = (v0 cosϕ, v0 sinϕ).

Introduce one vector-valued intermediary quantity %v = %̇r to obtain

%̇r = %v, %̇v = −g%ey

This leads to the recursive update rules

%r(ti) = %r(ti−1) +∆t %v(ti−1),

%v(ti) = %v(ti−1)−∆t g%ey

Recurrent Networks: Diagonal Throw

Rudolf Kruse Neural Networks 17

Advantage of vector networks becomes obvious if friction is taken into account:

%a = −β%v = −β%̇r

β is a constant that depends on the size and the shape of the body.
This leads to the differential equation

%̈r = −β%̇r − g%ey.

Introduce the intermediary quantity %v = %̇r to obtain

%̇r = %v, %̇v = −β%v − g%ey,

from which we obtain the recursive update formulae

%r(ti) = %r(ti−1) +∆t %v(ti−1),

%v(ti) = %v(ti−1)−∆t β %v(ti−1)−∆t g%ey.

Recurrent Networks: Diagonal Throw

Rudolf Kruse Neural Networks 18

Resulting recurrent neural network:

%r0

%v0

%0

∆tg%ey −∆tβ

%r(t)

∆t
x

y

1 2 3

• There are no strange couplings as there would be in a non-vector network.

• Note the deviation from a parabola that is due to the friction.

Recurrent Networks: Planet Orbit

Rudolf Kruse Neural Networks 19

%̈r = −γm
%r

|%r |3
, ⇒ %̇r = %v, %̇v = −γm

%r

|%r |3
.

Recursive update rules:

%r(ti) = %r(ti−1) +∆t %v(ti−1),

%v(ti) = %v(ti−1)−∆t γm
%r(ti−1)

|%r(ti−1)|3
,

%r0

%v0

%0

%0

%x(t)

%v(t)

∆t−γm∆t

x

y

−1 −0.5 0 0.5

0.5

Recurrent Networks: Backpropagation through Time

Rudolf Kruse Neural Networks 20

Idea: Unfold the network between training patterns,
i.e., create one neuron for each point in time.

Example: Newton’s cooling law

ϑ(t0) θ θ θ θ ϑ(t)
1−k∆t 1−k∆t 1−k∆t 1−k∆t

Unfolding into four steps. It is θ = −kϑA∆t.

• Training is standard backpropagation on unfolded network.

• All updates refer to the same weight.

• updates are carried out after first neuron is reached.

