
Rudolf Kruse Neural Networks 1

Neural Networks

Prof. Dr. Rudolf Kruse

Computational Intelligence Group
Faculty for Computer Science

kruse@iws.cs.uni-magdeburg.de

Rudolf Kruse Neural Networks 2

Hopfield Networks

Hopfield Networks

Rudolf Kruse Neural Networks 3

A Hopfield network is a neural network with a graph G = (U,C) that satisfies the
following conditions:

(i) Uhidden = ∅, Uin = Uout = U ,

(ii) C = U × U − {(u, u) | u ∈ U}.

• In a Hopfield network all neurons are input as well as output neurons.

• There are no hidden neurons.

• Each neuron receives input from all other neurons.

• A neuron is not connected to itself.

The connection weights are symmetric, i.e.

∀u, v ∈ U, u &= v : wuv = wvu.

Hopfield Networks

Rudolf Kruse Neural Networks 4

The network input function of each neuron is the weighted sum of the outputs of all
other neurons, i.e.

∀u ∈ U : f
(u)
net (!wu, !inu) = !wu!inu =

∑

v∈U−{u}
wuv outv .

The activation function of each neuron is a threshold function, i.e.

∀u ∈ U : f
(u)
act (netu, θu) =

{
1, if netu ≥ θ,

−1, otherwise.

The output function of each neuron is the identity, i.e.

∀u ∈ U : f
(u)
out(actu) = actu .

Hopfield Networks

Rudolf Kruse Neural Networks 5

Alternative activation function

∀u ∈ U : f
(u)
act (netu, θu, actu) =






1, if netu > θ,
−1, if netu < θ,
actu, if netu = θ.

This activation function has advantages w.r.t. the physical interpretation
of a Hopfield network.

General weight matrix of a Hopfield network

W =





0 wu1u2 . . . wu1un
wu1u2 0 . . . wu2un...
wu1un wu1un . . . 0





Hopfield Networks: Examples

Rudolf Kruse Neural Networks 6

Very simple Hopfield network

0

0

x1

x2

u1

u2

1 1

y1

y2

W =

(
0 1
1 0

)

The behavior of a Hopfield network can depend on the update order.

• Computations can oscillate if neurons are updated in parallel.

• Computations always converge if neurons are updated sequentially.

Hopfield Networks: Examples

Rudolf Kruse Neural Networks 7

Parallel update of neuron activations

u1 u2
input phase −1 1

work phase 1 −1
−1 1
1 −1

−1 1
1 −1

−1 1

• The computations oscillate, no stable state is reached.

• Output depends on when the computations are terminated.

Hopfield Networks: Examples

Rudolf Kruse Neural Networks 8

Sequential update of neuron activations

u1 u2
input phase −1 1

work phase 1 1
1 1
1 1
1 1

u1 u2
input phase −1 1

work phase −1 −1
−1 −1
−1 −1
−1 −1

• Regardless of the update order a stable state is reached.

• Which state is reached depends on the update order.

Hopfield Networks: Examples

Rudolf Kruse Neural Networks 9

Simplified representation of a Hopfield network

0

0

0

x1

x2

x3

1 1

1 12

2

y1

y2

y3

0

0

0

u1

u2

u3

2

1

1

W =




0 1 2
1 0 1
2 1 0





• Symmetric connections between neurons are combined.

• Inputs and outputs are not explicitely represented.

Hopfield Networks: State Graph

Rudolf Kruse Neural Networks 10

Graph of activation states and transitions

+++

++− +−+ −++

+−− −+− −−+

−−−

u1u2u3

u2
u3

u1

u2

u1u3

u2
u1

u3
u2

u1

u3

u2

u1u3

u2

u3

u1

u1u2u3

Hopfield Networks: Convergence

Rudolf Kruse Neural Networks 11

Convergence Theorem: If the activations of the neurons of a Hopfield network
are updated sequentially (asynchronously), then a stable state is reached in a finite
number of steps.

If the neurons are traversed cyclically in an arbitrary, but fixed order, at most n · 2n
steps (updates of individual neurons) are needed, where n is the number of neurons of
the Hopfield network.

The proof is carried out with the help of an energy function.
The energy function of a Hopfield network with n neurons u1, . . . , un is

E = −1

2
!act

(W !act + !θ T !act

= −1

2

∑

u,v∈U,u &=v
wuv actu actv +

∑

u∈U
θu actu .

Hopfield Networks: Convergence

Rudolf Kruse Neural Networks 12

Consider the energy change resulting from an update that changes an activation:

∆E = E(new) − E(old) = (−
∑

v∈U−{u}
wuv act

(new)
u actv +θu act

(new)
u)

− (−
∑

v∈U−{u}
wuv act

(old)
u actv +θu act

(old)
u)

=
(
act

(old)
u − act

(new)
u

)
(

∑

v∈U−{u}
wuv actv

︸ ︷︷ ︸
= netu

−θu).

• netu < θu: Second factor is less than 0.
act

(new)
u = −1 and act

(old)
u = 1, therefore first factor greater than 0.

Result: ∆E < 0.

• netu ≥ θu: Second factor greater than or equal to 0.

act
(new)
u = 1 and act

(old)
u = −1, therefore first factor less than 0.

Result: ∆E ≤ 0.

Hopfield Networks: Examples

Rudolf Kruse Neural Networks 13

Arrange states in state graph according to their energy

+−− −−+ −++ ++−

+−+ −+−

−−− +++−4

−2

0

2

E

Energy function for example Hopfield network:

E = − actu1 actu2 −2 actu1 actu3 − actu2 actu3 .

Hopfield Networks: Examples

Rudolf Kruse Neural Networks 14

The state graph need not be symmetric

−1

−1

−1

u1

u2

u3

2

−2

−2

−−−

+−− −−+

++− −++

−+− +++

+−+

≈

−7

−1

1

3

5

E

Hopfield Networks: Physical Interpretation

Rudolf Kruse Neural Networks 15

Physical interpretation: Magnetism

A Hopfield network can be seen as a (microscopic) model of magnetism
(so-called Ising model, [Ising 1925]).

physical neural

atom neuron
magnetic moment (spin) activation state
strength of outer magnetic field threshold value
magnetic coupling of the atoms connection weights
Hamilton operator of the magnetic field energy function

Hopfield Networks: Associative Memory

Rudolf Kruse Neural Networks 16

Idea: Use stable states to store patterns

First: Store only one pattern !x = (act
(l)
u1, . . . , act

(l)
un)

(∈ {−1, 1}n, n ≥ 2,
i.e., find weights, so that pattern is a stable state.

Necessary and sufficient condition:

S(W!x− !θ) = !x,

where

S : IRn → {−1, 1}n,
!x ,→ !y

with

∀i ∈ {1, . . . , n} : yi =

{
1, if xi ≥ 0,

−1, otherwise.

Hopfield Networks: Associative Memory

Rudolf Kruse Neural Networks 17

If !θ = !0 an appropriate matrix W can easily be found. It suffices

W!x = c!x with c ∈ IR+.

Algebraically: Find a matrix W that has a positive eigenvalue w.r.t. !x.

Choose

W = !x!x T − E

where !x!x T is the so-called outer product.

With this matrix we have

W!x = (!x!x T)!x− E!x︸︷︷︸
=!x

(∗)
= !x (!x T!x)︸ ︷︷ ︸

=|!x |2=n

−!x

= n!x− !x = (n− 1)!x.

Hopfield Networks: Associative Memory

Rudolf Kruse Neural Networks 18

Hebbian learning rule [Hebb 1949]

Written in individual weights the computation of the weight matrix reads:

wuv =






0, if u = v,

1, if u &= v, act
(p)
u = act

(v)
u ,

−1, otherwise.

• Originally derived from a biological analogy.

• Strengthen connection between neurons that are active at the same time.

Note that this learning rule also stores the complement of the pattern:

With W!x = (n− 1)!x it is also W(−!x) = (n− 1)(−!x).

Hopfield Networks: Associative Memory

Rudolf Kruse Neural Networks 19

Storing several patterns

Choose

W!xj =
m∑

i=1
Wi!xj =




m∑

i=1
(!xi!x

T
i)!xj



−mE!xj︸︷︷︸
=!xj

=




m∑

i=1
!xi(!x

T
i !xj)



−m!xj

If patterns are orthogonal, we have

!x T
i !xj =

{
0, if i &= j,
n, if i = j,

and therefore

W!xj = (n−m)!xj.

Hopfield Networks: Associative Memory

Rudolf Kruse Neural Networks 20

Storing several patterns

Result: As long as m < n, !x is a stable state of the Hopfield network.

Note that the complements of the patterns are also stored.

With W!xj = (n−m)!xj it is also W(−!xj) = (n−m)(−!xj).

But: Capacity is very small compared to the number of possible states (2n).

Non-orthogonal patterns:

W!xj = (n−m)!xj +
m∑

i=1
i &=j

!xi(!x
T
i !xj)

︸ ︷︷ ︸
“disturbance term”

.

Associative Memory: Example

Rudolf Kruse Neural Networks 21

Example: Store patterns !x1 = (+1,+1,−1,−1)(and !x2 = (−1,+1,−1,+1)(.

W = W1 + W2 = !x1!x
T
1 + !x2!x

T
2 − 2E

where

W1 =





0 1 −1 −1
1 0 −1 −1

−1 −1 0 1
−1 −1 1 0




, W2 =





0 −1 1 −1
−1 0 −1 1
1 −1 0 −1

−1 1 −1 0




.

The full weight matrix is:

W =





0 0 0 −2
0 0 −2 0
0 −2 0 0

−2 0 0 0




.

Therefore it is

W!x1 = (+2,+2,−2,−2)(and W!x1 = (−2,+2,−2,+2)(.

Associative Memory: Examples

Rudolf Kruse Neural Networks 22

Example: Storing bit maps of numbers

• Left: Bit maps stored in a Hopfield network.

• Right: Reconstruction of a pattern from a random input.

Hopfield Networks: Associative Memory

Rudolf Kruse Neural Networks 23

Training a Hopfield network with the Delta rule

Necessary condition for pattern !x being a stable state:

s(0 +wu1u2 act
(p)
u2 + . . .+wu1un act

(p)
un − θu1) = act

(p)
u1 ,

s(wu2u1 act
(p)
u1 + 0 + . . .+wu2un act

(p)
un − θu2) = act

(p)
u2 ,...

s(wunu1 act
(p)
u1 +wunu2 act

(p)
u2 + . . .+ 0 − θun) = act

(p)
un .

with the standard threshold function

s(x) =

{
1, if x ≥ 0,

−1, otherwise.

Hopfield Networks: Associative Memory

Rudolf Kruse Neural Networks 24

Training a Hopfield network with the Delta rule

Turn weight matrix into a weight vector:

!w = (wu1u2, wu1u3, . . . , wu1un,
wu2u3, . . . , wu2un,

.
wun−1un,

−θu1, −θu2, . . . , −θun).

Construct input vectors for a threshold logic unit

!z2 = (act
(p)
u1 , 0, . . . , 0,︸ ︷︷ ︸

n− 2 zeros

act
(p)
u3 , . . . , act

(p)
un , . . . 0, 1, 0, . . . , 0︸ ︷︷ ︸

n− 2 zeros

).

Apply Delta rule training until convergence.

Demonstration Software: xhfn/whfn

Rudolf Kruse Neural Networks 25

Demonstration of Hopfield networks as associative memory:

• Visualization of the association/recognition process

• Two-dimensional networks of arbitrary size

• http://www.borgelt.net/hfnd.html

Hopfield Networks: Solving Optimization Problems

Rudolf Kruse Neural Networks 26

Use energy minimization to solve optimization problems

General procedure:

• Transform function to optimize into a function to minimize.

• Transform function into the form of an energy function of a Hopfield network.

• Read the weights and threshold values from the energy function.

• Construct the corresponding Hopfield network.

• Initialize Hopfield network randomly and update until convergence.

• Read solution from the stable state reached.

• Repeat several times and use best solution found.

Hopfield Networks: Activation Transformation

Rudolf Kruse Neural Networks 27

A Hopfield network may be defined either with activations −1 and 1 or with activations
0 and 1. The networks can be transformed into each other.

From actu ∈ {−1, 1} to actu ∈ {0, 1}:

w0
uv = 2w−

uv and

θ0u = θ−u +
∑

v∈U−{u}
w−
uv

From actu ∈ {0, 1} to actu ∈ {−1, 1}:

w−
uv =

1

2
w0
uv and

θ−u = θ0u −
1

2

∑

v∈U−{u}
w0
uv.

Hopfield Networks: Solving Optimization Problems

Rudolf Kruse Neural Networks 28

Combination lemma: Let two Hopfield networks on the same set U of neurons

with weights w
(i)
uv, threshold values θ

(i)
u and energy functions

Ei = −1

2

∑

u∈U

∑

v∈U−{u}
w
(i)
uv actu actv +

∑

u∈U
θ
(i)
u actu,

i = 1, 2, be given. Furthermore let a, b ∈ IR. ThenE = aE1+bE2 is the energy function

of the Hopfield network on the neurons in U that has the weights wuv = aw
(1)
uv + bw

(2)
uv

and the threshold values θu = aθ
(1)
u + bθ

(2)
u .

Proof: Just do the computations.

Idea: Additional conditions can be formalized separately and incorporated later.

Hopfield Networks: Solving Optimization Problems

Rudolf Kruse Neural Networks 29

Example: Traveling salesman problem

Idea: Represent tour by a matrix.

1

3 4

2

city
1 2 3 4



1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0





1.
2.
3.
4.

step

An element aij of the matrix is 1 if the i-th city is visited in the j-th step and 0
otherwise.

Each matrix element will be represented by a neuron.

Hopfield Networks: Solving Optimization Problems

Rudolf Kruse Neural Networks 30

Minimization of the tour length

E1 =
n∑

j1=1

n∑

j2=1

n∑

i=1
dj1j2 ·mij1 ·m(i mod n)+1,j2.

Double summation over steps (index i) needed:

E1 =
∑

(i1,j1)∈{1,...,n}2

∑

(i2,j2)∈{1,...,n}2
dj1j2 · δ(i1 mod n)+1,i2 ·mi1j1 ·mi2j2,

where

δab =

{
1, if a = b,
0, otherwise.

Symmetric version of the energy function:

E1 = −1

2

∑

(i1,j1)∈{1,...,n}2
(i2,j2)∈{1,...,n}2

−dj1j2 · (δ(i1mod n)+1,i2+ δi1,(i2mod n)+1) ·mi1j1 ·mi2j2.

Hopfield Networks: Solving Optimization Problems

Rudolf Kruse Neural Networks 31

Additional conditions that have to be satisfied:

• Each city is visited on exactly one step of the tour:

∀j ∈ {1, . . . , n} :
n∑

i=1
mij = 1,

i.e., each column of the matrix contains exactly one 1.

• On each step of the tour exactly one city is visited:

∀i ∈ {1, . . . , n} :
n∑

j=1
mij = 1,

i.e., each row of the matrix contains exactly one 1.

These conditions are incorporated by finding additional functions to optimize.

Hopfield Networks: Solving Optimization Problems

Rudolf Kruse Neural Networks 32

Formalization of first condition as a minimization problem:

E∗
2 =

n∑

j=1








n∑

i=1
mij




2

− 2
n∑

i=1
mij + 1





=
n∑

j=1








n∑

i1=1
mi1j








n∑

i2=1
mi2j



− 2
n∑

i=1
mij + 1





=
n∑

j=1

n∑

i1=1

n∑

i2=1
mi1jmi2j − 2

n∑

j=1

n∑

i=1
mij + n.

Double summation over cities (index i) needed:

E2 =
∑

(i1,j1)∈{1,...,n}2

∑

(i2,j2)∈{1,...,n}2
δj1j2 ·mi1j1 ·mi2j2 − 2

∑

(i,j)∈{1,...,n}2
mij.

Hopfield Networks: Solving Optimization Problems

Rudolf Kruse Neural Networks 33

Resulting energy function:

E2 = −1

2

∑

(i1,j1)∈{1,...,n}2
(i2,j2)∈{1,...,n}2

−2δj1j2 ·mi1j1 ·mi2j2 +
∑

(i,j)∈{1,...,n}2
−2mij

Second additional condition is handled in a completely analogous way:

E3 = −1

2

∑

(i1,j1)∈{1,...,n}2
(i2,j2)∈{1,...,n}2

−2δi1i2 ·mi1j1 ·mi2j2 +
∑

(i,j)∈{1,...,n}2
−2mij.

Combining the energy functions:

E = aE1 + bE2 + cE3 where
b

a
=

c

a
> 2 max

(j1,j2)∈{1,...,n}2
dj1j2.

Hopfield Networks: Solving Optimization Problems

Rudolf Kruse Neural Networks 34

From the resulting energy function we can read the weights

w(i1,j1)(i2,j2) = −adj1j2 · (δ(i1mod n)+1,i2+ δi1,(i2mod n)+1)︸ ︷︷ ︸
from E1

−2bδj1j2︸ ︷︷ ︸
from E2

−2cδi1i2︸ ︷︷ ︸
from E3

and the threshold values:

θ(i,j) = 0a︸︷︷︸
from E1

−2b︸︷︷︸
from E2

−2c︸︷︷︸
from E3

= −2(b + c).

Problem: Random initialization and update until convergence not always leads to a
matrix that represents a tour, leave alone an optimal one.

