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Motivation: Why (artificial) neural networks?
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• (Neuro-)Biology / (Neuro-)Physiology / Psychology:

◦ exploiting the similarities to real (biological) neural networks

◦ modelling and simulation to gain understanding of the operations of nerves
and brain

• Computer Science / engineering / economy

◦ imitating human perception and processing

◦ solving problems of learning and tuning as well as prognosis and optimization
problems

• Physics / Chemistry

◦ using neural networks for characterizing physical phenomena

◦ special case: spin glass (alloying of magnetic and non-magnetic metals)



Conventional computers vs. The Brain
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Computer Brain

processing units 1 CPU, 109 transistors 1011 neurons

storage capacity 109 Bytes RAM, 1010 Bytes non-
volatile memory

1011 neurons, 1014 synapses

processing speed 10−8 sec. 10−3 sec.

bandwidth 109 bitss 1014 bitss

neural updates per sec. 105 1014



Conventional computers vs. The Brain
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• Note: the switching times of the human brain are quite slow, being only 10−3 sec.,
but updates are processed in parallel. In contrast, serial PC simulations take several
hundreds of processing cycles for one update.

• Advantages of neural networks:
◦ great processing speed by making massively use of parallel processing
◦ even after partial failure the network is still in service (fault tolerance)
◦ with increasing amount of failing neurons just slow failure of entire system
(graceful degradation)

◦ well-suited for inductive learning

• Thus it seems promising to emulate these advantages by using artificial neural
networks.



Biological Background
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Structure of a prototypical biological neuron

cell core

axon

myelin sheath

cell body
(soma)

terminal button

synapsis

dendrites



Biological Background
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(Very) simplified description of neural information processing

• Axon terminal releases chemicals, called neurotransmitters.

• These act on the membrane of the receptor dendrite to change its polarization.
(The inside is usually 70mV more negative than the outside.)

• Decrease in potential difference: excitatory synapse
Increase in potential difference: inhibitory synapse

• If there is enough net excitatory input, the axon is depolarized.

• The resulting action potential travels along the axon.
(Speed depends on the degree to which the axon is covered with myelin.)

• When the action potential reaches the terminal buttons,
it triggers the release of neurotransmitters.
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Threshold Logic Units



Threshold Logic Units
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A Threshold Logic Unit (TLU) is a processing unit for numbers with n inputs
x1, . . . , xn and one output y. The unit has a threshold θ and each input xi is
associated with a weight wi. A threshold logic unit computes the function

y =






1, if "x"w =
n∑

i=1
wixi ≥ θ,

0, otherwise.

θ

x1

...

xn

w1

...

wn

y



Threshold Logic Units: Examples
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Threshold logic unit for the conjunction x1 ∧ x2.

4

x1
3

x2
2

y

x1 x2 3x1 + 2x2 y

0 0 0 0
1 0 3 0
0 1 2 0
1 1 5 1

Threshold logic unit for the implication x2 → x1.

−1

x1
2

x2
−2

y

x1 x2 2x1 − 2x2 y

0 0 0 1
1 0 2 1
0 1 −2 0
1 1 0 1



Threshold Logic Units: Examples
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Threshold logic unit for (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3).

1

x1
2

x2
−2

x3
2

y

x1 x2 x3
∑

i wixi y

0 0 0 0 0
1 0 0 2 1
0 1 0 −2 0
1 1 0 0 0
0 0 1 2 1
1 0 1 4 1
0 1 1 0 0
1 1 1 2 1



Threshold Logic Units: Geometric Interpretation
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Review of line representations

Straight lines are usually represented in one of the following forms:

Explicit Form: g ≡ x2 = bx1 + c
Implicit Form: g ≡ a1x1 + a2x2 + d = 0
Point-Direction Form: g ≡ "x = "p + k"r
Normal Form: g ≡ ("x− "p)"n = 0

with the parameters:

b : Gradient of the line
c : Section of the x2 axis
"p : Vector of a point of the line (base vector)
"r : Direction vector of the line
"n : Normal vector of the line



Threshold Logic Units: Geometric Interpretation
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A straight line and its defining parameters.

O

x2

x1

g

"p

"r
"n = (a1, a2)

c

"q = −d
|"n|

"n
|"n|

d = −"p"n

b = r2
r1

ϕ



Threshold Logic Units: Geometric Interpretation
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How to determine the side on which a point "x lies.

O

g

x1

x2

"x

"z

"q = −d
|"n|

"n
|"n|

"z = "x"n
|"n|

"n
|"n|

ϕ



Threshold Logic Units: Geometric Interpretation
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Threshold logic unit for x1 ∧ x2.
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A threshold logic unit for x2 → x1.

−1

x1
2

x2
−2

y

0 1

1

0

x1

x2

0
1



Threshold Logic Units: Geometric Interpretation
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Visualization of 3-dimensional
Boolean functions:

x1

x2
x3

(0, 0, 0)

(1, 1, 1)

Threshold logic unit for (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3).
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Threshold Logic Units: linear separability
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• We call two sets of points in an n-dimensional space linearly separable, if they
can separated by an (n-1)-dimensional hyperplane. One of these sets may contain
points lying on the hyperplane, too.

• A boolean function is called linearly separable, if the set of fibers of 0 and the set
of fibers of 1 are linearly separable.



Threshold Logic Units: Limitations
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The biimplication problem x1 ↔ x2: There is no separating line.

x1 x2 y

0 0 1
1 0 0
0 1 0
1 1 1

0 1

1

0

x1

x2

Formal proof by reductio ad absurdum :

since (0, 0) )→ 1: 0 ≥ θ, (1)
since (1, 0) )→ 0: w1 < θ, (2)
since (0, 1) )→ 0: w2 < θ, (3)
since (1, 1) )→ 1: w1 + w2 ≥ θ. (4)

(2) and (3): w1 + w2 < 2θ. With (4): 2θ > θ, or θ > 0. Contradiction to (1).



Threshold Logic Units: Limitations
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Total number and number of linearly separable Boolean functions.
([Widner 1960] as cited in [Zell 1994])

inputs Boolean functions linearly separable functions

1 4 4
2 16 14
3 256 104
4 65536 1774
5 4.3 · 109 94572
6 1.8 · 1019 5.0 · 106

• For many inputs a threshold logic unit can compute almost no functions.

• Networks of threshold logic units are needed to overcome the limitations.



Networks of Threshold Logic Units
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Solving the biimplication problem with a network.

Idea: logical decomposition x1 ↔ x2 ≡ (x1 → x2) ∧ (x2 → x1)

−1

−1

3

x1

x2

−2

2

2

−2

2

2

y = x1 ↔ x2

!
!

!!"

computes y1 = x1 → x2

#
#

##$

computes y2 = x2 → x1

!
!

!!"

computes y = y1 ∧ y2



Networks of Threshold Logic Units
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Solving the biimplication problem: Geometric interpretation

0 1

1

0

x1

x2

g2

g1

a

d c

b

0
1

1
0

=⇒

0 1

1

0

y1

y2

ac

b

d

g3
0

1

• The first layer computes new Boolean coordinates for the points.

• After the coordinate transformation the problem is linearly separable.



Representing Arbitrary Boolean Functions
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Let y = f(x1, . . . , xn) be a Boolean function of n variables.

(i) Represent f(x1, . . . , xn) in disjunctive normal form. That is, determine
Df = K1 ∨ . . . ∨ Km, where all Kj are conjunctions of n literals, i.e.,
Kj = lj1 ∧ . . . ∧ ljn with lji = xi (positive literal) or lji = ¬xi (negative
literal).

(ii) Create a neuron for each conjunction Kj of the disjunctive normal form (having
n inputs — one input for each variable), where

wji =

{
2, if lji = xi,

−2, if lji = ¬xi,
and θj = n− 1 +

1

2

n∑

i=1
wji.

(iii) Create an output neuron (having m inputs — one input for each neuron that was
created in step (ii)), where

w(n+1)k = 2, k = 1, . . . , m, and θn+1 = 1.
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Training Threshold Logic Units



Training Threshold Logic Units

Rudolf Kruse Neural Networks 36

• Geometric interpretation provides a way to construct threshold logic units
with 2 and 3 inputs, but:

◦ Not an automatic method (human visualization needed).

◦ Not feasible for more than 3 inputs.

• General idea of automatic training:

◦ Start with random values for weights and threshold.

◦ Determine the error of the output for a set of training patterns.

◦ Error is a function of the weights and the threshold: e = e(w1, . . . , wn, θ).

◦ Adapt weights and threshold so that the error gets smaller.

◦ Iterate adaptation until the error vanishes.



Training Threshold Logic Units
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Single input threshold logic unit for the negation ¬x.

θx
w y

x y

0 1
1 0

Output error as a function of weight and threshold.
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w

θ
−2
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Training Threshold Logic Units
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• The error function cannot be used directly, because it consists of plateaus.

• Solution: If the computed output is wrong,
take into account, how far the weighted sum is from the threshold.

Modified output error as a function of weight and threshold.

error for x = 0

w

θ
−2

−1
0

1
2

−2 −1 0 1 2

e

2

4

2

error for x = 1

w

θ
−2

−1
0

1
2

−2 −1 0 1 2

e

2

4

sum of errors

w

θ
−2

−1
0

1
2

−2 −1 0 1 2

e

2

4

2



Training Threshold Logic Units
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Schemata of resulting directions of parameter changes.
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• Start at random point.

• Iteratively adapt parameters
according to the direction corresponding to the current point.



Training Threshold Logic Units
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Example training procedure: Online and batch training.

Online-Lernen
θ

w

−2 −1 0 1 2
−2

−1

0

1

2

!
!
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"
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"
""& !%!%!

"
""& !%!

Batch-Lernen
θ

w
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!
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!
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"
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Batch-Lernen

w

θ
−2

−1
0

1
2
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2x −1 y (
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Training Threshold Logic Units: Delta Rule
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Formal Training Rule: Let "x = (x1, . . . , xn) be an input vector of a threshold logic
unit, o the desired output for this input vector and y the actual output of the threshold
logic unit. If y += o, then the threshold θ and the weight vector "w = (w1, . . . , wn) are
adapted as follows in order to reduce the error:

θ(new) = θ(old) + ∆θ with ∆θ = −η(o− y),

∀i ∈ {1, . . . , n} : w
(new)
i = w

(old)
i + ∆wi with ∆wi = η(o− y)xi,

where η is a parameter that is called learning rate. It determines the severity of the
weight changes. This procedure is calledDelta Rule orWidrow–Hoff Procedure
[Widrow and Hoff 1960].

• Online Training: Adapt parameters after each training pattern.

• Batch Training: Adapt parameters only at the end of each epoch,
i.e. after a traversal of all training patterns.



Training Threshold Logic Units: Delta Rule
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Turning the threshold value into a weight:

θ

x1 w1

x2 w2

...

xn

wn

y

n∑

i=1
wixi ≥ θ

0

1 = x0
w0 = −θ

x1

w1
x2 w2

...

xn

wn

y

n∑

i=1
wixi − θ ≥ 0



Training Threshold Logic Units: Delta Rule
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procedure online training (var "w,var θ, L, η);
var y, e; (* output, sum of errors *)
begin
repeat
e := 0; (* initialize the error sum *)
for all ("x, o) ∈ L do begin (* traverse the patterns *)
if ("w"x ≥ θ) then y := 1; (* compute the output *)

else y := 0; (* of the threshold logic unit *)
if (y += o) then begin (* if the output is wrong *)
θ := θ − η(o− y); (* adapt the threshold *)
"w := "w + η(o− y)"x; (* and the weights *)
e := e + |o− y|; (* sum the errors *)

end;
end;

until (e ≤ 0); (* repeat the computations *)
end; (* until the error vanishes *)



Training Threshold Logic Units: Delta Rule
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procedure batch training (var "w,var θ, L, η);
var y, e, (* output, sum of errors *)

θc, "wc; (* summed changes *)
begin
repeat
e := 0; θc := 0; "wc := "0; (* initializations *)
for all ("x, o) ∈ L do begin (* traverse the patterns *)
if ("w"x ≥ θ) then y := 1; (* compute the output *)

else y := 0; (* of the threshold logic unit *)
if (y += o) then begin (* if the output is wrong *)
θc := θc − η(o− y); (* sum the changes of the *)
"wc := "wc + η(o− y)"x; (* threshold and the weights *)
e := e + |o− y|; (* sum the errors *)

end;
end;
θ := θ + θc; (* adapt the threshold *)
"w := "w + "wc; (* and the weights *)

until (e ≤ 0); (* repeat the computations *)
end; (* until the error vanishes *)



Training Threshold Logic Units: Online
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epoch x o "x"w y e ∆θ ∆w θ w

1.5 2

1 0 1 −1.5 0 1 −1 0 0.5 2
1 0 1.5 1 −1 1 −1 1.5 1

2 0 1 −1.5 0 1 −1 0 0.5 1
1 0 0.5 1 −1 1 −1 1.5 0

3 0 1 −1.5 0 1 −1 0 0.5 0
1 0 0.5 0 0 0 0 0.5 0

4 0 1 −0.5 0 1 −1 0 −0.5 0
1 0 0.5 1 −1 1 −1 0.5 −1

5 0 1 −0.5 0 1 −1 0 −0.5 −1
1 0 −0.5 0 0 0 0 −0.5 −1

6 0 1 0.5 1 0 0 0 −0.5 −1
1 0 −0.5 0 0 0 0 −0.5 −1



Training Threshold Logic Units: Batch
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epoch x o "x"w y e ∆θ ∆w θ w

1.5 2

1 0 1 −1.5 0 1 −1 0
1 0 0.5 1 −1 1 −1 1.5 1

2 0 1 −1.5 0 1 −1 0
1 0 −0.5 0 0 0 0 0.5 1

3 0 1 −0.5 0 1 −1 0
1 0 0.5 1 −1 1 −1 0.5 0

4 0 1 −0.5 0 1 −1 0
1 0 −0.5 0 0 0 0 −0.5 0

5 0 1 0.5 1 0 0 0
1 0 0.5 1 −1 1 −1 0.5 −1

6 0 1 −0.5 0 1 −1 0
1 0 −1.5 0 0 0 0 −0.5 −1

7 0 1 0.5 1 0 0 0
1 0 −0.5 0 0 0 0 −0.5 −1



Training Threshold Logic Units: Conjunction
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Threshold logic unit with two inputs for the conjunction.

θ

x1 w1

x2
w2

y

x1 x2 y

0 0 0
1 0 0
0 1 0
1 1 1

2

x1
2

x2
1

y

0 1

1

0

0 1



Training Threshold Logic Units: Conjunction
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epoch x1 x2 o "x"w y e ∆θ ∆w1 ∆w2 θ w1 w2

0 0 0

1 0 0 0 0 1 −1 1 0 0 1 0 0
0 1 0 −1 0 0 0 0 0 1 0 0
1 0 0 −1 0 0 0 0 0 1 0 0
1 1 1 −1 0 1 −1 1 1 0 1 1

2 0 0 0 0 1 −1 1 0 0 1 1 1
0 1 0 0 1 −1 1 0 −1 2 1 0
1 0 0 −1 0 0 0 0 0 2 1 0
1 1 1 −1 0 1 −1 1 1 1 2 1

3 0 0 0 −1 0 0 0 0 0 1 2 1
0 1 0 0 1 −1 1 0 −1 2 2 0
1 0 0 0 1 −1 1 −1 0 3 1 0
1 1 1 −2 0 1 −1 1 1 2 2 1

4 0 0 0 −2 0 0 0 0 0 2 2 1
0 1 0 −1 0 0 0 0 0 2 2 1
1 0 0 0 1 −1 1 −1 0 3 1 1
1 1 1 −1 0 1 −1 1 1 2 2 2

5 0 0 0 −2 0 0 0 0 0 2 2 2
0 1 0 0 1 −1 1 0 −1 3 2 1
1 0 0 −1 0 0 0 0 0 3 2 1
1 1 1 0 1 0 0 0 0 3 2 1

6 0 0 0 −3 0 0 0 0 0 3 2 1
0 1 0 −2 0 0 0 0 0 3 2 1
1 0 0 −1 0 0 0 0 0 3 2 1
1 1 1 0 1 0 0 0 0 3 2 1



Training Threshold Logic Units: Biimplication
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epoch x1 x2 o "x"w y e ∆θ ∆w1 ∆w2 θ w1 w2

0 0 0

1 0 0 1 0 1 0 0 0 0 0 0 0
0 1 0 0 1 −1 1 0 −1 1 0 −1
1 0 0 −1 0 0 0 0 0 1 0 −1
1 1 1 −2 0 1 −1 1 1 0 1 0

2 0 0 1 0 1 0 0 0 0 0 1 0
0 1 0 0 1 −1 1 0 −1 1 1 −1
1 0 0 0 1 −1 1 −1 0 2 0 −1
1 1 1 −3 0 1 −1 1 1 1 1 0

3 0 0 1 0 1 0 0 0 0 0 1 0
0 1 0 0 1 −1 1 0 −1 1 1 −1
1 0 0 0 1 −1 1 −1 0 2 0 −1
1 1 1 −3 0 1 −1 1 1 1 1 0



Training Threshold Logic Units: Convergence
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Convergence Theorem: Let L = {("x1, o1), . . . ("xm, om)} be a set of training
patterns, each consisting of an input vector "xi ∈ IRn and a desired output oi ∈ {0, 1}.
Furthermore, let L0 = {("x, o) ∈ L | o = 0} and L1 = {("x, o) ∈ L | o = 1}. If L0 and
L1 are linearly separable, i.e., if "w ∈ IRn and θ ∈ IR exist, such that

∀("x, 0) ∈ L0 : "w"x < θ and

∀("x, 1) ∈ L1 : "w"x ≥ θ,

then online as well as batch training terminate.

• The algorithms terminate only when the error vanishes.

• Therefore the resulting threshold and weights must solve the problem.

• For not linearly separable problems the algorithms do not terminate.



Training Networks of Threshold Logic Units
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• Single threshold logic units have strong limitations:
They can only compute linearly separable functions.

• Networks of threshold logic units can compute arbitrary Boolean functions.

• Training single threshold logic units with the delta rule is fast
and guaranteed to find a solution if one exists.

• Networks of threshold logic units cannot be trained, because

◦ there are no desired values for the neurons of the first layer,

◦ the problem can usually be solved with different functions
computed by the neurons of the first layer.

• When this situation became clear,
neural networks were seen as a “research dead end”.




