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Basic graph theoretic notions

A (directed) graph is a pair G = (V,E) consisting of a (finite) set V of nodes or
vertices and a (finite) set E ⊆ V × V of edges.

We call an edge e = (u, v) ∈ E directed from node u to node v.

Let G = (V,E) be a (directed) graph and u ∈ V a node. Then the nodes of the set

pred(u) = {v ∈ V | (v, u) ∈ E}

are called the predecessors of the node u
and the nodes of the set

succ(u) = {v ∈ V | (u, v) ∈ E}

are called the successors of the node u.
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General definition of a neural network

An (artificial) neural network is a (directed) graph G = (U,C),
whose nodes u ∈ U are called neurons or units and
whose edges c ∈ C are called connections.

The set U of nodes is partitioned into

• the set Uin of input neurons,

• the set Uout of output neurons, and

• the set Uhidden of hidden neurons.

It is
U = Uin ∪ Uout ∪ Uhidden,

Uin %= ∅, Uout %= ∅, Uhidden ∩ (Uin ∪ Uout) = ∅.



General Neural Networks

Rudolf Kruse Neural Networks 5

Each connection (v, u) ∈ C possesses a weight wuv and
each neuron u ∈ U possesses three (real-valued) state variables:

• the network input netu,

• the activation actu, and

• the output outu.

Each input neuron u ∈ Uin also possesses a fourth (real-valued) state variable,

• the external input exu.

Furthermore, each neuron u ∈ U possesses three functions:

• the network input function f
(u)
net : IR2| pred(u)|+κ1(u) → IR,

• the activation function f
(u)
act : IRκ2(u) → IR, and

• the output function f
(u)
out : IR → IR,

which are used to compute the values of the state variables.
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Types of (artificial) neural networks

• If the graph of a neural network is acyclic,
it is called a feed-forward network.

• If the graph of a neural network contains cycles (backward connections),
it is called a recurrent network.

Representation of the connection weights by a matrix

u1 u2 . . . ur




wu1u1 wu1u2 . . . wu1ur
wu2u1 wu2u2 wu2ur... ...
wuru1 wuru2 . . . wurur





u1
u2
...
ur
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A simple recurrent neural network
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Weight matrix of this network

u1 u2 u3


0 0 4
1 0 0
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A generalized neuron is a simple numeric processor
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f
(u)
net ($wu, $inu) =

∑
v∈pred(u)wuvinuv =

∑
v∈pred(u)wuv outv

f
(u)
act (netu, θ) =

{
1, if netu ≥ θ,
0, otherwise.

f
(u)
out(actu) = actu
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Updating the activations of the neurons

u1 u2 u3
input phase 1 0 0

work phase 1 0 0 netu3 = −2
0 0 0 netu1 = 0
0 0 0 netu2 = 0
0 0 0 netu3 = 0
0 0 0 netu1 = 0

• Order in which the neurons
are updated: u3, u1, u2, u3, u1, u2, u3, . . .

• Input phase: activations and outputs of the initial state (first row)

• The activation of the currently neuron (bold) is calculated by considering the other
neurons and weights.

• A stable state with a unique output is reached.
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Updating the activations of the neurons

u1 u2 u3
input phase 1 0 0

work phase 1 0 0 netu3 = −2
1 1 0 netu2 = 1
0 1 0 netu1 = 0
0 1 1 netu3 = 3
0 0 1 netu2 = 0
1 0 1 netu1 = 4
1 0 0 netu3 = −2

• Order in which the neurons are updated:
u3, u2, u1, u3, u2, u1, u3, . . .

• No stable state is reached (oscillation of output).
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Definition of learning tasks for a neural network

A fixed learning task Lfixed for a neural network with

• n input neurons, i.e. Uin = {u1, . . . , un}, and

• m output neurons, i.e. Uout = {v1, . . . , vm},

is a set of training patterns l = ($ı (l),$o (l)), each consisting of

• an input vector $ı (l) = ( ex
(l)
u1, . . . , ex

(l)
un ) and

• an output vector $o (l) = (o
(l)
v1 , . . . , o

(l)
vm).

A fixed learning task is solved, if for all training patterns l ∈ Lfixed the neural network
computes from the external inputs contained in the input vector $ı (l) of a training
pattern l the outputs contained in the corresponding output vector $o (l).
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Solving a fixed learning task: Error definition

• Measure how well a neural network solves a given fixed learning task.

• Compute differences between desired and actual outputs.

• Do not sum differences directly in order to avoid errors canceling each other.

• Square has favorable properties for deriving the adaptation rules.

e =
∑

l∈Lfixed

e(l) =
∑

v∈Uout

ev =
∑

l∈Lfixed

∑

v∈Uout

e
(l)
v ,

where e
(l)
v =

(
o
(l)
v − out

(l)
v

)2
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Definition of learning tasks for a neural network

A free learning task Lfree for a neural network with

• n input neurons, i.e. Uin = {u1, . . . , un},

is a set of training patterns l = ($ı (l)), each consisting of

• an input vector $ı (l) = ( ex
(l)
u1, . . . , ex

(l)
un ).

Properties:

• There is no desired output for the training patterns.

• Outputs can be chosen freely by the training method.

• Solution idea: Similar inputs should lead to similar outputs.
(clustering of input vectors)
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Normalization of the input vectors

• Compute expected value and standard deviation for each input:

µk =
1

|L|
∑

l∈L
ex

(l)
uk and σk =

√√√√ 1

|L|
∑

l∈L

(
ex

(l)
uk −µk

)2
,

• Normalize the input vectors to expected value 0 and standard deviation 1:

ex
(l)(neu)
uk =

ex
(l)(alt)
uk −µk

σk

• Avoids unit and scaling problems.


