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Hopfield Networks
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Hopfield Networks

A Hopfield network is a neural network with a graph G = (U, C') that satisfies the
following conditions:

(i) Uhidden — (Z)a Uin = Uout = U;
(i) C=UxU —{(u,u) |ueU}.

e In a Hopfield network all neurons are input as well as output neurons.
e There are no hidden neurons.
e Fach neuron receives input from all other neurons.

e A neuron is not connected to itself.

The connection weights are symmetric, i.e.

Vu,v € Uyu # v : Wyy = Woy.
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Hopfield Networks

The network input function of each neuron is the weighted sum of the outputs of all
other neurons, i.e.

veU—{u}

The activation function of each neuron is a threshold function, i.e.

1, if nety >0,
—1, otherwise.

Vue U : fégt)(netu, 0u) = {
The output function of each neuron is the identity, i.e.

Vue U : f(u)(actu) = acty, .

out
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Hopfield Networks

Alternative activation function

1, if mnety >0,
Yu e U : f;gt)(netu, O, acty,) = —1, if nety, <8,
acty, 1if nety, =0.

This activation function has advantages w.r.t. the physical interpretation
of a Hopfield network.

General weight matrix of a Hopfield network

W = .wU1U2 O ne ?UUQUn
\ Wyqu, Wuquy, --- U )
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Hopfield Networks: Examples

Very simple Hopfield network

uy
1 (0)——- w1
-
2 (0)—— v

The behavior of a Hopfield network can depend on the update order.

e Computations can oscillate if neurons are updated in parallel.

e Computations always converge if neurons are updated sequentially.
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Hopfield Networks: Examples

Parallel update of neuron activations

input phase | —1 1

work phase 1| -1

—1 1
1|-1
—1 1
1|-1
—1 1

e The computations oscillate, no stable state is reached.

e Qutput depends on when the computations are terminated.
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Hopfield Networks: Examples

Sequential update of neuron activations

input phase

work phase

U

U2

e i S el B

= = = |

input phase

work phase

e Regardless of the update order a stable state is reached.

e Which state is reached depends on the update order.
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Hopfield Networks: Examples

Simplified representation of a Hopfield network

] 8 yi
ST
3 (0) v3

e Symmetric connections between neurons are combined.

e Inputs and outputs are not explicitely represented.
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Hopfield Networks: State Graph

Graph of activation states and transitions
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Hopfield Networks: Convergence

Convergence Theorem: If the activations of the neurons of a Hopfield network
are updated sequentially (asynchronously), then a stable state is reached in a finite
number of steps.

If the neurons are traversed cyclically in an arbitrary, but fixed order, at most n - 2"
steps (updates of individual neurons) are needed, where n is the number of neurons of
the Hopfield network.

The proof is carried out with the help of an energy function.

The energy function of a Hopfield network with n neurons uq, ..., uy, is
1 — — - —
E = —3 act | Wact + 6 Lact
1

= —— Z Wy acty acty + Z 0., acty, .
u,velU, u#v uelU
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Hopfield Networks: Convergence

Consider the energy change resulting from an update that changes an activation:

AE — gplew) _ plold)  _ (— Z Wy act&new) acty +0y, actqgnew))
veU—{u}
— (= Z Wy actg)ld) acty +0y, actgﬂd) )
veU—{u}
— (actg)ld) — act&new)> ( Z Wy acty —0y,).
vel —{u} .
® net, < 0, Second factor is less than O.
(new) (old)
acty, = —1 and acty, ’ = 1, therefore first factor greater than 0.
Result: AE < 0.
® net, > 6, Second factor greater than or equal to 0.
actgbnew) = 1 and actg)ld) = —1, therefore first factor less than 0.

Result: AE < 0.
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Hopfield Networks: Examples

Arrange states in state graph according to their energy

E P
S S

Energy function for example Hopfield network:

E = — acty acty, —2actyy actyy — acty, acty; .
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Hopfield Networks: Examples

The state graph need not be symmetric
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Hopfield Networks: Physical Interpretation

Physical interpretation: Magnetism

A Hopfield network can be seen as a (microscopic) model of magnetism
(so-called Ising model, [Ising 1925]).
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atom

magnetic moment (spin)

strength of outer magnetic field
magnetic coupling of the atoms
Hamilton operator of the magnetic field
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actlvation state
threshold value
connection weights
energy function
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Hopfield Networks: Associative Memory

Idea: Use stable states to store patterns

First: Store only one pattern ¥ = (actgl), . ,actg%)T c{-1,1}"" n>2
i.e., find weights, so that pattern is a stable state.

Necessary and sufficient condition:

S(Wz—0)="72,
where
S:R" — {—-1,1}",
X —
with

1, if X; > O,
1, otherwise.

Vie{l,...,n}: yi:{ B
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Hopfield Networks: Associative Memory

If6 =0 an appropriate matrix W can easily be found. It suffices
Wz =c¥ withce RT.
Algebraically: Find a matrix W that has a positive eigenvalue w.r.t. .
Choose
wW=zz! - E

T

where & * is the so-called outer product.

With this matrix we have

wi = (17 7)7 - BE Wz @TE) —&
- =|7|2=n
= nr¥r—7 = (n—1)%
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Hopfield Networks: Associative Memory

Hebbian learning rule [Hebb 1949

Written in individual weights the computation of the weight matrix reads:

( .
0, iftu=w,

Wy = 1, ifu#wv, actgbp) = actgu),

k —1, otherwise.

e Originally derived from a biological analogy.

e Strengthen connection between neurons that are active at the same time.

Note that this learning rule also stores the complement of the pattern:

With W& =(n-1)F itisalso W(=%)=(n—-1)(-2).
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Hopfield Networks: Associative Memory

Storing several patterns

Choose
m m T
i=1 i=1 :%"
=7
= T
= | 2 @@ 7)) | —md;
1=1

If patterns are orthogonal, we have
. [0 i)
& :U]_{n, if i=j,

and therefore

ij = (n — m)fj
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Hopfield Networks: Associative Memory

Storing several patterns
Result: As long as m < n, & is a stable state of the Hopfield network.

Note that the complements of the patterns are also stored.

With ~ WiZ; = (n—m)Z; itisalso  W(=7;) = (n—m)(-Z;).
But: Capacity is very small compared to the number of possible states (2*).

Non-orthogonal patterns:
- T
ij = (n — m)fj + Z fz<f@ fj)
1=1

7]
“disturbance term”

7
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Associative Memory: Example

Example: Store patterns 7] = (+1, 41, —1,—1)" and & = (=1, 41, —1,+1)

W =W, + Wy =17 T—|—£U2£U2 — 2K
where

(0 1 -1 —1) [0 -1 1 —1)
1 0 -1 —1 -1 0 -1 1
Wi=l_1 1 o 1 Wa = 1 -1 0 -1
\ -1 -1 1 0 \ -1 1 -1 0
The full weight matrix is:
[0 0 0 —2)
0 0 —2
W=1 022 0o o
\ -2 0 0 0
Therefore 1t 1s
Wz = (42,42, -2,-2)  and Wz = (=2,+42,-2,+2)
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Example: Storing bit maps of numbers

o [eft: Bit maps stored in a Hopfield network.

e Right: Reconstruction of a pattern from a random input.



Hopfield Networks: Associative Memory

Training a Hopfield network with the Delta rule

Necessary condition for pattern & being a stable state:

s(0 + Wy g actg;) +.

S(Wuguy actgg) +0 + ...

(p) (p)

S(Wyyuq actyy 4+ Wyug actyy + . ..

with the standard threshold function

(p) (p)

.. + wulun actun — 9%1) — actul 3

(p) (p)

+ Wygu,, acty, — Ou,) = acty, ,

(p)

+ O - Hun) — aCtun .

if x>0,
otherwise.
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Hopfield Networks: Associative Memory

Training a Hopfield network with the Delta rule

Turn weight matrix into a weight vector:

w = ( wu1u2> wu1u3> Tt wuluna
Wugugs -y Wugup,
_9u17 _H’U/Q7 o e ey _H’U/n ).

Construct input vectors for a threshold logic unit

%= (actt?, 0,...,0, actt?) .. act® 0,1, 0,...,0 ).
n — 2 zeros n — 2 7eros

Apply Delta rule training until convergence.
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Demonstration Software: xhfn/whfn

. xhfn £ . xhfn £

File Actions Settings Help File Actions Settings Help

. xhfn £

File Actions Settings Help

Demonstration of Hopfield networks as associative memory:

e Visualization of the association/recognition process
e T'wo-dimensional networks of arbitrary size
e http://www.borgelt.net/hfnd.html

Rudolf Kruse Neural Networks



Hopfield Networks: Solving Optimization Problems

Use energy minimization to solve optimization problems

General procedure:

e Transform function to optimize into a function to minimize.

e Transform function into the form of an energy function of a Hopfield network.
e Read the weights and threshold values from the energy function.

e Construct the corresponding Hopfield network.

e [nitialize Hopfield network randomly and update until convergence.

e Read solution from the stable state reached.

e Repeat several times and use best solution found.
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Hopfield Networks: Activation Transformation

A Hopfield network may be defined either with activations —1 and 1 or with activations
0 and 1. The networks can be transformed into each other.

From acty, € {—1,1} to acty € {0,1}:

w?w = 2wy, and
0 _ _
HU eu + Z wUU
velU—{u}
From acty, € {0,1} to act,, € {—1,1}
1
Wy 5102,0 and
1
— 0 0
veU—{u}
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Hopfield Networks: Solving Optimization Problems

Combination lemma: Let two Hopfield networks on the same set U of neurons

with weights wrg&g, threshold values (98) and energy functions

S — Z > w% acty acty + » 9&1) acty,
uEUUEU {u} uel

1 = 1,2, be given. Furthermorelet a,b € R. Then F = aFE1+bFE> is the energ(y functlon
of the Hopfield network on the neurons in U that has the weights wq,, = awuv -+ bwuv
and the threshold values 6,, = a@& ) + b@& ).

Proof: Just do the computations.

Idea: Additional conditions can be formalized separately and incorporated later.

Rudolf Kruse Neural Networks 28



Hopfield Networks: Solving Optimization Problems

Example: Traveling salesman problem

Idea: Represent tour by a matrix.

city
(D—0) 1 2 3 4
(100 0) 1
\ ‘ 0010 2. step
000 1 3
(B)—() 0100/ 4

An element a;; of the matrix is 1 if the ¢-th city is visited in the j-th step and 0

otherwise.

Each matrix element will be represented by a neuron.
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Hopfield Networks: Solving Optimization Problems

Minimization of the tour length

n n n
By = > > djjy M - MG mod n)+1.jy
71=179=11=1

Double summation over steps (index 7) needed:

E) = > > dijs Oy mod )Ly T Mg Mg
(/1;17;7.1)6{17"'7”}2 (?:27]2)6{17"'7”}2

1, it a=0b,
5&1):{0

otherwise.

where

Symmetric version of the energy function:
1
B = _5 Z _djljg' (5(i1mod n)+1,i2+ 52'1,(2'2 mod n)+1) "M g1 Mg gy
(i17j1)€{17"'7n}2
(?:27j2)€{17"'7n}2
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Hopfield Networks: Solving Optimization Problems

Additional conditions that have to be satisfied:

e Fach city is visited on exactly one step of the tour:

n
Vied{l,...,n}: Zmzjzl,
1=1

i.e., each column of the matrix contains exactly one 1.

e On each step of the tour exactly one city is visited:
n
ViE{l,...,n}: Zmijzlv
j=1
i.e., each row of the matrix contains exactly one 1.

These conditions are incorporated by finding additional functions to optimize.

Rudolf Kruse Neural Networks 31



Hopfield Networks: Solving Optimization Problems

Formalization of first condition as a minimization problem:

=1\ \i=1 =1
n n n
=1 2'1:1 io—1 =1
n n n
= ) S‘ S‘ My iMijyj — QZZm@-jJrn.
J=1l11=119=1 J=11=1
Double summation over cities (index ¢) needed:
By= ) 2. Oy migp =2 3 mij.
(i1,51)€{1,....,n}2 (i9,52)€{1,...,n}2 (i,5)€{1,....,n}2
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Hopfield Networks: Solving Optimization Problems

Resulting energy function:

by = —3 Z =205y My jy * Migjy + Z —2my;
(i1,51)€{1,....n}? (i,5)€{1,....,n}?
(ig,jg)E{l,...,n}Q

Second additional condition is handled in a completely analogous way:

1

Es=—5 2 iy Mugg M+ Y, —2mij.
(i1,71)€{1,...n}? (i,)e{1,....n}2
(i9,52)€{1,....,n}"

Combining the energy functions:

C
= — > 2 max dj

E =alq +bEy + clEjs where -
o a7 ell..n)?

1J2°
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Hopfield Networks: Solving Optimization Problems

From the resulting energy function we can read the weights

Wlit,g1)(ig,52) — fadjl]? (O mod n)+1,iF iy, (igmod n)+1) —2b5j1j2“—2(:5@-12-2/

7\

from Eq from Eo from Ei
and the threshold values:
bijy= Qo 228 2 =-20b+o0)

from E7 from Es from FEj

Problem: Random initialization and update until convergence not always leads to a
matrix that represents a tour, leave alone an optimal one.
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