
Rudolf Kruse Neural Networks 1

Neural Networks

Prof. Dr. Rudolf Kruse

Computational Intelligence Group
Faculty for Computer Science

kruse@iws.cs.uni-magdeburg.de

Rudolf Kruse Neural Networks 2

Radial Basis Function Networks

Radial Basis Funktion Networks

Rudolf Kruse Neural Networks 3

Properties of Radial Basis Funktion Networks (RBF-Networks)

• RBF-Networks are strictly layered feed-forward neural networks consisting of ex-
actly 1 hidden layer.

• Radial Basis Functions are used for input and activation function.

• This way a “catchment area“ is assigned to every neuron.

• The weights of every connection between the input layer to a hidden neuron indi-
cate the center of this

”
cathment area“.

Radial Basis Function Networks

Rudolf Kruse Neural Networks 4

A radial basis function network (RBFN) is a neural network
with a graph G = (U,C) that satisfies the following conditions

(i) Uin ∩ Uout = ∅,

(ii) C = (Uin × Uhidden) ∪ C ′, C ′ ⊆ (Uhidden × Uout)

The network input function of each hidden neuron is a distance function
of the input vector and the weight vector, i.e.

∀u ∈ Uhidden : f
(u)
net (!wu, !inu) = d(!wu, !inu),

where d : IRn× IRn → IR+
0 is a function satisfying ∀!x, !y, !z ∈ IRn :

(i) d(!x, !y) = 0 ⇔ !x = !y,

(ii) d(!x, !y) = d(!y, !x) (symmetry),

(iii) d(!x, !z) ≤ d(!x, !y) + d(!y, !z) (triangle inequality).

Distance Functions

Rudolf Kruse Neural Networks 5

Illustration of distance functions

dk(!x, !y) =




n∑

i=1
(xi − yi)

k





1
k

Well-known special cases from this family are:

k = 1 : Manhattan or city block distance,
k = 2 : Euclidean distance,
k → ∞ : maximum distance, i.e. d∞(!x, !y) = max n

i=1|xi − yi|.

k = 1 k = 2 k → ∞

Radial Basis Function Networks

Rudolf Kruse Neural Networks 6

The network input function of the output neurons is the weighted sum of their inputs,
i.e.

∀u ∈ Uout : f
(u)
net (!wu, !inu) = !wu!inu =

∑

v∈pred (u)
wuv outv .

The activation function of each hidden neuron is a so-called radial function, i.e. a
monotonously decreasing function

f : IR+
0 → [0, 1] with f(0) = 1 and lim

x→∞ f(x) = 0.

The activation function of each output neuron is a linear function, namely

f
(u)
act (netu, θu) = netu−θu.

(The linear activation function is important for the initialization.)

Radial Activation Functions

Rudolf Kruse Neural Networks 7

rectangle function:

fact(net, σ) =

{
0, if net > σ,
1, otherwise.

net

0

1

σ

triangle function:

fact(net, σ) =

{
0, if net > σ,
1− net

σ , otherwise.

net

0

1

σ

cosine until zero:

fact(net, σ) =

{
0, if net > 2σ,
cos(π

2σ
net)+1

2 , otherwise.

net

0

1

σ 2σ

1
2

Gaussian function:

fact(net, σ) = e−
net2

2σ2

net

0

1

σ 2σ

e−
1
2

e−2

Radial Basis Function Networks: Examples

Rudolf Kruse Neural Networks 8

Radial basis function networks for the conjunction x1 ∧ x2

1
2 0

x1

x2

1

1

1 y

0 1

1

0

x1

x2

• (1,1) is the center
• 1

2 is the reference radius
• Euclidean distance
• rectengular function as the activation function
• bias of 0 in the output neuron

Radial Basis Function Networks: Examples

Rudolf Kruse Neural Networks 9

Radial basis function networks for the conjunction x1 ∧ x2

6
5 −1

x1

x2

0

0

−1 y

0 1

1

0

x1

x2

• (0,0) is the center
• 6

5 is the reference radius
• Euclidean distance
• rectengular function as the activation function
• bias of −1 in the output neuron

Radial Basis Function Networks: Examples

Rudolf Kruse Neural Networks 10

Radial basis function networks for the biimplication x1 ↔ x2

Idea: logical decomposition

x1 ↔ x2 ≡ (x1 ∧ x2) ∨ ¬(x1 ∨ x2)

1
2

1
2

0

x1

x2

1
1
0

0

1

1

y

0 1

1

0

x1

x2

Radial Basis Function Networks: Function Approximation

Rudolf Kruse Neural Networks 11

x

y

x1 x2 x3 x4

x

y

x1 x2 x3 x4

y1

y2

y3
y4

y1

y2

y3

y4

0
1 ·y4

0
1 ·y3

0
1 ·y2

0
1 ·y1

Approximation of the original function by a step function with each step being resem-
bled by one of the RBF-Network’s neurons. (compare MLPs)

Radial Basis Function Networks: Function Approximation

Rudolf Kruse Neural Networks 12

σ

σ

σ

σ

0x

...

x1

x2

x3

x4
...

...

...

y1

y2

y3

y4
...

...

y

σ = 1
2∆x = 1

2(xi+1 − xi)

RBF-Network calculating the step function shown on the previous slide and the par-
tially linear function on the following slide. The only change is made to the activation
function of the hidden neurons.

Radial Basis Function Networks: Function Approximation

Rudolf Kruse Neural Networks 13

x

y

x1 x2 x3 x4

x

y

x1 x2 x3 x4

y1

y2

y3
y4

y1

y2

y3

y4

0
1

0
1

0
1

0
1

!!!!!!

"""""" ·y4

!!!!!!

"""""" ·y3

!!!!!!

"""""" ·y2

!!!!!!

"""""" ·y1
Representation of a partially linear function by the weighted sum of a triangular func-
tion with centers xi.

Radial Basis Function Networks: Function Approximation

Rudolf Kruse Neural Networks 14

x

y
2

1

0

−1

2 4 6 8

x

y
2

1

0

−1

2 4 6 8

0
1 ·w1

0
1 ·w2

0
1 ·w3

Approximation of a function by the sum of gaussians with radius σ = 1.
w1 = 2, w2 = 3 and w3 = −2.

Radial Basis Function Networks: Function Approximation

Rudolf Kruse Neural Networks 15

Radial basis function network for a sum of three Gaussian functions

x

2

5

6

1

1

1

1

3

−2

0 y

Rudolf Kruse Neural Networks 16

Training Radial Basis Function Networks

Radial Basis Function Networks: Initialization

Rudolf Kruse Neural Networks 17

Let Lfixed = {l1, . . . , lm} be a fixed learning task,
consisting of m training patterns l = (!ı (l),!o (l)).

Simple radial basis function network:
One hidden neuron vk, k = 1, . . . , m, for each training pattern:

∀k ∈ {1, . . . , m} : !wvk =!ı (lk).

If the activation function is the Gaussian function,
the radii σk are chosen heuristically

∀k ∈ {1, . . . ,m} : σk =
dmax√
2m

,

where

dmax = max
lj,lk∈Lfixed

d
(
!ı (lj),!ı (lk)

)
.

Radial Basis Function Networks: Initialization

Rudolf Kruse Neural Networks 18

Initializing the connections from the hidden to the output neurons

∀u :
m∑

k=1

wuvm out
(l)
vm −θu = o

(l)
u or abbreviated A · !wu = !ou,

where !ou = (o
(l1)
u , . . . , o

(lm)
u)3 is the vector of desired outputs, θu = 0, and

A =





out
(l1)
v1 out

(l1)
v2 . . . out

(l1)
vm

out
(l2)
v1 out

(l2)
v2 . . . out

(l2)
vm

...

out
(lm)
v1 out

(lm)
v2 . . . out

(lm)
vm




.

This is a linear equation system, that can be solved by inverting the matrix A:

!wu = A−1 · !ou.

RBFN Initialization: Example

Rudolf Kruse Neural Networks 19

Simple radial basis function network for the biimplication x1 ↔ x2

x1 x2 y

0 0 1
1 0 0
0 1 0
1 1 1

1
2

1
2

1
2

1
2

0

x1

x2

0
0

1

0

0

1

1
1

w1

w2

w3

w4

y

RBFN Initialization: Example

Rudolf Kruse Neural Networks 20

Simple radial basis function network for the biimplication x1 ↔ x2

A =





1 e−2 e−2 e−4

e−2 1 e−4 e−2

e−2 e−4 1 e−2

e−4 e−2 e−2 1




A−1 =





a
D

b
D

b
D

c
D

b
D

a
D

c
D

b
D

b
D

c
D

a
D

b
D

c
D

b
D

b
D

a
D





where
D = 1− 4e−4 + 6e−8 − 4e−12 + e−16 ≈ 0.9287
a = 1 − 2e−4 + e−8 ≈ 0.9637
b = −e−2 + 2e−6 − e−10 ≈ −0.1304
c = e−4 − 2e−8 + e−12 ≈ 0.0177

!wu = A−1 · !ou =
1

D





a + c
2b
2b

a + c




≈





1.0567
−0.2809
−0.2809
1.0567





RBFN Initialization: Example

Rudolf Kruse Neural Networks 21

Simple radial basis function network for the biimplication x1 ↔ x2

single basis function

x2

x1

1

−1
0

1
2

−1 0 1 2

act

all basis functions

x2

x1

1

−1
0

1
2

−1 0 1 2

act

output

x2

x1

1

−1
0

1
2

−1 0 1 2

y

(1,0)

• Initialization leads already to a perfect solution of the learning task.

• Subsequent training is not necessary.

Radial Basis Function Networks: Initialization

Rudolf Kruse Neural Networks 22

Normal radial basis function networks:
Select subset of k training patterns as centers.

A =





1 out
(l1)
v1 out

(l1)
v2 . . . out

(l1)
vk

1 out
(l2)
v1 out

(l2)
v2 . . . out

(l2)
vk...

1 out
(lm)
v1 out

(lm)
v2 . . . out

(lm)
vk




A · !wu = !ou

Compute (Moore–Penrose) pseudo inverse:

A+ = (A3A)−1A3.

The weights can then be computed by

!wu = A+ · !ou = (A3A)−1A3 · !ou

RBFN Initialization: Example

Rudolf Kruse Neural Networks 23

Normal radial basis function network for the biimplication x1 ↔ x2

Select two training patterns:

• l1 = (!ı (l1),!o (l1)) = ((0, 0), (1))

• l4 = (!ı (l4),!o (l4)) = ((1, 1), (1))

1
2

1
2

θ

x1

x2

1
1

0
0

w1

w2

y

RBFN Initialization: Example

Rudolf Kruse Neural Networks 24

Normal radial basis function network for the biimplication x1 ↔ x2

A =





1 1 e−4

1 e−2 e−2

1 e−2 e−2

1 e−4 1




A+ = (A3A)−1A3 =




a b b a
c d d e
e d d c





where

a ≈ −0.1810, b ≈ 0.6810,
c ≈ 1.1781, d ≈ −0.6688, e ≈ 0.1594.

Resulting weights:

!wu =




−θ
w1
w2



 = A+ · !ou ≈




−0.3620
1.3375
1.3375



 .

RBFN Initialization: Example

Rudolf Kruse Neural Networks 25

Normal radial basis function network for the biimplication x1 ↔ x2

basis function (0,0)

x2

x1

1

−1
0

1
2

−1 0 1 2

act

basis function (1,1)

x2

x1

1

−1
0

1
2

−1 0 1 2

act

output

y
1

0

−0.36

(1,0)

• Initialization leads already to a perfect solution of the learning task.

• This is an accident, because the linear equation system is not over-determined,
due to linearly dependent equations.

Radial Basis Function Networks: Initialization

Rudolf Kruse Neural Networks 26

Finding appropriate centers for the radial basis functions

One approach: k-means clustering

• Select randomly k training patterns as centers.

• Assign to each center those training patterns that are closest to it.

• Compute new centers as the center of gravity of the assigned training patterns

• Repeat previous two steps until convergence,
i.e., until the centers do not change anymore.

• Use resulting centers for the weight vectors of the hidden neurons.

Alternative approach: learning vector quantization

Radial Basis Function Networks: Training

Rudolf Kruse Neural Networks 27

Training radial basis function networks:
Derivation of update rules is analogous to that of multilayer perceptrons.

Weights from the hidden to the output neurons.

Gradient:

!∇!wu
e
(l)
u =

∂e
(l)
u

∂ !wu
= −2(o

(l)
u − out

(l)
u) !in

(l)
u ,

Weight update rule:

∆!w
(l)
u = −η3

2
!∇!wu

e
(l)
u = η3(o

(l)
u − out

(l)
u) !in

(l)
u

(Two more learning rates are needed for the center coordinates and the radii.)

Radial Basis Function Networks: Training

Rudolf Kruse Neural Networks 28

Training radial basis function networks:
Center coordinates (weights from the input to the hidden neurons).

Gradient:

!∇!wv
e(l) =

∂e(l)

∂ !wv
= −2

∑

s∈succ(v)
(o
(l)
s − out

(l)
s)wsu

∂ out
(l)
v

∂ net
(l)
v

∂ net
(l)
v

∂ !wv

Weight update rule:

∆!w
(l)
v = −η1

2
!∇!wv

e(l) = η1
∑

s∈succ(v)
(o
(l)
s − out

(l)
s)wsv

∂ out
(l)
v

∂ net
(l)
v

∂ net
(l)
v

∂ !wv

Radial Basis Function Networks: Training

Rudolf Kruse Neural Networks 29

Training radial basis function networks:
Center coordinates (weights from the input to the hidden neurons).

Special case: Euclidean distance

∂ net
(l)
v

∂ !wv
=




n∑

i=1
(wvpi − out

(l)
pi)

2




−1

2

(!wv − !in
(l)
v).

Special case: Gaussian activation function

∂ out
(l)
v

∂ net
(l)
v

=
∂fact(net

(l)
v ,σv)

∂ net
(l)
v

=
∂

∂ net
(l)
v

e
−

(
net

(l)
v

)2

2σ2v = −net
(l)
v

σ2v
e
−

(
net

(l)
v

)2

2σ2v .

Radial Basis Function Networks: Training

Rudolf Kruse Neural Networks 30

Training radial basis function networks:
Radii of radial basis functions.

Gradient:
∂e(l)

∂σv
= −2

∑

s∈succ(v)
(o
(l)
s − out

(l)
s)wsu

∂ out
(l)
v

∂σv
.

Weight update rule:

∆σ
(l)
v = −η2

2

∂e(l)

∂σv
= η2

∑

s∈succ(v)
(o
(l)
s − out

(l)
s)wsv

∂ out
(l)
v

∂σv
.

Special case: Gaussian activation function

∂ out
(l)
v

∂σv
=

∂

∂σv
e
−

(
net

(l)
v

)2

2σ2v =

(
net

(l)
v

)2

σ3v
e
−

(
net

(l)
v

)2

2σ2v .

Radial Basis Function Networks: Generalization

Rudolf Kruse Neural Networks 31

Generalization of the distance function

Idea: Use anisotropic distance function.

Example: Mahalanobis distance

d(!x, !y) =
√
(!x− !y)3Σ−1(!x− !y).

Example: biimplication

1
3 0

x1

x2

1
2

1
2

1 y

Σ =

(
9 8
8 9

)

0 1

1

0

x1

x2

Radial Basis Function Networks: Application

Rudolf Kruse Neural Networks 32

Advantages
• simple feed-forward architecture

• easy adaption

• ⇒ quick optimization and calculations

Application
• continuous processes adapting to changes rapidly

• Approximation

• Pattern Recognition

• Control Engineering

Below: Examples from [Schwenker et al. 2001]

Example: Handwriting Recognition of digits

Rudolf Kruse Neural Networks 33

• dataset: 20.000 handwritten digits (2.000 samples of each class)

• normalized in height and width

• represented by 16× 16 greyscale values Gij ∈ {0, . . . , 255}
• data source: EU-project StatLog [Michie et al. 1994]

Example: Results of RBF-Networks

Rudolf Kruse Neural Networks 34

• 10.000 training samples and 10.000 validation samples (1.000 for each class)

• training data for learning of classificators, validation data for evaluation

• initialization by k-means-clustering with 200 prototypes (20 for each class)

Method Explanation Test accuracy
C4.5 Decision Tree 91.12%
RBF k-means for RBF-centers 96.94%
MLP 1 hidden layer with 200 neurons 97.59%

• here: median of test accuracy for three training and validation runs

Example: k-means-Clustering for RBF-initialization

Rudolf Kruse Neural Networks 35

• shown: 60 cluster-centers of the digits after k-means-clustering

• separate run of the algorithm for every digit, with k = 6

• centers were initialized by samples chosen from the training data set randomly

Example: found RBF-centers after 3 runs

Rudolf Kruse Neural Networks 36

• shown: 60 RBF-centers of the digits after 3 backpropagation runs of the RBF-
Network

• hardly a difference can be seen in comparison to k-means, but. . .

Example: Comparison of k-means and RBF-Network

Rudolf Kruse Neural Networks 37

• here: Eucledian distance of the 60 RBF-centers before and after training

• Centers are sorted by class with the first 6 columns/rows representing the digit 0,
the next 6 rows/digits representing the digit 1 etc.

• Distances are coded as greyscale values: The smaller, the darker.

• left: a lot of small distances between centers of different classes (e.g. 2–3 and 8–9)

• these small distance cause misclassifications

• right: after training there are no small distances anymore.

