

Neural Networks

Prof. Dr. Rudolf Kruse

Computational Intelligence Group Faculty for Computer Science kruse@iws.cs.uni-magdeburg.de

Rudolf Kruse

General (Artificial) Neural Networks

Basic graph theoretic notions

A (directed) **graph** is a pair G = (V, E) consisting of a (finite) set V of **nodes** or **vertices** and a (finite) set $E \subseteq V \times V$ of **edges**.

We call an edge $e = (u, v) \in E$ directed from node u to node v.

Let G = (V, E) be a (directed) graph and $u \in V$ a node. Then the nodes of the set

$$\operatorname{pred}(u) = \{ v \in V \mid (v, u) \in E \}$$

are called the **predecessors** of the node uand the nodes of the set

$$\operatorname{succ}(u) = \{v \in V \mid (u,v) \in E\}$$

are called the **successors** of the node u.

General definition of a neural network

An (artificial) **neural network** is a (directed) graph G = (U, C), whose nodes $u \in U$ are called **neurons** or **units** and whose edges $c \in C$ are called **connections**.

The set U of nodes is partitioned into

- the set U_{in} of **input neurons**,
- the set U_{out} of **output neurons**, and
- the set U_{hidden} of **hidden neurons**.

It is

$$U = U_{\rm in} \cup U_{\rm out} \cup U_{\rm hidden},$$

$$U_{\text{in}} \neq \emptyset, \qquad U_{\text{out}} \neq \emptyset, \qquad U_{\text{hidden}} \cap (U_{\text{in}} \cup U_{\text{out}}) = \emptyset.$$

Each connection $(v, u) \in C$ possesses a **weight** w_{uv} and each neuron $u \in U$ possesses three (real-valued) state variables:

- the **network input** net_u ,
- the activation act_u , and
- the **output** out_u .

Each input neuron $u \in U_{in}$ also possesses a fourth (real-valued) state variable,

• the external input ex_u .

Furthermore, each neuron $u \in U$ possesses three functions:

- the network input function
- the activation function
- the output function

 $\begin{aligned} f_{\text{net}}^{(u)} &: & \mathbb{R}^{2|\operatorname{pred}(u)| + \kappa_1(u)} \to \mathbb{R}, \\ f_{\text{act}}^{(u)} &: & \mathbb{R}^{\kappa_2(u)} \to \mathbb{R}, & \text{and} \\ f_{\text{out}}^{(u)} &: & \mathbb{R} \to \mathbb{R}, \end{aligned}$

which are used to compute the values of the state variables.

Types of (artificial) neural networks

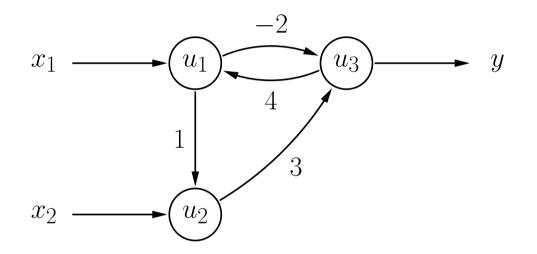
- If the graph of a neural network is **acyclic**, it is called a **feed-forward network**.
- If the graph of a neural network contains **cycles** (backward connections), it is called a **recurrent network**.

Representation of the connection weights by a matrix

$$\begin{pmatrix} u_{1} & u_{2} & \dots & u_{r} \\ w_{u_{1}u_{1}} & w_{u_{1}u_{2}} & \dots & w_{u_{1}u_{r}} \\ w_{u_{2}u_{1}} & w_{u_{2}u_{2}} & & w_{u_{2}u_{r}} \\ \vdots & & & \vdots \\ w_{u_{r}u_{1}} & w_{u_{r}u_{2}} & \dots & w_{u_{r}u_{r}} \end{pmatrix} \begin{pmatrix} u_{1} \\ u_{2} \\ \vdots \\ u_{r} \end{pmatrix}$$

General Neural Networks: Example

A simple recurrent neural network

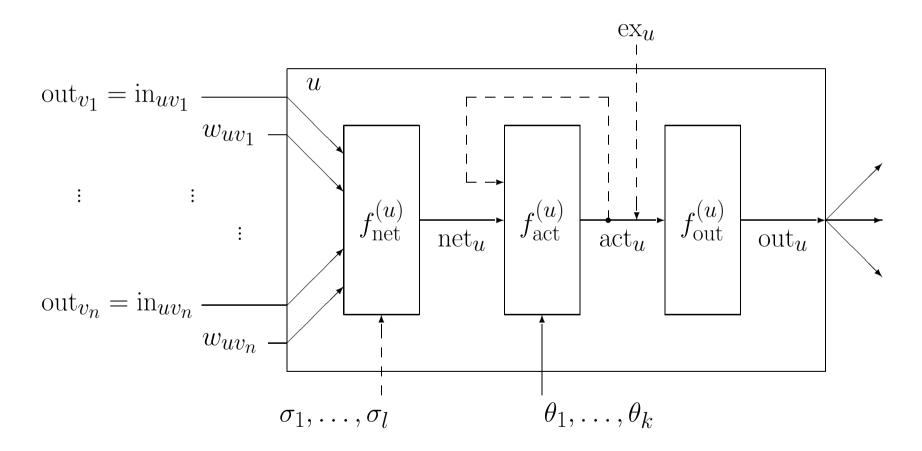


Weight matrix of this network

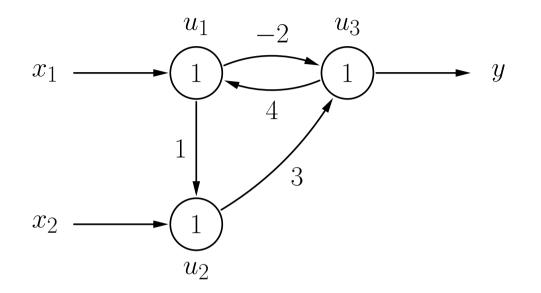
$$\begin{pmatrix} u_1 & u_2 & u_3 \\ 0 & 0 & 4 \\ 1 & 0 & 0 \\ -2 & 3 & 0 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$$

Structure of a Generalized Neuron

A generalized neuron is a simple numeric processor



General Neural Networks: Example



$$f_{\text{net}}^{(u)}(\vec{w}_u, \vec{n}_u) = \sum_{v \in \text{pred}(u)} w_{uv} \text{in}_{uv} = \sum_{v \in \text{pred}(u)} w_{uv} \text{out}_v$$

$$f_{\text{act}}^{(u)}(\text{net}_u, \theta) = \begin{cases} 1, & \text{if } \text{net}_u \ge \theta, \\ 0, & \text{otherwise.} \end{cases}$$

$$f_{\text{out}}^{(u)}(\operatorname{act}_u) = \operatorname{act}_u$$

Updating the activations of the neurons

				_
	u_1	u_2	u_3	
input phase	1	0	0	
work phase	1	0	0	$\operatorname{net}_{u_3} = -2$
	0	0	0	$net_{u_3} = -2$ $net_{u_1} = 0$
	0	0	0	$net_{u_2} = 0$
	0	0	0	$net_{u_3} = 0$
	0	0	0	$net_{u_3} = 0$ $net_{u_1} = 0$
he neurons	•	•	•	•

- Order in which the neurons are updated: $u_3, u_1, u_2, u_3, u_1, u_2, u_3, \dots$
- Input phase: activations and outputs of the initial state (first row)
- The activation of the currently neuron (bold) is calculated by considering the other neurons and weights.
- A stable state with a unique output is reached.

Updating the activations of the neurons

	u_1	u_2	u_3	
input phase	1	0	0	
work phase	1	0	0	$\operatorname{net}_{u_3} = -2$
	1	1	0	$net_{u_2} = 1$
	0	1	0	$\operatorname{net}_{u_1} = 0$
	0	1	1	$net_{u_3} = 3$
	0	0	1	$net_{u_2} = 0$
	1	0	1	$net_{u_1} = 4$
	1	0	0	$\mathrm{net}_{u_3} = -2$

- Order in which the neurons are updated: $u_3, u_2, u_1, u_3, u_2, u_1, u_3, \ldots$
- No stable state is reached (oscillation of output).

Definition of learning tasks for a neural network

A fixed learning task L_{fixed} for a neural network with

- *n* input neurons, i.e. $U_{\text{in}} = \{u_1, \ldots, u_n\},$ and
- *m* output neurons, i.e. $U_{\text{out}} = \{v_1, \ldots, v_m\},$

is a set of **training patterns** $l = (\vec{i}^{(l)}, \vec{o}^{(l)})$, each consisting of

• an input vector $\vec{\imath}^{(l)} = (\operatorname{ex}_{u_1}^{(l)}, \dots, \operatorname{ex}_{u_n}^{(l)})$ and

• an **output vector**
$$\vec{o}^{(l)} = (o_{v_1}^{(l)}, \dots, o_{v_m}^{(l)}).$$

A fixed learning task is solved, if for all training patterns $l \in L_{\text{fixed}}$ the neural network computes from the external inputs contained in the input vector $\vec{i}^{(l)}$ of a training pattern l the outputs contained in the corresponding output vector $\vec{o}^{(l)}$.

Solving a fixed learning task: Error definition

- Measure how well a neural network solves a given fixed learning task.
- Compute differences between desired and actual outputs.
- Do not sum differences directly in order to avoid errors canceling each other.
- Square has favorable properties for deriving the adaptation rules.

$$e = \sum_{l \in L_{\text{fixed}}} e^{(l)} = \sum_{v \in U_{\text{out}}} e_v = \sum_{l \in L_{\text{fixed}}} \sum_{v \in U_{\text{out}}} e_v^{(l)},$$

where $e_v^{(l)} = \left(o_v^{(l)} - \text{out}_v^{(l)}\right)^2$

Definition of learning tasks for a neural network

A free learning task L_{free} for a neural network with

• *n* input neurons, i.e. $U_{\text{in}} = \{u_1, \ldots, u_n\},\$

is a set of **training patterns** $l = (\vec{i}^{(l)})$, each consisting of

• an input vector
$$\vec{\imath}^{(l)} = (\operatorname{ex}_{u_1}^{(l)}, \dots, \operatorname{ex}_{u_n}^{(l)}).$$

Properties:

- There is no desired output for the training patterns.
- Outputs can be chosen freely by the training method.
- Solution idea: **Similar inputs should lead to similar outputs.** (clustering of input vectors)

Normalization of the input vectors

• Compute expected value and standard deviation for each input:

$$\mu_k = \frac{1}{|L|} \sum_{l \in L} \operatorname{ex}_{u_k}^{(l)} \quad \text{and} \quad \sigma_k = \sqrt{\frac{1}{|L|} \sum_{l \in L} \left(\operatorname{ex}_{u_k}^{(l)} - \mu_k \right)^2},$$

• Normalize the input vectors to expected value 0 and standard deviation 1:

$$\operatorname{ex}_{u_k}^{(l)(\operatorname{neu})} = \frac{\operatorname{ex}_{u_k}^{(l)(\operatorname{alt})} - \mu_k}{\sigma_k}$$

• Avoids unit and scaling problems.