

Neural Networks

Prof. Dr. Rudolf Kruse

Computational Intelligence Group Faculty for Computer Science kruse@iws.cs.uni-magdeburg.de

Rudolf Kruse

Training Multilayer Perceptrons

Training Multilayer Perceptrons: Gradient Descent

- Problem of logistic regression: Works only for two-layer perceptrons.
- More general approach: **gradient descent**.
- Necessary condition: differentiable activation and output functions.

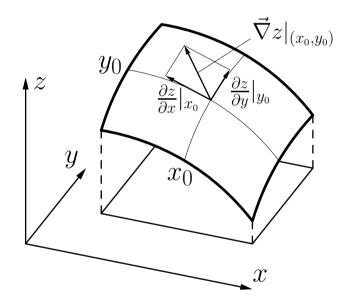


Illustration of the gradient of a real-valued function z = f(x, y) at a point (x_0, y_0) . It is $\vec{\nabla} z|_{(x_0, y_0)} = \left(\frac{\partial z}{\partial x}|_{x_0}, \frac{\partial z}{\partial y}|_{y_0}\right)$. General Idea: Approach the minimum of the error function in small steps.

Error function:

$$e = \sum_{l \in L_{\text{fixed}}} e^{(l)} = \sum_{v \in U_{\text{out}}} e_v = \sum_{l \in L_{\text{fixed}}} \sum_{v \in U_{\text{out}}} e_v^{(l)},$$

Form gradient to determine the direction of the step:

$$\vec{\nabla}_{\vec{w}_u} e = \frac{\partial e}{\partial \vec{w}_u} = \left(-\frac{\partial e}{\partial \theta_u}, \frac{\partial e}{\partial w_{up_1}}, \dots, \frac{\partial e}{\partial w_{up_n}}\right).$$

Exploit the sum over the training patterns:

$$\vec{\nabla}_{\vec{w}_u} e = \frac{\partial e}{\partial \vec{w}_u} = \frac{\partial}{\partial \vec{w}_u} \sum_{l \in L_{\text{fixed}}} e^{(l)} = \sum_{l \in L_{\text{fixed}}} \frac{\partial e^{(l)}}{\partial \vec{w}_u}$$

Gradient Descent: Formal Approach

Single pattern error depends on weights only through the network input:

$$\vec{\nabla}_{\vec{w}_u} e^{(l)} = \frac{\partial e^{(l)}}{\partial \vec{w}_u} = \frac{\partial e^{(l)}}{\partial \operatorname{net}_u^{(l)}} \frac{\partial \operatorname{net}_u^{(l)}}{\partial \vec{w}_u}.$$

Since $\operatorname{net}_{u}^{(l)} = \vec{w}_{u} \operatorname{in}_{u}^{(l)}$ we have for the second factor

$$\frac{\partial \operatorname{net}_{u}^{(l)}}{\partial \vec{w}_{u}} = \operatorname{in}_{u}^{(l)}.$$

For the first factor we consider the error $e^{(l)}$ for the training pattern $l = (\vec{i}^{(l)}, \vec{o}^{(l)})$:

$$e^{(l)} = \sum_{v \in U_{\text{out}}} e_u^{(l)} = \sum_{v \in U_{\text{out}}} \left(o_v^{(l)} - \text{out}_v^{(l)} \right)^2,$$

i.e. the sum of the errors over all output neurons.

Gradient Descent: Formal Approach

Therefore we have

$$\frac{\partial e^{(l)}}{\partial \operatorname{net}_{u}^{(l)}} = \frac{\partial \sum_{v \in U_{\text{out}}} \left(o_{v}^{(l)} - \operatorname{out}_{v}^{(l)} \right)^{2}}{\partial \operatorname{net}_{u}^{(l)}} = \sum_{v \in U_{\text{out}}} \frac{\partial \left(o_{v}^{(l)} - \operatorname{out}_{v}^{(l)} \right)^{2}}{\partial \operatorname{net}_{u}^{(l)}}.$$

Since only the actual output $\operatorname{out}_{v}^{(l)}$ of an output neuron v depends on the network input $\operatorname{net}_{u}^{(l)}$ of the neuron u we are considering, it is

$$\frac{\partial e^{(l)}}{\partial \operatorname{net}_{u}^{(l)}} = -2 \underbrace{\sum_{v \in U_{\text{out}}} \left(o_{v}^{(l)} - \operatorname{out}_{v}^{(l)} \right) \frac{\partial \operatorname{out}_{v}^{(l)}}{\partial \operatorname{net}_{u}^{(l)}}}_{\delta_{u}^{(l)}},$$

which also introduces the abbreviation $\delta_u^{(l)}$ for the important sum appearing here.

Distinguish two cases:

- The neuron u is an **output neuron**.
- The neuron u is a **hidden neuron**.

In the first case we have

$$\forall u \in U_{\text{out}}: \qquad \delta_u^{(l)} = \left(o_u^{(l)} - \operatorname{out}_u^{(l)}\right) \frac{\partial \operatorname{out}_u^{(l)}}{\partial \operatorname{net}_u^{(l)}}$$

Therefore we have for the gradient

$$\forall u \in U_{\text{out}}: \qquad \vec{\nabla}_{\vec{w}_u} e_u^{(l)} = \frac{\partial e_u^{(l)}}{\partial \vec{w}_u} = -2 \left(o_u^{(l)} - \text{out}_u^{(l)} \right) \frac{\partial \text{out}_u^{(l)}}{\partial \text{net}_u^{(l)}} \vec{n}_u^{(l)}$$

and thus for the weight change

$$\forall u \in U_{\text{out}}: \qquad \Delta \vec{w}_u^{(l)} = -\frac{\eta}{2} \vec{\nabla}_{\vec{w}_u} e_u^{(l)} = \eta \left(o_u^{(l)} - \text{out}_u^{(l)} \right) \frac{\partial \text{out}_u^{(l)}}{\partial \text{net}_u^{(l)}} \vec{n}_u^{(l)}.$$

Exact formulae depend on choice of activation and output function, since it is

$$\operatorname{out}_{u}^{(l)} = f_{\operatorname{out}}(\operatorname{act}_{u}^{(l)}) = f_{\operatorname{out}}(f_{\operatorname{act}}(\operatorname{net}_{u}^{(l)})).$$

Consider special case with

- output function is the identity,
- activation function is logistic, i.e. $f_{\text{act}}(x) = \frac{1}{1+e^{-x}}$.

The first assumption yields

$$\frac{\partial \operatorname{out}_{u}^{(l)}}{\partial \operatorname{net}_{u}^{(l)}} = \frac{\partial \operatorname{act}_{u}^{(l)}}{\partial \operatorname{net}_{u}^{(l)}} = f_{\operatorname{act}}^{\prime}(\operatorname{net}_{u}^{(l)}).$$

For a logistic activation function we have

$$f'_{\text{act}}(x) = \frac{d}{dx} \left(1 + e^{-x} \right)^{-1} = -\left(1 + e^{-x} \right)^{-2} \left(-e^{-x} \right)$$
$$= \frac{1 + e^{-x} - 1}{(1 + e^{-x})^2} = \frac{1}{1 + e^{-x}} \left(1 - \frac{1}{1 + e^{-x}} \right)$$
$$= f_{\text{act}}(x) \cdot (1 - f_{\text{act}}(x)),$$

and therefore

$$f'_{\text{act}}(\operatorname{net}_{u}^{(l)}) = f_{\text{act}}(\operatorname{net}_{u}^{(l)}) \cdot \left(1 - f_{\text{act}}(\operatorname{net}_{u}^{(l)})\right) = \operatorname{out}_{u}^{(l)}\left(1 - \operatorname{out}_{u}^{(l)}\right).$$

The resulting weight change is therefore

$$\Delta \vec{w}_u^{(l)} = \eta \left(o_u^{(l)} - \operatorname{out}_u^{(l)} \right) \operatorname{out}_u^{(l)} \left(1 - \operatorname{out}_u^{(l)} \right) \, \vec{\operatorname{in}}_u^{(l)},$$

which makes the computations very simple.

Consider now: The neuron u is a **hidden neuron**, i.e. $u \in U_k$, 0 < k < r - 1.

The output $\operatorname{out}_{v}^{(l)}$ of an output neuron v depends on the network input $\operatorname{net}_{u}^{(l)}$ only indirectly through its successor neurons $\operatorname{succ}(u) = \{s \in U \mid (u,s) \in C\} = \{s_1, \ldots, s_m\} \subseteq U_{k+1}$, namely through their network inputs $\operatorname{net}_{s}^{(l)}$.

We apply the chain rule to obtain

$$\delta_u^{(l)} = \sum_{v \in U_{\text{out}}} \sum_{s \in \text{succ}(u)} (o_v^{(l)} - \text{out}_v^{(l)}) \frac{\partial \operatorname{out}_v^{(l)}}{\partial \operatorname{net}_s^{(l)}} \frac{\partial \operatorname{net}_s^{(l)}}{\partial \operatorname{net}_u^{(l)}}.$$

Exchanging the sums yields

$$\delta_u^{(l)} = \sum_{s \in \operatorname{succ}(u)} \left(\sum_{v \in U_{\text{out}}} (o_v^{(l)} - \operatorname{out}_v^{(l)}) \frac{\partial \operatorname{out}_v^{(l)}}{\partial \operatorname{net}_s^{(l)}} \right) \frac{\partial \operatorname{net}_s^{(l)}}{\partial \operatorname{net}_u^{(l)}} = \sum_{s \in \operatorname{succ}(u)} \delta_s^{(l)} \quad \frac{\partial \operatorname{net}_s^{(l)}}{\partial \operatorname{net}_u^{(l)}}.$$

Consider the network input

$$\operatorname{net}_{s}^{(l)} = \vec{w}_{s} \operatorname{in}_{s}^{(l)} = \left(\sum_{p \in \operatorname{pred}(s)} w_{sp} \operatorname{out}_{p}^{(l)}\right) - \theta_{s},$$

where one element of $\vec{n}_s^{(l)}$ is the output $out_u^{(l)}$ of the neuron u. Therefore it is

$$\frac{\partial \operatorname{net}_{s}^{(l)}}{\partial \operatorname{net}_{u}^{(l)}} = \left(\sum_{p \in \operatorname{pred}(s)} w_{sp} \frac{\partial \operatorname{out}_{p}^{(l)}}{\partial \operatorname{net}_{u}^{(l)}}\right) - \frac{\partial \theta_{s}}{\partial \operatorname{net}_{u}^{(l)}} = w_{su} \frac{\partial \operatorname{out}_{u}^{(l)}}{\partial \operatorname{net}_{u}^{(l)}},$$

The result is the recursive equation (error backpropagation)

$$\delta_u^{(l)} = \left(\sum_{s \in \operatorname{succ}(u)} \delta_s^{(l)} w_{su}\right) \frac{\partial \operatorname{out}_u^{(l)}}{\partial \operatorname{net}_u^{(l)}}.$$

Error Backpropagation

The resulting formula for the weight change is

$$\Delta \vec{w}_u^{(l)} = -\frac{\eta}{2} \vec{\nabla}_{\vec{w}_u} e^{(l)} = \eta \ \delta_u^{(l)} \ \vec{\mathrm{in}}_u^{(l)} = \eta \left(\sum_{s \in \mathrm{succ}(u)} \delta_s^{(l)} w_{su} \right) \frac{\partial \operatorname{out}_u^{(l)}}{\partial \operatorname{net}_u^{(l)}} \ \vec{\mathrm{in}}_u^{(l)}.$$

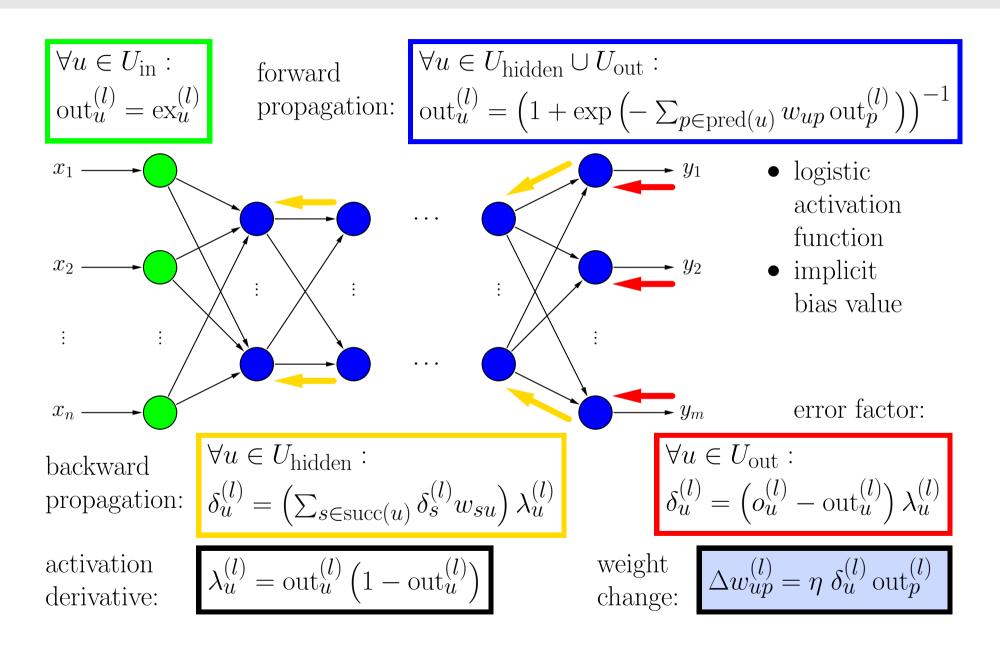
Consider again the special case with

- output function is the identity,
- activation function is logistic.

The resulting formula for the weight change is then

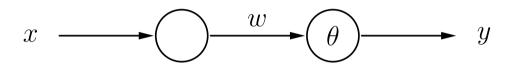
$$\Delta \vec{w}_u^{(l)} = \eta \left(\sum_{s \in \text{succ}(u)} \delta_s^{(l)} w_{su} \right) \text{out}_u^{(l)} \left(1 - \text{out}_u^{(l)} \right) \vec{\text{in}}_u^{(l)}$$

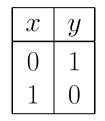
Error Backpropagation: Cookbook Recipe

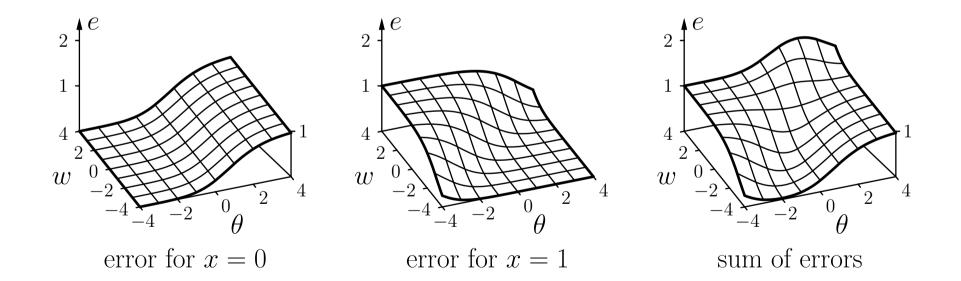


Rudolf Kruse

Gradient descent training for the negation $\neg x$







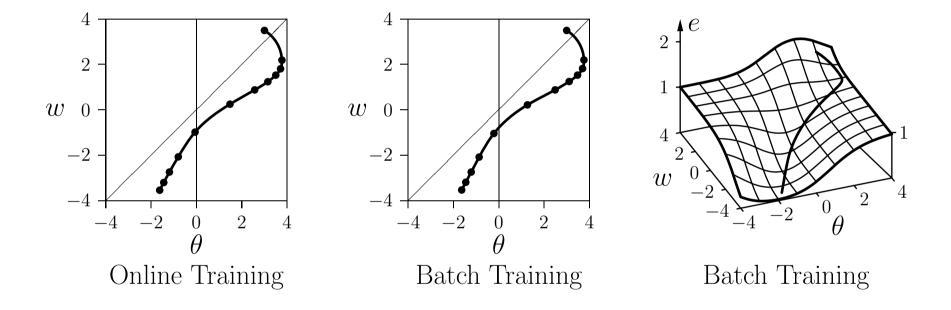
epoch	heta	w	error
0	3.00	3.50	1.307
20	3.77	2.19	0.986
40	3.71	1.81	0.970
60	3.50	1.53	0.958
80	3.15	1.24	0.937
100	2.57	0.88	0.890
120	1.48	0.25	0.725
140	-0.06	-0.98	0.331
160	-0.80	-2.07	0.149
180	-1.19	-2.74	0.087
200	-1.44	-3.20	0.059
220	-1.62	-3.54	0.044

Online Training

epoch	heta	w	error
0	3.00	3.50	1.295
20	3.76	2.20	0.985
40	3.70	1.82	0.970
60	3.48	1.53	0.957
80	3.11	1.25	0.934
100	2.49	0.88	0.880
120	1.27	0.22	0.676
140	-0.21	-1.04	0.292
160	-0.86	-2.08	0.140
180	-1.21	-2.74	0.084
200	-1.45	-3.19	0.058
220	-1.63	-3.53	0.044

Batch Training

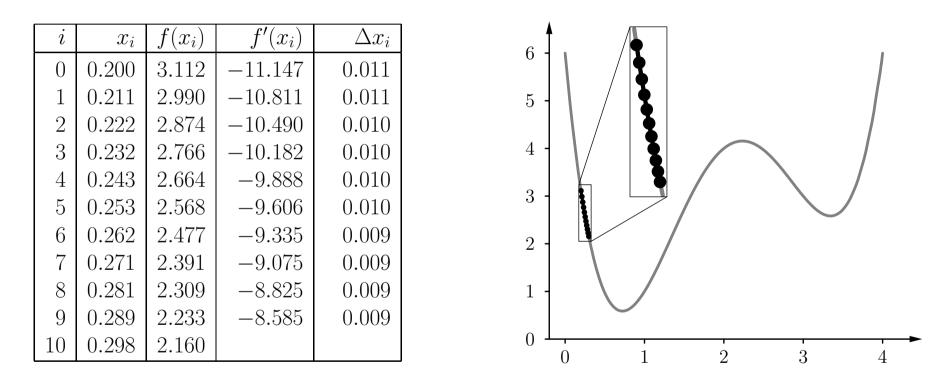
Visualization of gradient descent for the negation $\neg x$



- Training is obviously successful.
- Error cannot vanish completely due to the properties of the logistic function.

Example function:

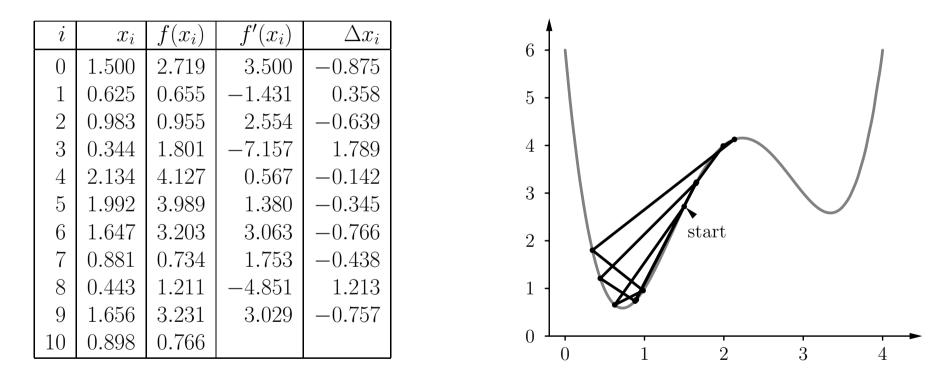
$$f(x) = \frac{5}{6}x^4 - 7x^3 + \frac{115}{6}x^2 - 18x + 6,$$



Gradient descent with initial value 0.2 and learning rate 0.001.

Example function:

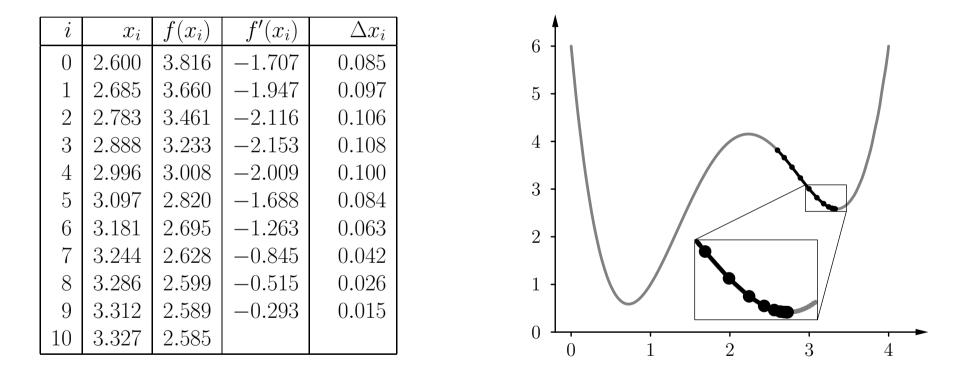
$$f(x) = \frac{5}{6}x^4 - 7x^3 + \frac{115}{6}x^2 - 18x + 6,$$



Gradient descent with initial value 1.5 and learning rate 0.25.

Example function:

$$f(x) = \frac{5}{6}x^4 - 7x^3 + \frac{115}{6}x^2 - 18x + 6,$$



Gradient descent with initial value 2.6 and learning rate 0.05.

Weight update rule:

$$w(t+1) = w(t) + \Delta w(t)$$

Standard backpropagation:

$$\Delta w(t) = -\frac{\eta}{2} \nabla_w e(t)$$

Manhattan training:

$$\Delta w(t) = -\eta \operatorname{sgn}(\nabla_w e(t)).$$

i.e. considering only one direction (sign) and selecting a fixed increment

Momentum term:

$$\Delta w(t) = -\frac{\eta}{2} \nabla_w e(t) + \beta \ \Delta w(t-1),$$

i.e. every step is dependent on the previous change thus speeding up the process.

Self-adaptive error backpropagation:

$$\eta_w(t) = \begin{cases} c^- \cdot \eta_w(t-1), & \text{if } \nabla_w e(t) & \cdot \nabla_w e(t-1) < 0, \\ c^+ \cdot \eta_w(t-1), & \text{if } \nabla_w e(t) & \cdot \nabla_w e(t-1) > 0 \\ & \wedge \nabla_w e(t-1) \cdot \nabla_w e(t-2) \ge 0, \\ & \eta_w(t-1), & \text{otherwise.} \end{cases}$$

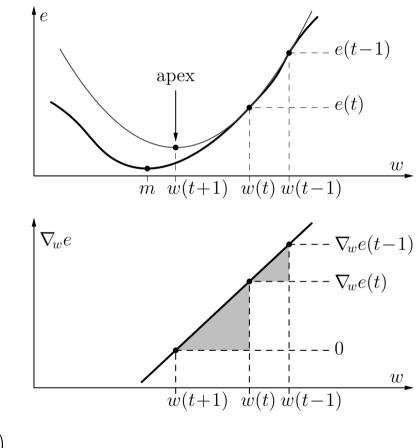
Resilient error backpropagation:

$$\Delta w(t) = \begin{cases} c^{-} \cdot \Delta w(t-1), & \text{if } \nabla_w e(t) & \cdot \nabla_w e(t-1) < 0, \\ c^{+} \cdot \Delta w(t-1), & \text{if } \nabla_w e(t) & \cdot \nabla_w e(t-1) > 0, \\ & \wedge \nabla_w e(t-1) \cdot \nabla_w e(t-2) \ge 0, \\ \Delta w(t-1), & \text{otherwise.} \end{cases}$$

Typical values: $c^- \in [0.5, 0.7]$ and $c^+ \in [1.05, 1.2]$.

Gradient Descent: Variants

Quickpropagation



The weight update rule can be derived from the triangles:

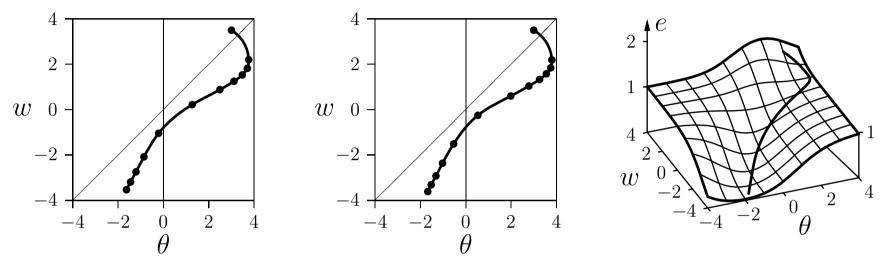
$$\Delta w(t) = \frac{\nabla_w e(t)}{\nabla_w e(t-1) - \nabla_w e(t)} \cdot \Delta w(t-1).$$

epoch	θ	w	error
0	3.00	3.50	1.295
20	3.76	2.20	0.985
40	3.70	1.82	0.970
60	3.48	1.53	0.957
80	3.11	1.25	0.934
100	2.49	0.88	0.880
120	1.27	0.22	0.676
140	-0.21	-1.04	0.292
160	-0.86	-2.08	0.140
180	-1.21	-2.74	0.084
200	-1.45	-3.19	0.058
220	-1.63	-3.53	0.044

without momentum term

epoch	θ	w	error
0	3.00	3.50	1.295
10	3.80	2.19	0.984
20	3.75	1.84	0.971
30	3.56	1.58	0.960
40	3.26	1.33	0.943
50	2.79	1.04	0.910
60	1.99	0.60	0.814
70	0.54	-0.25	0.497
80	-0.53	-1.51	0.211
90	-1.02	-2.36	0.113
100	-1.31	-2.92	0.073
110	-1.52	-3.31	0.053
120	-1.67	-3.61	0.041

with momentum term



without momentum term

with momentum term

with momentum term

- Dots show position every 20 (without momentum term) or every 10 epochs (with momentum term).
- Learning with a momentum term is about twice as fast.

Example function:

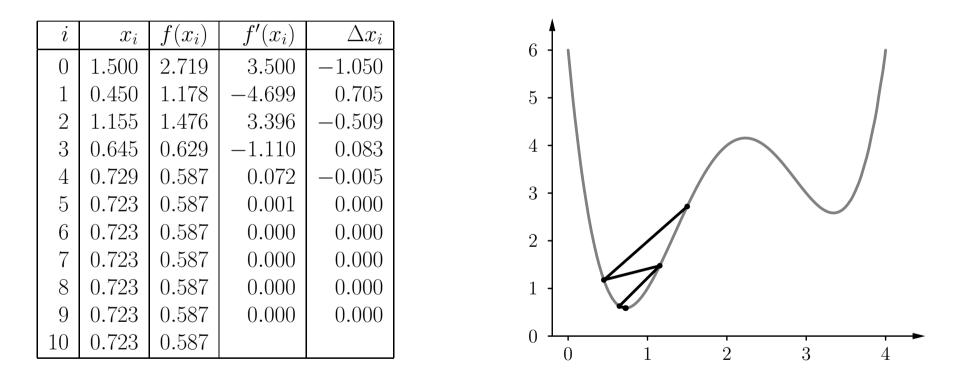
$$f(x) = \frac{5}{6}x^4 - 7x^3 + \frac{115}{6}x^2 - 18x + 6,$$

i	x_i	$f(x_i)$	$f'(x_i)$	Δx_i
0	0.200	3.112	-11.147	0.011
1	0.211	2.990	-10.811	0.021
2	0.232	2.771	-10.196	0.029
3	0.261	2.488	-9.368	0.035
4	0.296	2.173	-8.397	0.040
5	0.337	1.856	-7.348	0.044
6	0.380	1.559	-6.277	0.046
7	0.426	1.298	-5.228	0.046
8	0.472	1.079	-4.235	0.046
9	0.518	0.907	-3.319	0.045
10	0.562	0.777		

gradient descent with momentum term $(\beta = 0.9)$

Example function:

$$f(x) = \frac{5}{6}x^4 - 7x^3 + \frac{115}{6}x^2 - 18x + 6,$$



Gradient descent with self-adapting learning rate ($c^+ = 1.2, c^- = 0.5$).

Flat Spot Elimination:

$$\Delta w(t) = -\frac{\eta}{2} \nabla_{w} e(t) + \zeta$$

- Eliminates slow learning in saturation region of logistic function.
- Counteracts the decay of the error signals over the layers.

Weight Decay:

$$\Delta w(t) = -\frac{\eta}{2} \nabla_w e(t) - \xi w(t),$$

- Helps to improve the robustness of the training results.
- Can be derived from an extended error function penalizing large weights:

$$e^* = e + \frac{\xi}{2} \sum_{u \in U_{\text{out}} \cup U_{\text{hidden}}} \left(\theta_u^2 + \sum_{p \in \text{pred}(u)} w_{up}^2\right).$$

Sensitivity Analysis

Problem: the knowledge stored in a neural network is difficult to understand:

- Geometrical (or other) interpretation only feasible for simple networks, but not for complex practical problems
- Difficulties in imagining higher dimensional spaces.
- The neural network becomes a *black box* calculating inputs for outputs in a magical way.

Idea: Determine the influence of single input values on the output of the network

 \rightarrow Sensitivity Analysis

Question: How important are different inputs to the network?Idea: Determine change of output relative to change of input.

$$\forall u \in U_{\text{in}} : \qquad s(u) = \frac{1}{|L_{\text{fixed}}|} \sum_{l \in L_{\text{fixed}}} \sum_{v \in U_{\text{out}}} \frac{\partial \operatorname{out}_{v}^{(l)}}{\partial \operatorname{ex}_{u}^{(l)}}.$$

Formal derivation: Apply chain rule.

$$\frac{\partial \operatorname{out}_v}{\partial \operatorname{ex}_u} = \frac{\partial \operatorname{out}_v}{\partial \operatorname{out}_u} \frac{\partial \operatorname{out}_u}{\partial \operatorname{ex}_u} = \frac{\partial \operatorname{out}_v}{\partial \operatorname{net}_v} \frac{\partial \operatorname{net}_v}{\partial \operatorname{out}_u} \frac{\partial \operatorname{out}_u}{\partial \operatorname{ex}_u}$$

Simplification: Assume that the output function is the identity.

$$\frac{\partial \operatorname{out}_u}{\partial \operatorname{ex}_u} = 1.$$

For the second factor we get the general result:

$$\frac{\partial \operatorname{net}_v}{\partial \operatorname{out}_u} = \frac{\partial}{\partial \operatorname{out}_u} \sum_{p \in \operatorname{pred}(v)} w_{vp} \operatorname{out}_p = \sum_{p \in \operatorname{pred}(v)} w_{vp} \frac{\partial \operatorname{out}_p}{\partial \operatorname{out}_u}.$$

This leads to the recursion formula

$$\frac{\partial \operatorname{out}_v}{\partial \operatorname{out}_u} = \frac{\partial \operatorname{out}_v}{\partial \operatorname{net}_v} \frac{\partial \operatorname{net}_v}{\partial \operatorname{out}_u} = \frac{\partial \operatorname{out}_v}{\partial \operatorname{net}_v} \sum_{p \in \operatorname{pred}(v)} w_{vp} \ \frac{\partial \operatorname{out}_p}{\partial \operatorname{out}_u}.$$

However, for the first hidden layer we get

$$\frac{\partial \operatorname{net}_v}{\partial \operatorname{out}_u} = w_{vu}, \qquad \text{therefore} \qquad \frac{\partial \operatorname{out}_v}{\partial \operatorname{out}_u} = \frac{\partial \operatorname{out}_v}{\partial \operatorname{net}_v} w_{vu}.$$

This formula marks the start of the recursion.

Sensitivity Analysis

Consider as usual the special case with

- output function is the identity,
- activation function is logistic.

The recursion formula is in this case

$$\frac{\partial \operatorname{out}_v}{\partial \operatorname{out}_u} = \operatorname{out}_v(1 - \operatorname{out}_v) \sum_{p \in \operatorname{pred}(v)} w_{vp} \frac{\partial \operatorname{out}_p}{\partial \operatorname{out}_u}$$

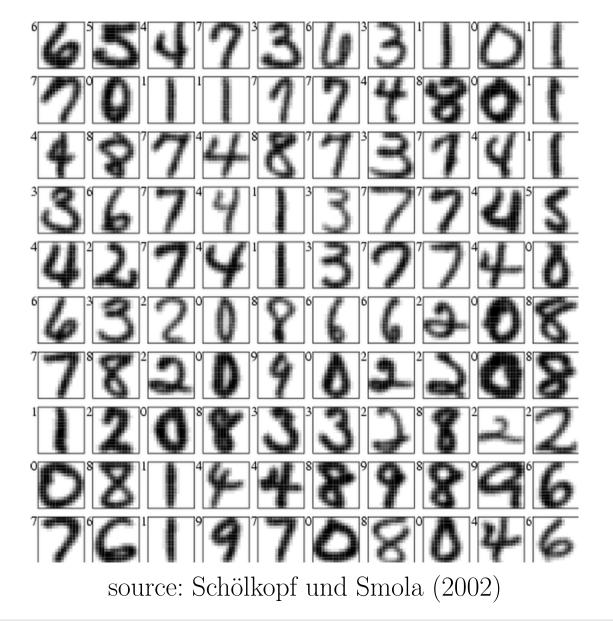
and the anchor of the recursion is

$$\frac{\partial \operatorname{out}_v}{\partial \operatorname{out}_u} = \operatorname{out}_v (1 - \operatorname{out}_v) w_{vu}.$$

40004 75216 14199-2087 23505 96203 L4210 • 44151

source: Le Cun u.a. (1990) Advances in NIPS:2, 396–404

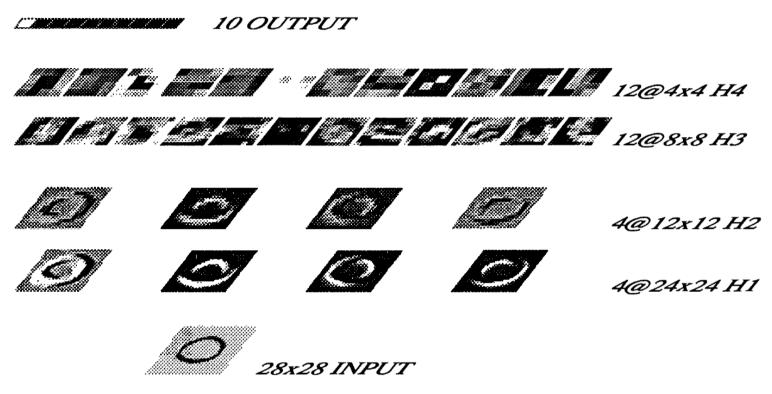
- 9298 segmented and digitized digits of handwritten postal codes
- survey: post office in Buffalo, NY, USA (U.S. Postal Service)
- digits were written by many different people: high variance in height, style of writing, writing tools and care.
- in addition 3349 printed digits in 35 different fonts



- aim: Learning a MLP for recognizing zip codes
- training set size: 7291 handwritten and 2549 printed digits
- validation set size: 2007 handwritten and 700 printed digits
- both sets include several ambiguous, unclassified or misclassified samples
- shown left: 100 validation set digits

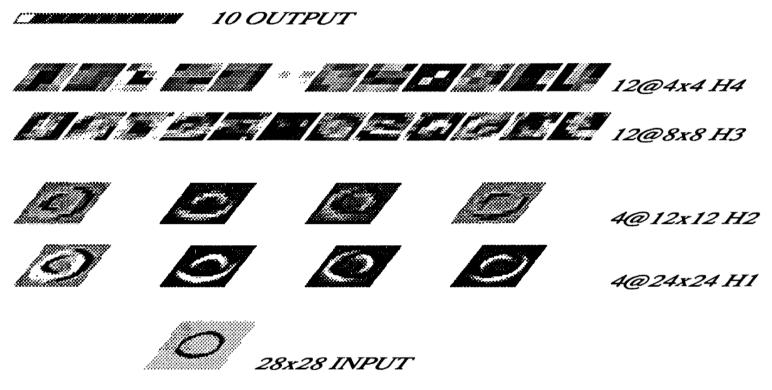
- challenge: every connection ought to be adaptabe (though with strong limitations)
- training by error backpropagation
- input: 16×16 pixel pattern of the normalized digit
- output: 10 neurons, 1 per class If a pattern is associated with a class, the output neuron i shall output +1 while all other neurons output -1
- problem: for fully interconnected neural network with multiple hidden layers there are too many parameters to be trained
- solution: restricted connection pattern

Zip codes: network architecture



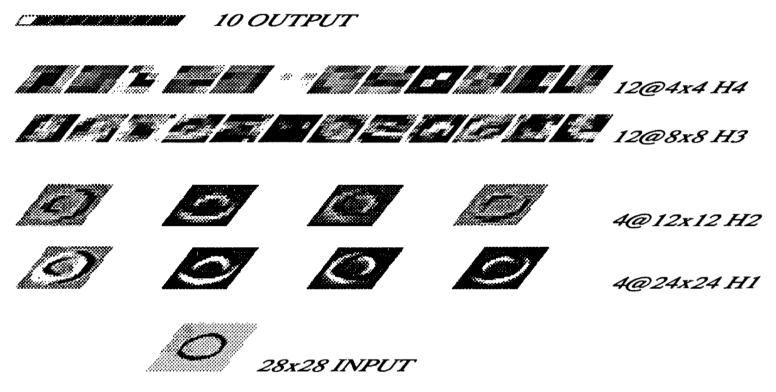
- $\bullet~4$ hiden layers H1, H2, H3 und H4
- neuron groups in H1, H3 share the same weights \rightarrow less parameters
- neurons in H2, H4 calculate average values \rightarrow Input values for upper layers
- input layer: enlarge from 16×16 to 28×28 pixel for considering thresholds

Zip codes: Layer H1



- 4 groups of $24 \times 24 = 576$ neurons assembled as 4 independent feature maps.
- every neuron in a feature map takes a 5×5 -Input
- every neuron in a feature map hold the same parameters
- these parameters may differ between the feature maps

Zip codes: Layer H2



- H2 is for forwarding: 4 maps of $12 \times 12 = 144$ neurons each
- each neuron in these maps receives an input from 4 neurons of the corresponding map in H1
- all weights are equal, even within one single neuron
- conclusion: H2 is only for forwarding

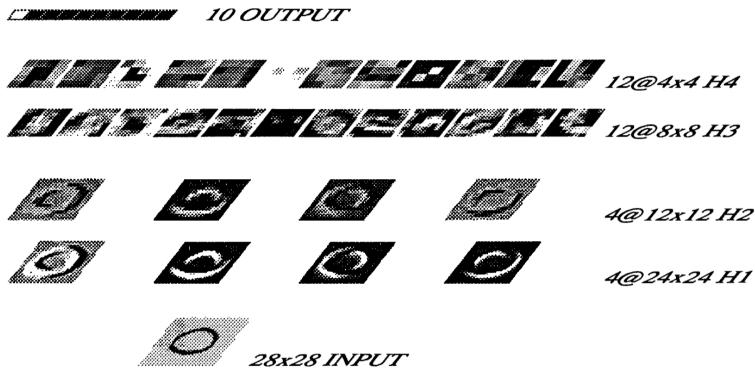
Zip codes: Layer H3

- in H3: 12 feature maps with $8 \times 8 = 64$ neurons each
- connection pattern between H2 and H3 is similar to the pattern between the Input and H1, but with more 2D-maps in H3.
- each neuron consists of one or two 5×5 neighbors (centered around neurons at identical positions of each H2-map)
- maps in H2 that serve as input for h3 are interconnected as follows:

	1	2	3	4	5	6	7	8	9	10	11	12
1	Х	Х	Х		Х	Х						
2		Х	Х	Х	Х	Х						
3							Х	Х	Х		Х	Х
4								Х	Х	Х	Х	Х

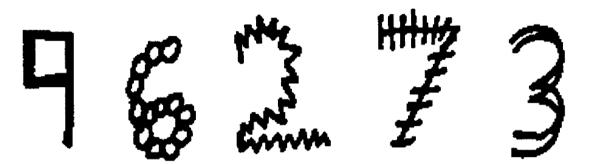
• therefore the network consists of two almost independent modules

Zip codes: Layer H4 and output



- $\bullet\,$ layer H4 serves the same purpose as H2
- it consists of 12 maps of $4 \times 4 = 16$ neurons each
- $\bullet\,$ the output layer contains 10 neurons and is fully interconnected with H4
- in total: 4635 neurons, 98442 interconnections, 2578 independent parameters
- this structure has been designed with geometrical background knowledge of digit pattern recognition

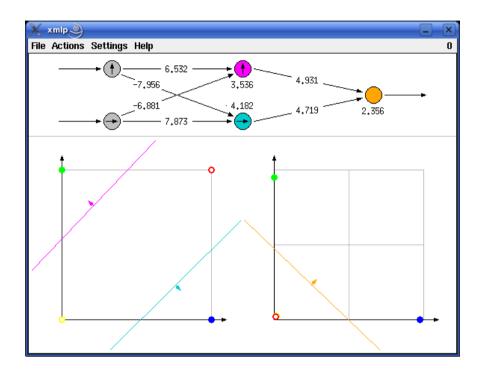
Zip codes: Results

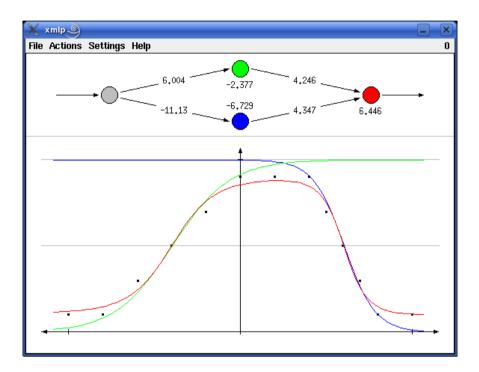


atypical digits that have been recognized correctly

- training error after 30 training iterations: 1,1%
- validation error: 3,4%
- all classification errors occur with handwritten digits
- compare human error: 2,5%
- training on a SUN SPARC machine in 1989 took three days
- the trained network was implemented on a hardware chip
- a coprocessor in a computer with video camera is able to classify more than 10 digits per second
- or 30 classifications per second on normalized digits

Demonstration Software: xmlp/wmlp





Demonstration of multilayer perceptron training:

- Visualization of the training process
- Biimplication and Exclusive Or, two continuous functions
- http://www.borgelt.net/mlpd.html

Multilayer Perceptron Software: mlp/mlpgui

🗙 Multilayer Perceptron Tools 🥥 💦 💶 🛛 🗙
Format Domains Neurons Patterr
Hidden neurons (layer 1): 2
Hidden neurons (layer 2):
Hidden neurons (layer 3):
A multilayer perceptron consists of an input layer, an output layer, and optional hidden layers.
The number of input and output neurons is determined from the data types of the input attributes and the target as they are specified in the domains file.
The numbers of hidden neurons must be specified above. If no number of hidden neurons is specified for a layer, the corresponding layer is not added to the network.
Seed for random numbers:
If no value is given, the current time is used as a seed.
Execute Close
Multilayer Perceptron Tools

🗙 Multilayer Perceptron To	ols 🧕	_
Params 1 Params 2	Training	Exec 💶
Domains file:	Select	Edit
noname.com The domains file may also be a description of an already traine training of this network is conti	d network. In t	his case the
Target attribute: If no target attribute is specifie	d, the one liste	ed last in the
domains file is used. The type o thus the network type is detern	of the target at	tribute and
Training data file:	Select	View
noname.tab		
Output network file:	Select	View
noname.mlp		
Execute	Clo	se
Multilaver Perceptron Tools		

Training	Execution	About	•
	Perceptron To interface for the		5.
c/ Gonzalo Gu 33600 Mieres,		'n	
you can redist the terms of t	is free software; ribute it and/or i he GNU Lesser G iy the Free Softw	modify it under eneral Public L	icense
it will be usef without even t or FITNESS FOR	is distributed in 1 µl, but WITHOUT the implied warr: & A PARTICULAR eneral Public Lice	ANY WARRANT anty of MERCH. PURPOSE. See 1	ANTABILITY the
Eve	cute	Ch	150

Software for training general multilayer perceptrons:

- Command line version written in C, fast training
- Graphical user interface in Java, easy to use
- http://www.borgelt.net/mlp.html, http://www.borgelt.net/mlpgui.html