
Rudolf Kruse Neural Networks 1

Neural Networks

Prof. Dr. Rudolf Kruse

Computational Intelligence Group
Faculty for Computer Science

kruse@iws.cs.uni-magdeburg.de

Rudolf Kruse Neural Networks 2

Training Multilayer Perceptrons

Training Multilayer Perceptrons: Gradient Descent

Rudolf Kruse Neural Networks 3

• Problem of logistic regression: Works only for two-layer perceptrons.

• More general approach: gradient descent.

• Necessary condition: differentiable activation and output functions.

x

y

z

x0

y0
∂z
∂x|x0

∂z
∂y |y0

"∇z|(x0,y0)

Illustration of the gradient of a real-valued function z = f(x, y) at a point (x0, y0).

It is "∇z|(x0,y0) =
(
∂z
∂x|x0,

∂z
∂y |y0

)
.

Gradient Descent: Formal Approach

Rudolf Kruse Neural Networks 4

General Idea: Approach the minimum of the error function in small steps.

Error function:

e =
∑

l∈Lfixed

e(l) =
∑

v∈Uout

ev =
∑

l∈Lfixed

∑

v∈Uout

e
(l)
v ,

Form gradient to determine the direction of the step:

"∇"wu
e =

∂e

∂ "wu
=

(

− ∂e

∂θu
,

∂e

∂wup1
, . . . ,

∂e

∂wupn

)

.

Exploit the sum over the training patterns:

"∇"wu
e =

∂e

∂ "wu
=

∂

∂ "wu

∑

l∈Lfixed

e(l) =
∑

l∈Lfixed

∂e(l)

∂ "wu
.

Gradient Descent: Formal Approach

Rudolf Kruse Neural Networks 5

Single pattern error depends on weights only through the network input:

"∇"wu
e(l) =

∂e(l)

∂ "wu
=

∂e(l)

∂ net
(l)
u

∂ net
(l)
u

∂ "wu

.

Since net
(l)
u = "wu"in

(l)
u we have for the second factor

∂ net
(l)
u

∂ "wu
= "in

(l)
u .

For the first factor we consider the error e(l) for the training pattern l = ("ı (l),"o (l)):

e(l) =
∑

v∈Uout

e
(l)
u =

∑

v∈Uout

(
o
(l)
v − out

(l)
v

)2
,

i.e. the sum of the errors over all output neurons.

Gradient Descent: Formal Approach

Rudolf Kruse Neural Networks 6

Therefore we have

∂e(l)

∂ net
(l)
u

=
∂
∑

v∈Uout

(
o
(l)
v − out

(l)
v

)2

∂ net
(l)
u

=
∑

v∈Uout

∂
(
o
(l)
v − out

(l)
v

)2

∂ net
(l)
u

.

Since only the actual output out
(l)
v of an output neuron v depends on the network

input net
(l)
u of the neuron u we are considering, it is

∂e(l)

∂ net
(l)
u

= −2
∑

v∈Uout

(
o
(l)
v − out

(l)
v

)
∂ out

(l)
v

∂ net
(l)
u︸ ︷︷ ︸

δ
(l)
u

,

which also introduces the abbreviation δ
(l)
u for the important sum appearing here.

Gradient Descent: Formal Approach

Rudolf Kruse Neural Networks 7

Distinguish two cases: • The neuron u is an output neuron.

• The neuron u is a hidden neuron.

In the first case we have

∀u ∈ Uout : δ
(l)
u =

(
o
(l)
u − out

(l)
u

)
∂ out

(l)
u

∂ net
(l)
u

Therefore we have for the gradient

∀u ∈ Uout : "∇"wu
e
(l)
u =

∂e
(l)
u

∂ "wu
= −2

(
o
(l)
u − out

(l)
u

)
∂ out

(l)
u

∂ net
(l)
u

"in
(l)
u

and thus for the weight change

∀u ∈ Uout : ∆"w
(l)
u = −η

2
"∇"wu

e
(l)
u = η

(
o
(l)
u − out

(l)
u

)
∂ out

(l)
u

∂ net
(l)
u

"in
(l)
u .

Gradient Descent: Formal Approach

Rudolf Kruse Neural Networks 8

Exact formulae depend on choice of activation and output function,
since it is

out
(l)
u = fout(act

(l)
u) = fout(fact(net

(l)
u)).

Consider special case with

• output function is the identity,

• activation function is logistic, i.e. fact(x) =
1

1+e−x .

The first assumption yields

∂ out
(l)
u

∂ net
(l)
u

=
∂ act

(l)
u

∂ net
(l)
u

= f ′act(net
(l)
u).

Gradient Descent: Formal Approach

Rudolf Kruse Neural Networks 9

For a logistic activation function we have

f ′act(x) =
d

dx

(
1 + e−x

)−1
= −

(
1 + e−x

)−2 (−e−x
)

=
1 + e−x − 1

(1 + e−x)2
=

1

1 + e−x

(
1− 1

1 + e−x

)

= fact(x) · (1− fact(x)),

and therefore

f ′act(net
(l)
u) = fact(net

(l)
u) ·

(
1− fact(net

(l)
u)
)
= out

(l)
u

(
1− out

(l)
u

)
.

The resulting weight change is therefore

∆"w
(l)
u = η

(
o
(l)
u − out

(l)
u

)
out

(l)
u

(
1− out

(l)
u

)
"in
(l)
u ,

which makes the computations very simple.

Error Backpropagation

Rudolf Kruse Neural Networks 10

Consider now: The neuron u is a hidden neuron, i.e. u ∈ Uk, 0 < k < r − 1.

The output out
(l)
v of an output neuron v depends on the network input net

(l)
u on-

ly indirectly through its successor neurons succ(u) = {s ∈ U | (u, s) ∈ C} =

{s1, . . . , sm} ⊆ Uk+1, namely through their network inputs net
(l)
s .

We apply the chain rule to obtain

δ
(l)
u =

∑

v∈Uout

∑

s∈succ(u)
(o
(l)
v − out

(l)
v)

∂ out
(l)
v

∂ net
(l)
s

∂ net
(l)
s

∂ net
(l)
u

.

Exchanging the sums yields

δ
(l)
u =

∑

s∈succ(u)




∑

v∈Uout

(o
(l)
v − out

(l)
v)

∂ out
(l)
v

∂ net
(l)
s



 ∂ net
(l)
s

∂ net
(l)
u

=
∑

s∈succ(u)
δ
(l)
s

∂ net
(l)
s

∂ net
(l)
u

.

Error Backpropagation

Rudolf Kruse Neural Networks 11

Consider the network input

net
(l)
s = "ws"in

(l)
s =




∑

p∈pred(s)
wsp out

(l)
p



− θs,

where one element of "in
(l)
s is the output out

(l)
u of the neuron u. Therefore it is

∂ net
(l)
s

∂ net
(l)
u

=




∑

p∈pred(s)
wsp

∂ out
(l)
p

∂ net
(l)
u



− ∂θs

∂ net
(l)
u

= wsu
∂ out

(l)
u

∂ net
(l)
u

,

The result is the recursive equation (error backpropagation)

δ
(l)
u =




∑

s∈succ(u)
δ
(l)
s wsu




∂ out

(l)
u

∂ net
(l)
u

.

Error Backpropagation

Rudolf Kruse Neural Networks 12

The resulting formula for the weight change is

∆"w
(l)
u = −η

2
"∇"wu

e(l) = η δ
(l)
u "in

(l)
u = η




∑

s∈succ(u)
δ
(l)
s wsu




∂ out

(l)
u

∂ net
(l)
u

"in
(l)
u .

Consider again the special case with

• output function is the identity,

• activation function is logistic.

The resulting formula for the weight change is then

∆"w
(l)
u = η




∑

s∈succ(u)
δ
(l)
s wsu



 out
(l)
u (1− out

(l)
u) "in

(l)
u .

Error Backpropagation: Cookbook Recipe

Rudolf Kruse Neural Networks 13

∀u ∈ Uin :

out
(l)
u = ex

(l)
u

forward
propagation:

∀u ∈ Uhidden ∪ Uout :

out
(l)
u =

(
1 + exp

(
−∑

p∈pred(u)wup out
(l)
p

))−1

• logistic
activation
function

• implicit
bias value

x1

x2

xn

... ...

... ...

· · ·

· · ·

...

...

y1

y2

ym

∀u ∈ Uhidden :

δ
(l)
u =

(∑
s∈succ(u) δ

(l)
s wsu

)
λ
(l)
u

backward
propagation:

∀u ∈ Uout :

δ
(l)
u =

(
o
(l)
u − out

(l)
u

)
λ
(l)
u

error factor:

λ
(l)
u = out

(l)
u

(
1− out

(l)
u

)activation
derivative:

weight
change:

∆w
(l)
up = η δ

(l)
u out

(l)
p

Gradient Descent: Examples

Rudolf Kruse Neural Networks 14

Gradient descent training for the negation ¬x

θx
w y

x y

0 1
1 0

error for x = 0

w

θ

e

−4
−2
0

2
4

−4 −2 0 2 4

1

2

1

error for x = 1

w

θ

e

−4
−2
0

2
4

−4 −2 0 2 4

1

2

sum of errors

w

θ

e

−4
−2
0

2
4

−4 −2 0 2 4

1

2

1

Gradient Descent: Examples

Rudolf Kruse Neural Networks 15

epoch θ w error

0 3.00 3.50 1.307
20 3.77 2.19 0.986
40 3.71 1.81 0.970
60 3.50 1.53 0.958
80 3.15 1.24 0.937
100 2.57 0.88 0.890
120 1.48 0.25 0.725
140 −0.06 −0.98 0.331
160 −0.80 −2.07 0.149
180 −1.19 −2.74 0.087
200 −1.44 −3.20 0.059
220 −1.62 −3.54 0.044

Online Training

epoch θ w error

0 3.00 3.50 1.295
20 3.76 2.20 0.985
40 3.70 1.82 0.970
60 3.48 1.53 0.957
80 3.11 1.25 0.934
100 2.49 0.88 0.880
120 1.27 0.22 0.676
140 −0.21 −1.04 0.292
160 −0.86 −2.08 0.140
180 −1.21 −2.74 0.084
200 −1.45 −3.19 0.058
220 −1.63 −3.53 0.044

Batch Training

Gradient Descent: Examples

Rudolf Kruse Neural Networks 16

Visualization of gradient descent for the negation ¬x

Online Training

!
!
!
!
!
!
!
!
!
!
!
!
!
!

θ

w

−4 −2 0 2 4
−4

−2

0

2

4

Batch Training

!
!
!
!
!
!
!
!
!
!
!

!
!
!

θ

w

−4 −2 0 2 4
−4

−2

0

2

4

Batch Training

w

θ

e

−4
−2
0

2
4

−4 −2 0 2 4

1

2

1

• Training is obviously successful.

• Error cannot vanish completely due to the properties of the logistic function.

Gradient Descent: Examples

Rudolf Kruse Neural Networks 17

Example function: f(x) =
5

6
x4 − 7x3 +

115

6
x2 − 18x + 6,

i xi f(xi) f ′(xi) ∆xi
0 0.200 3.112 −11.147 0.011
1 0.211 2.990 −10.811 0.011
2 0.222 2.874 −10.490 0.010
3 0.232 2.766 −10.182 0.010
4 0.243 2.664 −9.888 0.010
5 0.253 2.568 −9.606 0.010
6 0.262 2.477 −9.335 0.009
7 0.271 2.391 −9.075 0.009
8 0.281 2.309 −8.825 0.009
9 0.289 2.233 −8.585 0.009
10 0.298 2.160

6

5

4

3

2

1

0
0 1 2 3 4

Gradient descent with initial value 0.2 and learning rate 0.001.

Gradient Descent: Examples

Rudolf Kruse Neural Networks 18

Example function: f(x) =
5

6
x4 − 7x3 +

115

6
x2 − 18x + 6,

i xi f(xi) f ′(xi) ∆xi
0 1.500 2.719 3.500 −0.875
1 0.625 0.655 −1.431 0.358
2 0.983 0.955 2.554 −0.639
3 0.344 1.801 −7.157 1.789
4 2.134 4.127 0.567 −0.142
5 1.992 3.989 1.380 −0.345
6 1.647 3.203 3.063 −0.766
7 0.881 0.734 1.753 −0.438
8 0.443 1.211 −4.851 1.213
9 1.656 3.231 3.029 −0.757
10 0.898 0.766

6

5

4

3

2

1

0
0 1 2 3 4

start

Gradient descent with initial value 1.5 and learning rate 0.25.

Gradient Descent: Examples

Rudolf Kruse Neural Networks 19

Example function: f(x) =
5

6
x4 − 7x3 +

115

6
x2 − 18x + 6,

i xi f(xi) f ′(xi) ∆xi
0 2.600 3.816 −1.707 0.085
1 2.685 3.660 −1.947 0.097
2 2.783 3.461 −2.116 0.106
3 2.888 3.233 −2.153 0.108
4 2.996 3.008 −2.009 0.100
5 3.097 2.820 −1.688 0.084
6 3.181 2.695 −1.263 0.063
7 3.244 2.628 −0.845 0.042
8 3.286 2.599 −0.515 0.026
9 3.312 2.589 −0.293 0.015
10 3.327 2.585

6

5

4

3

2

1

0
0 1 2 3 4

Gradient descent with initial value 2.6 and learning rate 0.05.

Gradient Descent: Variants

Rudolf Kruse Neural Networks 20

Weight update rule:

w(t + 1) = w(t) +∆w(t)

Standard backpropagation:

∆w(t) = −η

2
∇we(t)

Manhattan training:

∆w(t) = −η sgn(∇we(t)).

i.e. considering only one direction (sign) and selecting a fixed increment

Momentum term:

∆w(t) = −η

2
∇we(t) + β ∆w(t− 1),

i.e. every step is dependent on the previous change thus speeding up the process.

Gradient Descent: Variants

Rudolf Kruse Neural Networks 21

Self-adaptive error backpropagation:

ηw(t) =






c− · ηw(t− 1), if ∇we(t) ·∇we(t− 1) < 0,
c+ · ηw(t− 1), if ∇we(t) ·∇we(t− 1) > 0

∧ ∇we(t− 1) ·∇we(t− 2) ≥ 0,
ηw(t− 1), otherwise.

Resilient error backpropagation:

∆w(t) =






c− ·∆w(t− 1), if ∇we(t) ·∇we(t− 1) < 0,
c+ ·∆w(t− 1), if ∇we(t) ·∇we(t− 1) > 0

∧ ∇we(t− 1) ·∇we(t− 2) ≥ 0,
∆w(t− 1), otherwise.

Typical values: c− ∈ [0.5, 0.7] and c+ ∈ [1.05, 1.2].

Gradient Descent: Variants

Rudolf Kruse Neural Networks 22

Quickpropagation e

w
m w(t+1) w(t) w(t−1)

e(t)

e(t−1)

apex

w

∇we

w(t+1) w(t) w(t−1)

∇we(t)

∇we(t−1)

0The weight update rule can be
derived from the triangles:

∆w(t) =
∇we(t)

∇we(t− 1)−∇we(t)
·∆w(t− 1).

Gradient Descent: Examples

Rudolf Kruse Neural Networks 23

epoch θ w error

0 3.00 3.50 1.295
20 3.76 2.20 0.985
40 3.70 1.82 0.970
60 3.48 1.53 0.957
80 3.11 1.25 0.934
100 2.49 0.88 0.880
120 1.27 0.22 0.676
140 −0.21 −1.04 0.292
160 −0.86 −2.08 0.140
180 −1.21 −2.74 0.084
200 −1.45 −3.19 0.058
220 −1.63 −3.53 0.044

without momentum term

epoch θ w error

0 3.00 3.50 1.295
10 3.80 2.19 0.984
20 3.75 1.84 0.971
30 3.56 1.58 0.960
40 3.26 1.33 0.943
50 2.79 1.04 0.910
60 1.99 0.60 0.814
70 0.54 −0.25 0.497
80 −0.53 −1.51 0.211
90 −1.02 −2.36 0.113
100 −1.31 −2.92 0.073
110 −1.52 −3.31 0.053
120 −1.67 −3.61 0.041

with momentum term

Gradient Descent: Examples

Rudolf Kruse Neural Networks 24

without momentum term

!
!
!
!
!
!
!
!
!
!
!
!
!
!

θ

w

−4 −2 0 2 4
−4

−2

0

2

4

with momentum term

!
!
!
!
!
!
!
!
!
!
!

!
!
!

θ

w

−4 −2 0 2 4
−4

−2

0

2

4

with momentum term

w

θ

e

−4
−2
0

2
4

−4 −2 0 2 4

1

2

1

• Dots show position every 20 (without momentum term)
or every 10 epochs (with momentum term).

• Learning with a momentum term is about twice as fast.

Gradient Descent: Examples

Rudolf Kruse Neural Networks 25

Example function: f(x) =
5

6
x4 − 7x3 +

115

6
x2 − 18x + 6,

i xi f(xi) f ′(xi) ∆xi
0 0.200 3.112 −11.147 0.011
1 0.211 2.990 −10.811 0.021
2 0.232 2.771 −10.196 0.029
3 0.261 2.488 −9.368 0.035
4 0.296 2.173 −8.397 0.040
5 0.337 1.856 −7.348 0.044
6 0.380 1.559 −6.277 0.046
7 0.426 1.298 −5.228 0.046
8 0.472 1.079 −4.235 0.046
9 0.518 0.907 −3.319 0.045
10 0.562 0.777

6

5

4

3

2

1

0
0 1 2 3 4

gradient descent with momentum term (β = 0.9)

Gradient Descent: Examples

Rudolf Kruse Neural Networks 26

Example function: f(x) =
5

6
x4 − 7x3 +

115

6
x2 − 18x + 6,

i xi f(xi) f ′(xi) ∆xi
0 1.500 2.719 3.500 −1.050
1 0.450 1.178 −4.699 0.705
2 1.155 1.476 3.396 −0.509
3 0.645 0.629 −1.110 0.083
4 0.729 0.587 0.072 −0.005
5 0.723 0.587 0.001 0.000
6 0.723 0.587 0.000 0.000
7 0.723 0.587 0.000 0.000
8 0.723 0.587 0.000 0.000
9 0.723 0.587 0.000 0.000
10 0.723 0.587

6

5

4

3

2

1

0
0 1 2 3 4

Gradient descent with self-adapting learning rate (c+ = 1.2, c− = 0.5).

Other Extensions of Error Backpropagation

Rudolf Kruse Neural Networks 27

Flat Spot Elimination:

∆w(t) = −η

2
∇we(t) + ζ

• Eliminates slow learning in saturation region of logistic function.

• Counteracts the decay of the error signals over the layers.

Weight Decay:

∆w(t) = −η

2
∇we(t)− ξ w(t),

• Helps to improve the robustness of the training results.

• Can be derived from an extended error function penalizing large weights:

e∗ = e +
ξ

2

∑

u∈Uout∪Uhidden

(
θ2u +

∑

p∈pred(u)
w2
up

)
.

Rudolf Kruse Neural Networks 28

Sensitivity Analysis

Sensitivity Analysis

Rudolf Kruse Neural Networks 29

Problem: the knowledge stored in a neural network is difficult to understand:

• Geometrical (or other) interpretation only feasible for simple networks, but not
for complex practical problems

• Difficulties in imagining higher dimensional spaces.

• The neural network becomes a black box calculating inputs for outputs in a ma-
gical way.

Idea: Determine the influence of single input values on the output of the network

→ Sensitivity Analysis

Sensitivity Analysis

Rudolf Kruse Neural Networks 30

Question: How important are different inputs to the network?

Idea: Determine change of output relative to change of input.

∀u ∈ Uin : s(u) =
1

|Lfixed|
∑

l∈Lfixed

∑

v∈Uout

∂ out
(l)
v

∂ ex
(l)
u

.

Formal derivation: Apply chain rule.

∂ outv
∂ exu

=
∂ outv
∂ outu

∂ outu
∂ exu

=
∂ outv
∂ netv

∂ netv
∂ outu

∂ outu
∂ exu

.

Simplification: Assume that the output function is the identity.

∂ outu
∂ exu

= 1.

Sensitivity Analysis

Rudolf Kruse Neural Networks 31

For the second factor we get the general result:

∂ netv
∂ outu

=
∂

∂ outu

∑

p∈pred(v)
wvp outp =

∑

p∈pred(v)
wvp

∂ outp
∂ outu

.

This leads to the recursion formula

∂ outv
∂ outu

=
∂ outv
∂ netv

∂ netv
∂ outu

=
∂ outv
∂ netv

∑

p∈pred(v)
wvp

∂ outp
∂ outu

.

However, for the first hidden layer we get

∂ netv
∂ outu

= wvu, therefore
∂ outv
∂ outu

=
∂ outv
∂ netv

wvu.

This formula marks the start of the recursion.

Sensitivity Analysis

Rudolf Kruse Neural Networks 32

Consider as usual the special case with

• output function is the identity,

• activation function is logistic.

The recursion formula is in this case

∂ outv
∂ outu

= outv(1− outv)
∑

p∈pred(v)
wvp

∂ outp
∂ outu

and the anchor of the recursion is

∂ outv
∂ outu

= outv(1− outv)wvu.

Rudolf Kruse Neural Networks 33

Example: Recognizing handwritten zip codes

Example: Recognizing handwritten zip codes

Rudolf Kruse Neural Networks 34

source: Le Cun u.a. (1990) Advances in NIPS :2, 396–404

• 9298 segmented and digitized digits of handwritten postal codes

• survey: post office in Buffalo, NY, USA (U.S. Postal Service)

• digits were written by many different people:
high variance in height, style of writing, writing tools and care.

• in addition 3349 printed digits in 35 different fonts

Example: Recognizing handwritten zip codes

Rudolf Kruse Neural Networks 35

source: Schölkopf und Smola (2002)

• aim: Learning a MLP for re-
cognizing zip codes

• training set size: 7291 hand-
written and 2549 printed di-
gits

• validation set size: 2007 hand-
written and 700 printed digits

• both sets include several
ambiguous, unclassified or
misclassified samples

• shown left: 100 validation set
digits

Example: Recognizing handwritten zip codes

Rudolf Kruse Neural Networks 36

• challenge: every connection ought to be adaptabe (though with strong limitations)

• training by error backpropagation

• input: 16× 16 pixel pattern of the normalized digit

• output: 10 neurons, 1 per class
If a pattern is associated with a class, the output neuron i shall output +1 while
all other neurons output −1

• problem: for fully interconnected neural network with multiple hidden layers there
are too many parameters to be trained

• solution: restricted connection pattern

Zip codes: network architecture

Rudolf Kruse Neural Networks 37

• 4 hiden layers H1, H2, H3 und H4

• neuron groups in H1, H3 share the same weights → less parameters

• neurons in H2, H4 calculate average values → Input values for upper layers

• input layer: enlarge from 16× 16 to 28× 28 pixel for considerig thresholds

Zip codes: Layer H1

Rudolf Kruse Neural Networks 38

• 4 groups of 24× 24 = 576 neurons assembled as 4 independent feature maps.

• every neuron in a feature map takes a 5× 5-Input

• every neuron in a feature map hold the same parameters

• these parameters may differ between the feature maps

Zip codes: Layer H2

Rudolf Kruse Neural Networks 39

• H2 is for forwarding: 4 maps of 12× 12 = 144 neurons each

• each neuron in these maps receives an input from 4 neurons of the corresponding
map in H1

• all weights are equal, even within one single neuron

• conclusion: H2 is only for forwarding

Zip codes: Layer H3

Rudolf Kruse Neural Networks 40

• in H3: 12 feature maps with 8× 8 = 64 neurons each

• connection pattern between H2 and H3 is similar to the pattern between the Input
and H1, but with more 2D-maps in H3.

• each neuron consists of one or two 5 × 5 neighbors (centered around neurons at
identical positions of each H2-map)

• maps in H2 that serve as input for h3 are interconnected as follows:

1 2 3 4 5 6 7 8 9 10 11 12
1 X X X X X
2 X X X X X
3 X X X X X
4 X X X X X

• therefore the network consists of two almost independent modules

Zip codes: Layer H4 and output

Rudolf Kruse Neural Networks 41

• layer H4 serves the same purpose as H2

• it consists of 12 maps of 4× 4 = 16 neurons each

• the output layer contains 10 neurons and is fully interconnected with H4

• in total: 4635 neurons, 98442 interconnections, 2578 independent parameters

• this structure has been designed with geometrical background knowledge of digit
pattern recognition

Zip codes: Results

Rudolf Kruse Neural Networks 42

atypical digits that have been recognized correctly

• training error after 30 training iterations: 1,1%

• validation error: 3,4%

• all classification errors occur with handwritten digits

• compare human error: 2,5%

• training on a SUN SPARC machine in 1989 took three days

• the trained network was implemented on a hardware chip

• a coprocessor in a computer with video camera is able to classify more than 10
digits per second

• or 30 classifications per second on normalized digits

Demonstration Software: xmlp/wmlp

Rudolf Kruse Neural Networks 43

Demonstration of multilayer perceptron training:

• Visualization of the training process

• Biimplication and Exclusive Or, two continuous functions

• http://www.borgelt.net/mlpd.html

Multilayer Perceptron Software: mlp/mlpgui

Rudolf Kruse Neural Networks 44

Software for training general multilayer perceptrons:

• Command line version written in C, fast training

• Graphical user interface in Java, easy to use

• http://www.borgelt.net/mlp.html, http://www.borgelt.net/mlpgui.html

