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Radial Basis Funktion Networks

Properties of Radial Basis Funktion Networks (RBF-Networks)

e RBF-Networks are strictly layered feed-forward neural networks consisting of ex-
actly 1 hidden layer.

e Radial Basis Functions are used for input and activation function.
e This way a “catchment area” is assigned to every neuron.

e The weights of every connection between the input layer to a hidden neuron indi-
cate the center of this ,,cathment area”.
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Radial Basis Function Networks

A radial basis function network (RBFN) is a neural network
with a graph G = (U, C') that satisfies the following conditions

<i) Uin M Uout — @a
(i) C = Uiy X Upidden) YC',  C" C (Uniaden X Uout)

The network input function of each hidden neuron is a distance function
of the input vector and the weight vector, i.e.

Vu € Upidden : fégt) (wu, 1;1u) = d<U_jua iﬁu)a

where d : R x R" — IR(J{ is a function satisfying V7, v, Z € IR™

(27) d(Z,vy) =d(y,T) (symmetry),
(ii1) d(Z,2) < d(Z,y)+d(y,Z)  (triangle inequality).
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Distance Functions

Illustration of distance functions

d (T, ) = (i(% - yz')k)

1=1
Well-known special cases from this family are:

kE=1: Manhattan or city block distance,
k=2: FEuclidean distance,
k — oo : maximum distance, i.e. doo(Z,¥) = max’ {|z; — y;|.

k=1 k=2 k — o0
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Radial Basis Function Networks

The network input function of the output neurons is the weighted sum of their inputs,
1.e.

Uu — T - .
Vu € Uyyt - féet) (W, iny,) = Wying = Z Woyp OULy .
vepred (u)

The activation function of each hidden neuron is a so-called radial function, i.e. a
monotonously decreasing function

f:Rg —[0,1] with f(0)=1 and lim f(z)=0.
The activation function of each output neuron is a linear function, namely

act (netu7 eu) — netu _Hu

(The linear activation function is important for the initialization.)
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Radial Activation Functions

Rudolf Kruse

rectangle function:

0, if net > o,
fact(net, o) = { 1, otherwise.

1

net

0 o
cosine until zero:
0, if net > 20,
fact(neta 0) - COS(% net)+1 )
5 , otherwise.
net

Neural Networks

triangle function:
0, if net > o,

fualneto) = { ' o

—, otherwise.

1

net

Gaussian function:




Radial Basis Function Networks: Examples

Radial basis function networks for the conjunction r| A 9
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(1,1) is the center
% is the reference radius

Euclidean distance

rectengular function as the activation function

bias of 0 in the output neuron
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Radial Basis Function Networks: Examples

Radial basis function networks for the conjunction r| A 9
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g0,0) is the center

= 18 the reference radius

Euclidean distance

rectengular function as the activation function
bias of —1 in the output neuron
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Radial Basis Function Networks: Examples

Radial basis function networks for the biimplication z| <+ x9
Idea: logical decomposition

T1 4> Ty = (xl A ZCQ) V —|(£C1 V xg)

A
L2
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Radial Basis Function Networks: Function Approximation

tY Y4 tY Y4
Y3 ys [
Y2 Y2
Y1 Y1

xr X
£ 4y a3 a4 £ 4y a3 @y
s Y
s Y3
: Y2
o Y1

Approximation of the original function by a step function with each step being resem-
bled by one of the RBF-Network’s neurons. (compare MLPs)
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Radial Basis Function Networks: Function Approximation

fro

1
v ——() (0)——v
3 {(
) Y4

RBF-Network calculating the step function shown on the previous slide and the par-
tially linear function on the following slide. The only change is made to the activation
function of the hidden neurons.

ONNONSOE

o =

Az = g(wi41 — ;)

DOl —

Rudolf Kruse Neural Networks

12



Radial Basis Function Networks: Function Approximation

tY Y4 tY Y4
Y3 Y3
Y2 Y2
Y1 Y1
xr X
£ 4y a3 a4 £ 4y a3 @y
s T~ ‘Y4
s T T~ Y3
b T~ Y2
b T~ Y1

Representation of a partially linear function by the weighted sum of a triangular func-
tion with centers x;.
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Radial Basis Function Networks: Function Approximation

VY
2 2
1 1
X
0 T T T T T T T > 0
2 4 6\\/
—1- 14

O - o=

Approximation of a function by the sum of gaussians with radius o = 1.
w1 =2, w9 =3 and w3 = —2.
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Radial Basis Function Networks: Function Approximation

Radial basis function network for a sum of three (Gaussian functions

VAN
N

X

—>y
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Training Radial Basis Function Networks
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Radial Basis Function Networks: Initialization

Let Lgeoq = {1, - -+, Im} be a fixed learning task,
consisting of m training patterns [ = (7 (). 5 (l)).

Simple radial basis function network:
One hidden neuron vy, k =1, ..., m, for each training pattern:

Vke{l,...,m}: by =7

If the activation function is the Gaussian function,
the radii o, are chosen heuristically

d
Vke{l,...,m}: o = ——=
where

ljvlk‘ELﬁXGd

Rudolf Kruse Neural Networks



Radial Basis Function Networks: Initialization

Initializing the connections from the hidden to the output neurons

m
Vu: Y Wy, out?(fgl —0y = og ) or abbreviated A - Wy, = 0y,
k=1
=~ (ll) (lm) T . : _
where 0y, = (0,7, ..., 0y"") " is the vector of desired outputs, ¢, = 0, and
( outfgll) outgjl;) e outg}l) \
A — outfgf) out?(};) . outg%)
\ outq()l{”) outg}l;l) e outq()lx) }

This is a linear equation system, that can be solved by inverting the matrix A:

W, = A" 5,
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RBFN Initialization: Example

Simple radial basis function network for the biimplication x| < 9

Ty | w2 | Y 1

0] 0|1

L 1010 Y
01110

1|11 T2
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RBFN Initialization: Example

Simple radial basis function network for the biimplication x| < 9

b b
(1 6_2 6_2 6_4\ (%Fﬁ%\
—9 4 -9 b a ¢ b
A: (& 1 (A (A A__lz D D D D
o2 o4 1 o2 b ¢ a b
4 9 o D D D D
et e e 21 ) \ 5 b b 1)
N D D D D
willere
D=1—4e 4165 —4e 121165 (9287
a= 1 —2 44ed ~ 0.9637
b = —e 2 -+ 2¢= 6 _ =10 ~ —0.1304
c = e+ _9e 812 ~ 0.0177
[a+c) [ 1.0567 )
o B 11 2o | | —0.2809
Wu = =l 2w | T —0.2809

\a+c /) \ 10567 )
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RBFN Initialization: Example

Simple radial basis function network for the biimplication x| < 9

single basis function all basis functions

e [nitialization leads already to a perfect solution of the learning task.

e Subsequent training is not necessary.
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Radial Basis Function Networks: Initialization

Normal radial basis function networks:
Select subset of £ training patterns as centers.

( 1 outgjlll) outfg;) . outgjl;) \
A=| 1 out?(}f) outfg;) e outgjl]?) A
\ 1 outgjlfl) out%m) . outgjl?) )

Compute (Moore—Penrose) pseudo inverse:
AT=(ATA)"IAT,
The weights can then be computed by

Wy=A" -5, =A"A)TIAT . 5,
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RBFN Initialization: Example

Normal radial basis function network for the biimplication x| < 29

Select two training patterns:
o 1y = (), 5M)=((0,0),(1))
o 1y= (", 5M) = ((1,1), (1))

2O Do
e —osd
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RBFN Initialization: Example

Normal radial basis function network for the biimplication x| < 29

—4
(11_2 6_2\ a b b a
A= 2_2 2_2 AT=ATA) AT =| ¢ d d e
\1 1 ) e d d c

where

a ~ —0.1810, b~ 0.6810,
c~ 1.1781, d ~ —0.6688, e ~ (0.1594.

Resulting weights:

—0 —0.3620
Wy=| w | =AT.0,~ 1.3375
w9 1.3375
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RBFN Initialization: Example

Normal radial basis function network for the biimplication x| < 29

basis function (0,0) basis function (1,1)

e [nitialization leads already to a perfect solution of the learning task.

e This is an accident, because the linear equation system is not over-determined,
due to linearly dependent equations.
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Radial Basis Function Networks: Initialization

Finding appropriate centers for the radial basis functions

One approach: k-means clustering

e Select randomly £ training patterns as centers.
e Assign to each center those training patterns that are closest to it.
e Compute new centers as the center of gravity of the assigned training patterns

e Repeat previous two steps until convergence,
i.e., until the centers do not change anymore.

e Use resulting centers for the weight vectors of the hidden neurons.

Alternative approach: learning vector quantization

Rudolf Kruse Neural Networks
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Radial Basis Function Networks: Training

Training radial basis function networks:
Derivation of update rules is analogous to that of multilayer perceptrons.

Weights from the hidden to the output neurons.

Gradient:

[
l) dely (1) (1) = (1)

eu — — _2<0u — Outu )1?1/& s

Weight update rule:
ROND

ey’ = n3(oy’ — outy 2

(Two more learning rates are needed for the center coordinates and the radii.)
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Radial Basis Function Networks: Training

Training radial basis function networks:
Center coordinates (weights from the input to the hidden neurons).

Gradient:
> ) 1) 5.0
W sesucc(v) Onety’ Owy
Weight update rule:
(7) (7)
A’LU?(JZ) _ _%vu_jve(l) = Z <0£l) B Outg))wsva OUtEJZ) O nety
sesuce(v) Onety’ 0wy
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Radial Basis Function Networks: Training

Training radial basis function networks:
Center coordinates (weights from the input to the hidden neurons).

Special case: Euclidean distance

(1) n —5
N
v i=1

Special case: Gaussian activation function

0% 0)*
l l nety I nety
(90111;1()) _ (9fact(ﬂetgj)70v> 0 e( 205) _ _net;g) e( 2012}) .

0 netgjl) 0 netq()l) N 0 netgjl) 03
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Radial Basis Function Networks: Training

Training radial basis function networks:
Radii of radial basis functions.

Gradient: 0 0
dell (1) (1) O outy,
Dor —2 Z (05’ — outs” )wgy pp—

sesucc(v)

Weight update rule:

(7)
_ oc =12 Z (Q(Sl) — OUtg)>wsv—

Aag(,l) = —— =
2 dowy sesuce(v)

Special case: Gaussian activation function

(D) 2 (D)?
net,, (1) net,,
(9011131()[) B 9 6( 2) (netv ) _( )
do,  Ooy oy
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Radial Basis Function Networks: (Generalization

Generalization of the distance function
Idea: Use anisotropic distance function.

Example: Mahalanobis distance

Example: biimplication

1 ——(
00—
n——( (1)
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Radial Basis Function Networks: Application

Advantages
e simple feed-forward architecture

e casy adaption

e — quick optimization and calculations

Application
e continuous processes adapting to changes rapidly

e Approximation
e Pattern Recognition

e Control Engineering

Below: Examples from [Schwenker et al. 2001]

Rudolf Kruse Neural Networks

32



Example: Handwriting Recognition of digits

e dataset: 20.000 handwritten digits (2.000 samples of each class)
e normalized in height and width

e represented by 16 x 16 greyscale values G € {0, ...,255}

e data source: EU-project StatLog [Michie et al. 1994]
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Example: Results of RBF-Networks

10.000 training samples and 10.000 validation samples (1.000 for each class)

training data for learning of classificators, validation data for evaluation

initialization by k-means-clustering with 200 prototypes (20 for each class)

Method | Explanation Test accuracy
C4.5 Decision Tree 91.12%
RBF k-means for RBF-centers 96.94%
MLP 1 hidden layer with 200 neurons | 97.59%

here: median of test accuracy for three training and validation runs

Rudolf Kruse
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Example: k-means-Clustering for RBF-initialization

e shown: 60 cluster-centers of the digits after k-means-clustering
e separate run of the algorithm for every digit, with £ =6

e centers were initialized by samples chosen from the training data set randomly
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Example: found RBF-centers after 3 runs

e shown: 60 RBF-centers of the digits after 3 backpropagation runs of the RBF-
Network

e hardly a difference can be seen in comparison to k-means, but. ..
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Example: Comparison of k-means and RBF-Network

e '
=

i P e T

NERCHECEE [

e here: Eucledian distance of the 60 RBF-centers before and after training

e Centers are sorted by class with the first 6 columns/rows representing the digit 0,
the next 6 rows/digits representing the digit 1 etc.

e Distances are coded as greyscale values: The smaller, the darker.
o left: a lot of small distances between centers of different classes (e.g. 2-3 and 8-9)
e these small distance cause misclassifications

e right: after training there are no small distances anymore.
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