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Motivation: Why (artificial) neural networks?

e (Neuro-)Biology / (Neuro-)Physiology / Psychology:

o exploiting the similarities to real (biological) neural networks

o modelling and simulation to gain understanding of the operations of nerves
and brain
e Computer Science / engineering / economy

o Imitating human perception and processing

o solving problems of learning and tuning as well as prognosis and optimization
problems

e Physics / Chemistry

o using neural networks for characterizing physical phenomena

o special case: spin glass (alloying of magnetic and non-magnetic metals)
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Conventional computers vs. The Brain

Computer

Brain

processing units

1 CPU, 10? transistors

101 neurons

storage capacity

10” Bytes RAM, 10'° Bytes non-
volatile memory

10! neurons, 10 synapses

processing speed 107° sec. 1077 sec.
bandwidth 10922 10142
neural updates per sec. 10° 10
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Conventional computers vs. The Brain

e Note: the switching times of the human brain are quite slow, being only 1073 sec.,
but updates are processed in parallel. In contrast, serial PC simulations take several
hundreds of processing cycles for one update.

e Advantages of neural networks:
o great processing speed by making massively use of parallel processing
o even after partial failure the network is still in service (fault tolerance)
o with increasing amount of failing neurons just slow failure of entire system
(graceful degradation)
o well-suited for inductive learning

e Thus it seems promising to emulate these advantages by using artificial neural
networks.
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Biological Background

Structure of a prototypical biological neuron
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Biological Background

(Very) simplified description of neural information processing

Axon terminal releases chemicals, called neurotransmitters.

These act on the membrane of the receptor dendrite to change its polarization.
(The inside is usually 70mV more negative than the outside.)

Decrease in potential difference: excitatory synapse
Increase in potential difference: inhibitory synapse

If there is enough net excitatory input, the axon is depolarized.

The resulting action potential travels along the axon.
(Speed depends on the degree to which the axon is covered with myelin.)

When the action potential reaches the terminal buttons,
it triggers the release of neurotransmitters.
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Threshold Logic Units
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Threshold Logic Units

A Threshold Logic Unit (TLU) is a processing unit for numbers with n inputs
x1,...,Tyn and one output y. The unit has a threshold 6 and each input z; is
associated with a weight w;. A threshold logic unit computes the function

1, if zw
Y = 1 i
| 0, otherwise.

W;T4 > 6
1

( n
)
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Threshold Logic Units: Examples

Threshold logic unit for the conjunction x| A x».

11 3 T1 | To | 31+ 279 | Y
\ 0|0 0 0
@—’ Yy I |0 3 0

/ 0] 1 y 0

ry 2 1|1 5 |

Threshold logic unit for the implication z9 — 7.

11 9 x| | x9 | 201 — 229 | ¥
\ 0|0 0 |
@—’ Yy 1 10 2 1

/ 01| —2 o0

vy - 2 11 0 1
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Threshold Logic Units: Examples

Threshold logic unit for (1 AT3) V (1 Ax3) V (T3 A x3).

T | X2 | T3 | D Wi | Y

- 01010 0 0
2 11010 Y 1
k 0[1]0] =2 0

= —’@—’ Y 1|10 0 |0
/ 01011 2 1

3 1101 4 1
0111 0 0

1] 1] 1 2 1
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Threshold Logic Units: Geometric Interpretation

Review of line representations

Straight lines are usually represented in one of the following forms:

Explicit Form: g = x9=bxri+c
Implicit Form: g = ajr1+axy+d=0
Point-Direction Form: ¢ = Z=p+ kr

Normal Form: g = (£—pn=0

with the parameters:

Gradient of the line

Section of the xo axis

Vector of a point of the line (base vector)
Direction vector of the line

Normal vector of the line

SIS 6 &
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Threshold Logic Units: Geometric Interpretation

A straight line and its defining parameters.
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Threshold Logic Units: Geometric Interpretation

How to determine the side on which a point 7 lies.

| SR > I
~ © = JalTal
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Threshold Logic Units: Geometric Interpretation

Threshold logic unit for x; A x9.

A
L1 14 ©
\3~
L2
(D—v
4 O
5 0
L2 | >
0 x1 1
A threshold logic unit for zo — z;.
A
1 14 O 01 °
\2\
L2
(()— v
/1 @ ®
5 0
X9 I I

Rudolf Kruse Neural Networks



Threshold Logic Units: Geometric Interpretation

Visualization of 3-dimensional (1,1,1)
Boolean functions: 47
X3 ]
X9
T4 L1 47

Threshold logic unit for (1 AT3) V (1 Ax3) V (T3 A x3).

L1

\2~

_ X3

X9 —»2 ( ) Y Téf@
5

L1

L3
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Threshold Logic Units: linear separability

e We call two sets of points in an n-dimensional space linearly separable, if they

can separated by an (n-1)-dimensional hyperplane. One of these sets may contain
points lying on the hyperplane, too.

e A boolean function is called linearly separable, if the set of fibers of 0 and the set
of fibers of 1 are linearly separable.

Rudolf Kruse Neural Networks
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Threshold Logic Units: Limitations

The biimplication problem x; <+ z9: There is no separating line.

A
r1 | X9 | Y 194 O o
0,01 2
1010
0110 04 e o
1|11 | .
0 x1 1
Formal proof by reductio ad absurdum:

since (0,0) +— 1 0 >0, (1)

since (1,0) — 0:  wq < 0, (2)

since (0,1) =0 w9 <60, (3

since (1,1) — 1. wi+wy >60. (4

(2) and (3): w1 + wo < 20. With (4): 20 > 6, or 8 > 0. Contradiction to (1).
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Threshold Logic Units: Limitations

Total number and number of linearly separable Boolean functions.
([Widner 1960] as cited in |Zell 1994])

inputs | Boolean functions | linearly separable functions
1 4 4
2 16 14
3 256 104
4 65536 1774
5 4.3-10” 94572
6 1.8-10% 5.0 - 10°

e For many inputs a threshold logic unit can compute almost no functions.

e Networks of threshold logic units are needed to overcome the limitations.
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Networks of Threshold Logic Units

Solving the biimplication problem with a network.

Idea: logical decomposition T4 10 = (] = 29) A (29 = 27)

computes y; = xr1 — 19

9 computes y = y1 N\ Y9
2 \
d—> Y= <> T9
N1

computes Y9 = x9o — X
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Networks of Threshold Logic Units

Solving the biimplication problem: Geometric interpretation

A 1 ac
194 O o
b 0
0 - d O
| >
0 vy 1

e The first layer computes new Boolean coordinates for the points.

e After the coordinate transformation the problem is linearly separable.

Rudolf Kruse Neural Networks
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Representing Arbitrary Boolean Functions

Let y = f(zq,...,xy) be a Boolean function of n variables.
(i) Represent f(xq,...,xy) in disjunctive normal form. That is, determine
Dy = K1 V...V Ky, where all Kj are conjunctions of n literals, i.e.,

K = 1ljy N ... Nlj, with [;; = x; (positive literal) or 1;; = —x; (negative
literal).

(ii) Create a neuron for each conjunction K of the disjunctive normal form (having
n inputs — one input for each variable), where

Wi = 2, iflji: i and 9'—n—1+1§:w--
=2, if Uy =y, J 2= "

(iii) Create an output neuron (having m inputs — one input for each neuron that was
created in step (ii)), where

w(n+1)k:2, k=1,...,m, and Onr1 = 1.

Rudolf Kruse Neural Networks
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Training Threshold Logic Units
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Training Threshold Logic Units

e (Geometric interpretation provides a way to construct threshold logic units
with 2 and 3 inputs, but:

o Not an automatic method (human visualization needed).

o Not feasible for more than 3 inputs.

e General idea of automatic training:
o Start with random values for weights and threshold.

o Determine the error of the output for a set of training patterns.

o Error is a function of the weights and the threshold: e = e(wq, ..., wy, 0).

o Adapt weights and threshold so that the error gets smaller.

o Iterate adaptation until the error vanishes.

Rudolf Kruse Neural Networks
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Training Threshold Logic Units

Single input threshold logic unit for the negation —z.

0

=

Output error as a function of weight and threshold.

2 2 2
1 1 1
2 2 2
1 1
w - 9 w - 9 w - 9
T T ot

error for x = 0 error for x = 1 sum of errors
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Training Threshold Logic Units

e The error function cannot be used directly, because it consists of plateaus.

e Solution: If the computed output is wrong,
take into account, how far the weighted sum is from the threshold.

Modified output error as a function of weight and threshold.

\E

error for x = 0 error for x = 1 sum of errors
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Training Threshold Logic Units

Schemata of resulting directions of parameter changes.

2 2 2
1 1 \ 1+ \ l
W 0 - -« W 0 - W 0
—1- —1- —1-
-2 I I —2 I T T —2 | |
2 -1 0 1 2 2 -1 0 1 2 2 -1 0 1 2
6 6 6

changes for x = 0 changes for x =1 sum of changes

e Start at random point.

e [teratively adapt parameters
according to the direction corresponding to the current point.
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Training Threshold Logic Units

Example training procedure: Online and batch training.

2 o . 2
1 — ° ° 1 B < \
w 0 - LN o<———o w 0 - 0 b
—1 4 o<—T—o —1 o<———o
_2 I I —2 T T
92 -1 0 1 2 2 -1 0 1 2
7, 7,
Online-Lernen Batch-Lernen Batch-Lernen

xr i»@—» y | L >
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Training Threshold Logic Units: Delta Rule

Formal Training Rule: Let ¥ = (x1, ..., xy) be an input vector of a threshold logic
unit, o the desired output for this input vector and y the actual output of the threshold
logic unit. If y # o, then the threshold 6 and the weight vector @ = (wyq, ..., wy) are
adapted as follows in order to reduce the error:

p(new)

plld) L AG  with A = —nlo—y),
vie{l,...,n}: w =

(old)

1

+ Aw; with Aw; = n(o —y)z;,

where 7 is a parameter that is called learning rate. It determines the severity of the
weight changes. This procedure is called Delta Rule or Widrow—Hoff Procedure
[Widrow and Hoff 1960

e Online Training: Adapt parameters after each training pattern.

e Batch Training: Adapt parameters only at the end of each epoch,
i.e. after a traversal of all training patterns.
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Training Threshold Logic Units: Delta Rule

Turning the threshold value into a weight:

1 = xg
wo = —0
i i
1 wq 1
\ m
L9 —»—» Yy Ly ——» _—
w9 w9

Wn, Wn
In In
n n
sz‘%’>9 Zwixi—9>0
1=1 1=1
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Training Threshold Logic Units: Delta Rule

procedure online_training (var w, var 6, L, n);

var y, €;
begin
repeat
e = 0;
for all (¥,0) € L do begin
if (Wi > 0) then y:=1;

else y:=0;
if (y # o) then begin
0 =0 —nlo—y):
W= W+ nlo —y)T;
e =e+ |o—y|
end;
end;
until (e < 0);

end;

Rudolf Kruse

(* output, sum of errors *)

* initialize the error sum *)

traverse the patterns *)
compute the output *)

* of the threshold logic unit *)

(

(*

(

(

(* if the output is wrong *)
(

(

(

*

* adapt the threshold *)
* and the weights *)
* sum the errors *)

(* repeat the computations *)
(* until the error vanishes *)
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Training Threshold Logic Units: Delta Rule

procedure batch_training (var «, var 6, L, n);

var y, e,
0., W,
begin
repeat
e:=0:0.:=0: @ :=0:
for all (Z,0) € L do begin
if (Wi > 0) then y :=1;
else y:=0;
if (y # o) then begin
0. =0, —nlo—y);
W, = W, +n(o — y)T;
e ==e + |o—y|;
end;
end;
0 =60 +0,.:

W= W + W,
until (e < 0);
end;

Rudolf Kruse

(* output, sum of errors *)
(* summed changes *)

* initializations *)

traverse the patterns *)
compute the output *)

* of the threshold logic unit *)
*if the output is wrong *)
sum the changes of the *)

* threshold and the weights *)

* sum the errors *)

*
*

*

(
(
(
(
(
(
(
(

(* adapt the threshold *)

(* and the weights *)

(* repeat the computations *)
(

* until the error vanishes *)
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Training Threshold Logic Units: Online

Rudolf Kruse

epoch | x |o|| zw |y | e| A8 | Aw 0 w
15| 2

1 O|1]—-15]0 1] —1 0 0.5 2
110 151 -1 1] —1 15| 1

2 O|1]—-15]0 1] —1 0 05 1
110 0.5 1] —1 1] —1 1.5 0

3 O|1||—-1510 1] —1 0 051 0
110 0510 0 0 0 051 0

4 0|1 =050 1] —1 0] —=05] 0
110 05 1] —1 1| —1 0.5 —1

5 0|1 =050 1] —1 0 —0.5|—1
10| —=05]0] 0O 0 0 —0.5] —1

6 011 0511 0 0 0 —0.5] —1
110 —=05]0] O 0 0 —0.5] —1
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Training Threshold Logic Units: Batch

Rudolf Kruse

epoch |z |o| xw |y | e| Af| Aw 0 w
1.5 2

1 0|1 —-15]0 1] —1 0
110 0511 —1 1] —1 1.5 1

2 0|1 —-15]0 1] —1 0
110 —=05]0] 0 0 0 0.5 1

3 O0]1] =050 1] -1 0
110 05 1] —1 1] —1 0.5 0

4 0]1]-=0510| 1] -1 0
110 —=05]0] 0 0 0 =051 0

5 011 0511 0 0 0
110 0511 —1 1] —1 0.5 —1

6 O0]1]-=0510| 1] -1 0
110 —=15]0] O 0 0 —0.5| —1

7 011 0511 0 0 0
110 —=05]0] 0 0 0] =05 —1
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Training Threshold Logic Units: Conjunction

Threshold logic unit with two inputs for the conjunction.

1wy x| 1o |y
\ 000
H—
/ 01 0
zo ~ 2 1] 11
. A
1 i
()—
/ 04 ©
9 |
0
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Training Threshold Logic Units: Biimplication

w2

0 | wy

Awy

AO | Awq

€

'3

)

L2

epoch | x1
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Training Threshold Logic Units: Convergence

Convergence Theorem: Let L = {(Z1,01),...(Zm,0om)} be a set of training
patterns, each consisting of an input vector z; € R™ and a desired output o; € {0, 1}.
Furthermore, let Ly = {(Z,0) € L | 0 =0} and L1 ={(#,0) € L | o = 1}. If Ly and
Ly are linearly separable, i.e., if w € IR"™ and 6 € IR exist, such that

V(Z,0) € Ly: @
Z, 1

0 and
\V/( : )ELl w v

then online as well as batch training terminate.

e The algorithms terminate only when the error vanishes.
e Therefore the resulting threshold and weights must solve the problem.

e For not linearly separable problems the algorithms do not terminate.
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Training Networks of Threshold Logic Units

e Single threshold logic units have strong limitations:
They can only compute linearly separable functions.

e Networks of threshold logic units can compute arbitrary Boolean functions.

e Training single threshold logic units with the delta rule is fast
and guaranteed to find a solution if one exists.

e Networks of threshold logic units cannot be trained, because

o there are no desired values for the neurons of the first layer,

o the problem can usually be solved with different functions
computed by the neurons of the first layer.

e When this situation became clear,
neural networks were seen as a ‘“research dead end” .
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