
Rudolf Kruse Neural Networks 1

Neural Networks

Prof. Dr. Rudolf Kruse

Computational Intelligence Group
Faculty for Computer Science

kruse@iws.cs.uni-magdeburg.de



Rudolf Kruse Neural Networks 2

Learning Vector Quantization



Motivation

Rudolf Kruse Neural Networks 3

• previously: static learning
now:

”
free“ learning, i.e. without known class labels or target values as training

samples

• main idea: similar inputs leading to similar outputs

• like clustering: close data points in the input space are close together in the output
space, too.



Vector Quantization

Rudolf Kruse Neural Networks 4

Voronoi diagram of a vector quantization

• Dots represent vectors that are used for quantizing the area.

• Lines are the boundaries of the regions of points
that are closest to the enclosed vector.



Learning Vector Quantization

Rudolf Kruse Neural Networks 5

Finding clusters in a given set of data points

• Data points are represented by empty circles (◦).

• Cluster centers are represented by full circles (•).



Learning Vector Quantization Networks

Rudolf Kruse Neural Networks 6

A learning vector quantization network (LVQ) is a neural network
with a graph G = (U,C) that satisfies the following conditions

(i) Uin ∩ Uout = ∅, Uhidden = ∅

(ii) C = Uin × Uout

The network input function of each output neuron is a distance function
of the input vector and the weight vector, i.e.

∀u ∈ Uout : f
(u)
net (!wu, !inu) = d(!wu, !inu),

where d : IRn× IRn → IR+
0 is a function satisfying ∀!x, !y, !z ∈ IRn :

(i) d(!x, !y) = 0 ⇔ !x = !y,

(ii) d(!x, !y) = d(!y, !x) (symmetry),

(iii) d(!x, !z) ≤ d(!x, !y) + d(!y, !z) (triangle inequality).



Distance Functions

Rudolf Kruse Neural Networks 7

Illustration of distance functions

dk(!x, !y) =




n∑

i=1
(xi − yi)

k





1
k

Well-known special cases from this family are:

k = 1 : Manhattan or city block distance,
k = 2 : Euclidean distance,
k → ∞ : maximum distance, i.e. d∞(!x, !y) = max n

i=1|xi − yi|.

k = 1 k = 2 k → ∞

(all points lying on a circle or rectangle are sharing the same distance to the center
point, according to the corresponding distance function)



Learning Vector Quantization

Rudolf Kruse Neural Networks 8

The activation function of each output neuron is a so-called radial function, i.e. a
monotonously decreasing function

f : IR+
0 → [0,∞] with f(0) = 1 and lim

x→∞ f(x) = 0.

Sometimes the range of values is restricted to the interval [0, 1].
However, due to the special output function this restriction is irrelevant.

The output function of each output neuron is not a simple function of the activation
of the neuron. Rather it takes into account the activations of all output neurons:

f
(u)
out(actu) =





1, if actu = max

v∈Uout
actv,

0, otherwise.

If more than one unit has the maximal activation, one is selected at random to have
an output of 1, all others are set to output 0: winner-takes-all principle.



Radial Activation Functions

Rudolf Kruse Neural Networks 9

rectangle function:

fact(net, σ) =

{
0, if net > σ,
1, otherwise.

net

0

1

σ

triangle function:

fact(net, σ) =

{
0, if net > σ,
1− net

σ , otherwise.

net

0

1

σ

cosine until zero:

fact(net, σ) =

{
0, if net > 2σ,
cos( π

2σ
net)+1

2 , otherwise.

net

0

1

σ 2σ

1
2

Gaussian function:

fact(net, σ) = e−
net2

2σ2

net

0

1

σ 2σ

e−
1
2

e−2



Learning Vector Quantization

Rudolf Kruse Neural Networks 10

Adaptation of reference vectors / codebook vectors

• For each training pattern find the closest reference vector.

• Adapt only this reference vector (winner neuron).

• For classified data the class may be taken into account:
Each reference vector is assigned to a class.

Attraction rule (data point and reference vector have same class)

!r (new) = !r (old) + η(!x− !r (old)),

Repulsion rule (data point and reference vector have different class)

!r (new) = !r (old) − η(!x− !r (old)).



Learning Vector Quantization

Rudolf Kruse Neural Networks 11

Adaptation of reference vectors / codebook vectors

!r1

!r2

!r3!x

d
ηd

attraction rule

!r1

!r2

!r3!x

d ηd

repulsion rule

• !x: data point, !ri: reference vector
• η = 0.4 (learning rate)



Learning Vector Quantization: Example

Rudolf Kruse Neural Networks 12

Adaptation of reference vectors / codebook vectors

• Left: Online training with learning rate η = 0.1,

• Right: Batch training with learning rate η = 0.05.



Learning Vector Quantization: Learning Rate Decay

Rudolf Kruse Neural Networks 13

Problem: fixed learning rate can lead to oscillations

Solution: time dependent learning rate

η(t) = η0α
t, 0 < α < 1, or η(t) = η0t

κ, κ > 0.



Learning Vector Quantization: Classified Data

Rudolf Kruse Neural Networks 14

Improved update rule for classified data

• Idea: Update not only the one reference vector that is closest to the data point
(the winner neuron), but update the two closest reference vectors.

• Let !x be the currently processed data point and c its class.
Let !rj and !rk be the two closest reference vectors and zj and zk their classes.

• Reference vectors are updated only if zj ,= zk and either c = zj or c = zk.
(Without loss of generality we assume c = zj .)
The update rules for the two closest reference vectors are:

!r
(new)
j = !r

(old)
j + η(!x− !r

(old)
j ) and

!r
(new)
k = !r

(old)
k − η(!x− !r

(old)
k ),

while all other reference vectors remain unchanged.



Learning Vector Quantization: Window Rule

Rudolf Kruse Neural Networks 15

• It was observed in practical tests that standard learning vector quantization may
drive the reference vectors further and further apart.

• To counteract this undesired behavior a window rule was introduced:
update only if the data point !x is close to the classification boundary.

• “Close to the boundary” is made formally precise by requiring

min

(
d(!x,!rj)

d(!x,!rk)
,
d(!x,!rk)

d(!x,!rj)

)

> θ, where θ =
1− ξ

1 + ξ
.

ξ is a parameter that has to be specified by a user.

• Intuitively, ξ describes the “width” of the window around the classification boun-
dary, in which the data point has to lie in order to lead to an update.

• Using it prevents divergence, because the update ceases for a data point once the
classification boundary has been moved far enough away.



Soft Learning Vector Quantization

Rudolf Kruse Neural Networks 16

Idea: Use soft assignments instead of winner-takes-all.

Assumption: Given data was sampled from a mixture of normal distributions.
Each reference vector describes one normal distribution.

Objective: Maximize the log-likelihood ratio of the data, that is, maximize

lnLratio =
n∑

j=1
ln

∑

!r∈R(cj)

exp



−
(!xj − !r)-(!xj − !r)

2σ2





−
n∑

j=1
ln

∑

!r∈Q(cj)

exp



−
(!xj − !r)-(!xj − !r)

2σ2



.

Here σ is a parameter specifying the “size” of each normal distribution.
R(c) is the set of reference vectors assigned to class c and Q(c) its complement.

Intuitively: at each data point the probability density for its class should be as large
as possible while the density for all other classes should be as small as possible.



Soft Learning Vector Quantization

Rudolf Kruse Neural Networks 17

Update rule derived from a maximum log-likelihood approach:

!r
(new)
i = !r

(old)
i + η ·






u⊕ij · (!xj − !r
(old)
i ), if cj = zi,

−u/ij · (!xj − !r
(old)
i ), if cj ,= zi,

where zi is the class associated with the reference vector !ri and

u⊕ij =
exp (− 1

2σ2
(!xj − !r

(old)
i )-(!xj − !r

(old)
i ))

∑

!r∈R(cj)

exp (− 1
2σ2

(!xj − !r (old))-(!xj − !r (old)))
and

u/ij =
exp (− 1

2σ2
(!xj − !r

(old)
i )-(!xj − !r

(old)
i ))

∑

!r∈Q(cj)

exp (− 1
2σ2

(!xj − !r (old))-(!xj − !r (old)))
.

R(c) is the set of reference vectors assigned to class c and Q(c) its complement.



Hard Learning Vector Quantization

Rudolf Kruse Neural Networks 18

Idea: Derive a scheme with hard assignments from the soft version.

Approach: Let the size parameter σ of the Gaussian function go to zero.

The resulting update rule is in this case:

!r
(new)
i = !r

(old)
i + η ·






u⊕ij · (!xj − !r
(old)
i ), if cj = zi,

−u/ij · (!xj − !r
(old)
i ), if cj ,= zi,

where

u⊕ij =






1, if !ri = argmin
!r∈R(cj)

d(!xj,!r),

0, otherwise,
u/ij =






1, if !ri = argmin
!r∈Q(cj)

d(!xj,!r),

0, otherwise.

!ri is closest vector of same class !ri is closest vector of different class

This update rule is stable without a window rule restricting the update.



Learning Vector Quantization: Extensions

Rudolf Kruse Neural Networks 19

• Frequency Sensitive Competitive Learning

◦ The distance to a reference vector is modified according to
the number of data points that are assigned to this reference vector.

• Fuzzy Learning Vector Quantization

◦ Exploits the close relationship to fuzzy clustering.

◦ Can be seen as an online version of fuzzy clustering.

◦ Leads to faster clustering.

• Size and Shape Parameters

◦ Associate each reference vector with a cluster radius.
Update this radius depending on how close the data points are.

◦ Associate each reference vector with a covariance matrix.
Update this matrix depending on the distribution of the data points.



Demonstration Software: xlvq/wlvq

Rudolf Kruse Neural Networks 20

Demonstration of learning vector quantization:

• Visualization of the training process

• Arbitrary datasets, but training only in two dimensions

• http://www.borgelt.net/lvqd.html



Rudolf Kruse Neural Networks 21

Self-Organizing Maps



Self-Organizing Maps

Rudolf Kruse Neural Networks 22

A self-organizing map or Kohonen feature map is a neural network with a
graph G = (U,C) that satisfies the following conditions

(i) Uhidden = ∅, Uin ∩ Uout = ∅,

(ii) C = Uin × Uout.

The network input function of each output neuron is a distance function of input
and weight vector. The activation function of each output neuron is a radial function,
i.e. a monotonously decreasing function

f : IR+
0 → [0, 1] with f(0) = 1 and lim

x→∞ f(x) = 0.

The output function of each output neuron is the identity.
The output is often discretized according to the “winner takes all” principle.
On the output neurons a neighborhood relationship is defined:

dneurons : Uout × Uout → IR+
0 .



Self-Organizing Maps: Neighborhood

Rudolf Kruse Neural Networks 23

Neighborhood of the output neurons: neurons form a grid

quadratic grid hexagonal grid

• Thin black lines: Indicate nearest neighbors of a neuron.

• Thick gray lines: Indicate regions assigned to a neuron for visualization.



Self-Organizing Maps: Neighborhood

Rudolf Kruse Neural Networks 24

Neighborhood of the winner neuron

The neighborhood radius is decreasing by time.



Self-Organizing Maps: Structure

Rudolf Kruse Neural Networks 25

the
”
map“ shows the output neurons and their neighbors.



Self-Organizing Maps: Structure

Rudolf Kruse Neural Networks 26

The process of SOM-learning

1. initialize the SOM’s weight vectors

2. randomly choose the input vector from the training set

3. determine winner neuron according to distance function

4. determine time-dependent radius of the neighboring neurons within the radius of
the winner neuron

5. tune these neighboring neurons time-dependently, then follow step 2 again.



Topology Preserving Mapping

Rudolf Kruse Neural Networks 27

Images of points close to each other in the original space
should be close to each other in the image space.

Example: Robinson projection of the surface of a sphere

!

• Robinson projection is frequently used for world maps.

• → a SOM carries out a topology-preserving mapping



Self-Organizing Maps: Neighborhood

Rudolf Kruse Neural Networks 28

Find topology preserving mapping by respecting the neighborhood

Reference vector update rule:

!r
(new)
u = !r

(old)
u + η(t) · fnb(dneurons(u, u∗), ((t)) · (!x− !r

(old)
u ),

• u∗ is the winner neuron (reference vector closest to data point).

• The function fnb is a radial function.

Time dependent learning rate

η(t) = η0α
t
η, 0 < αη < 1, or η(t) = η0t

κη, κη > 0.

Time dependent neighborhood radius

((t) = (0α
t
(, 0 < α( < 1, or ((t) = (0t

κ(, κ( > 0.



Self-Organizing Maps: Examples

Rudolf Kruse Neural Networks 29

Example: Unfolding of a two-dimensional self-organizing map.

The figures illustrate (left to right, top to bottom) the current state of the SOM (it’s
input space) after 10, 20, 40, 80 and 160 learning iterations. One training sample is
being processed during each iteration.



Self-Organizing Maps: Examples

Rudolf Kruse Neural Networks 30

Example: Unfolding a two-dimensional self-organizing map. (comments)
• Unfolding a 10x10-map trained by random samples ∈ [−1, 1]× [−1, 1]

• initialization with reference vectors ∈ [−0.5, 0.5]

• lines connecting direct neighbors (grid)

• learning rate η(t) = 0.6 ∗ t

• Gaussian neighborhood function fnb

• radius ρ(t) = 2.5 ∗ t−0.1



Self-Organizing Maps: Examples

Rudolf Kruse Neural Networks 31

Example: Unfolding of a two-dimensional self-organizing map.



Self-Organizing Maps: Examples

Rudolf Kruse Neural Networks 32

Example: Unfolding of a two-dimensional self-organizing map.

Training a self-organizing map may fail because of

• miserable initialization

• the (initial) learning rate chosen too small or

• the (initial) neighbor chosen too small.



Self-Organizing Maps: Examples

Rudolf Kruse Neural Networks 33

Example: Unfolding of a two-dimensional self-organizing map.

(a) (b) (c)

Self-organizing maps that have been trained with random points from
(a) a rotation parabola, (b) a simple cubic function, (c) the surface of a sphere.

• In this case original space and image space have different dimensionality.

• Self-organizing maps can be used for dimensionality reduction.



SOM, Example Clustering of Strategies for editing fields

Rudolf Kruse Neural Networks 34

Left: self-organizing map including class labels
Right: a variable that has been used for learning



SOM, Phoneme mape of Finnish

Rudolf Kruse Neural Networks 35



SOM, Websom

Rudolf Kruse Neural Networks 36



SOM, Websom

Rudolf Kruse Neural Networks 37



SOM, MusicMiner

Rudolf Kruse Neural Networks 38



SOM, Lack of visual field

Rudolf Kruse Neural Networks 39



SOM, Lack of visual field

Rudolf Kruse Neural Networks 40



SOM, Lack of visual field

Rudolf Kruse Neural Networks 41



SOM, Lack of visual field

Rudolf Kruse Neural Networks 42



SOM, Lack of visual field

Rudolf Kruse Neural Networks 43


