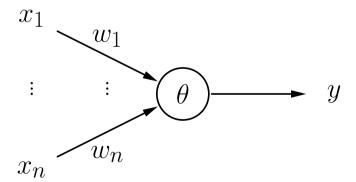
Schwellenwertelemente

Schwellenwertelemente

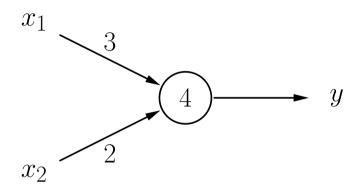
Ein **Schwellenwertelement** (Threshold Logic Unit, TLU) ist eine Verarbeitungseinheit für Zahlen mit n Eingängen x_1, \ldots, x_n und einem Ausgang y. Das Element hat einen **Schwellenwert** θ und jeder Eingang x_i ist mit einem **Gewicht** w_i versehen. Ein Schwellenwertelement berechnet die Funktion

$$y = \begin{cases} 1, & \text{falls} \quad \boldsymbol{xw} = \sum_{i=1}^{n} w_i x_i \ge \theta, \\ 0, & \text{sonst.} \end{cases}$$



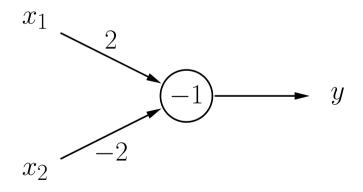
Schwellenwertelemente: Beispiele

Schwellenwertelement für die Konjunktion $x_1 \wedge x_2$.



x_1	x_2	$3x_1 + 2x_2$	y
0	0	0	0
1	0	3	0
0	1	2	0
1	1	5	1

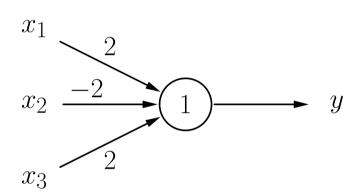
Schwellenwertelement für die Implikation $x_2 \rightarrow x_1$.



x_1	x_2	$2x_1 - 2x_2$	y
0	0	0	1
1	0	2	1
0	1	-2	0
1	1	0	1

Schwellenwertelemente: Beispiele

Schwellenwertelement für $(x_1 \wedge \overline{x_2}) \vee (x_1 \wedge x_3) \vee (\overline{x_2} \wedge x_3)$.



x_1	x_2	x_3	$\Sigma_i w_i x_i$	y
0	0	0	0	0
1	0	0	2	1
0	1	0	-2	0
1	1	0	0	0
0	0	1	2	1
1	0	1	4	1
0	1	1	0	0
1	1	1	2	1

Rückblick: Geradendarstellungen

Geraden werden typischerweise in einer der folgenden Formen dargestellt:

Explizite Form: $g \equiv x_2 = bx_1 + c$

Implizite Form: $g \equiv a_1x_1 + a_2x_2 + d = 0$

Punkt-Richtungs-Form: $g \equiv \boldsymbol{x} = \boldsymbol{p} + k\boldsymbol{r}$

Normalform $g \equiv (\boldsymbol{x} - \boldsymbol{p})\boldsymbol{n} = 0$

mit den Parametern

b: Anstieg der Geraden

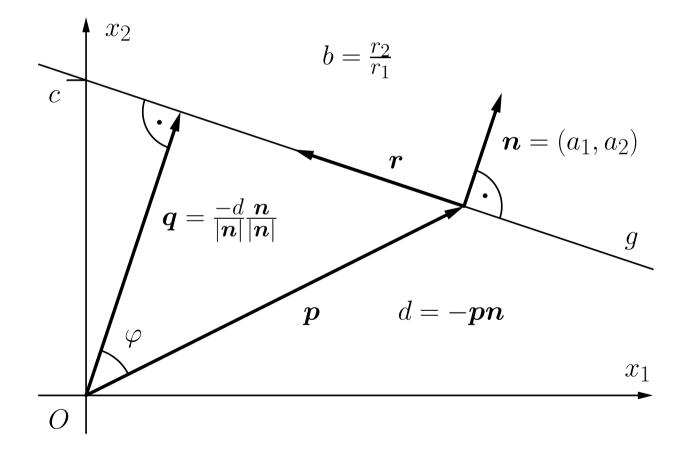
c: Abschnitt der x_2 -Achse

 \boldsymbol{p} : Vektor zu einem Punkt auf der Gerade (Ortsvektor)

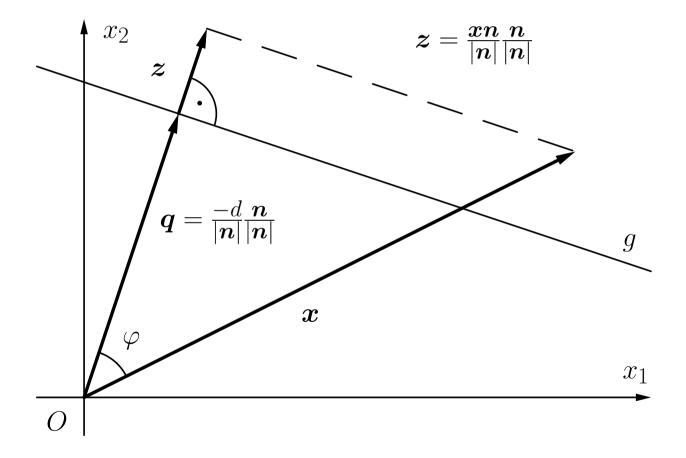
r: Richtungsvektor der Gerade

n: Normalenvektor der Gerade

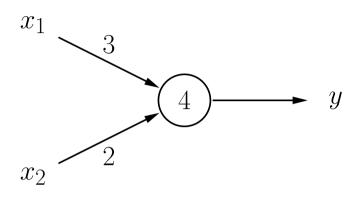
Eine Gerade und ihre definierenden Eigenschaften.



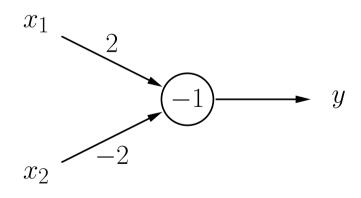
Bestimmung, auf welcher Seite ein Punkt x liegt.

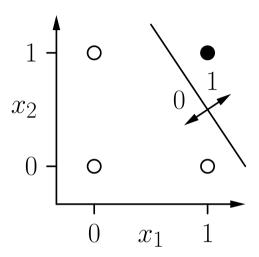


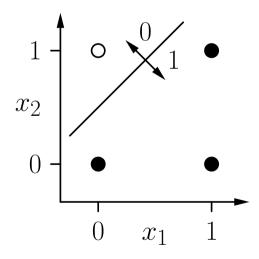
Schwellenwertelement für $x_1 \wedge x_2$.



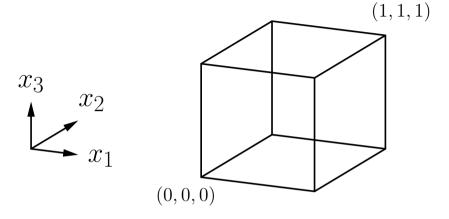
Ein Schwellenwertelement für $x_2 \rightarrow x_1$.



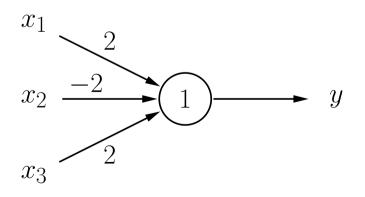


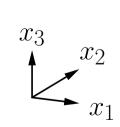


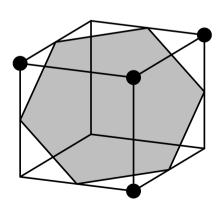
Darstellung 3-dimensionaler Boolescher Funktionen:



Schwellenwertelement für $(x_1 \wedge \overline{x_2}) \vee (x_1 \wedge x_3) \vee (\overline{x_2} \wedge x_3)$.







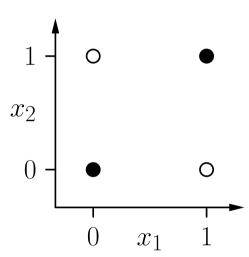
Schwellenwertelemente: lineare Separabilität

- Zwei Punktmengen in einem n-dimensionalen Raum heißen linear separabel, wenn sie durch eine (n-1)-dimensionale Hyperebene getrennt werden können. Die Punkte der einen Menge dürfen dabei auch auf der Hyperebene liegen.
- Eine Boolesche Funktion heißt linear separabel, falls die Menge der Urbilder von 0 und die Menge der Urbilder von 1 linear separabel sind.

Schwellenwertelemente: Grenzen

Das Biimplikationsproblem $x_1 \leftrightarrow x_2$: Es gibt keine Trenngerade.

x_1	x_2	y
0	0	1
1	0	0
0	1	0
1	1	1



Formaler Beweis durch reductio ad absurdum:

$$da (0,0) \mapsto 1: 0 \geq \theta, (1)
 da (1,0) \mapsto 0: w_1 < \theta, (2)
 da (0,1) \mapsto 0: w_2 < \theta, (3)
 da (1,1) \mapsto 1: w_1 + w_2 \geq \theta. (4)$$

(2) und (3): $w_1 + w_2 < 2\theta$. Mit (4): $2\theta > \theta$, oder $\theta > 0$. Widerspruch zu (1).

Schwellenwertelemente: Grenzen

Vergleich zwischen absoluter Anzahl und der Anzahl linear separabler Boolescher Funktionen.

([Widner 1960] zitiert in [Zell 1994])

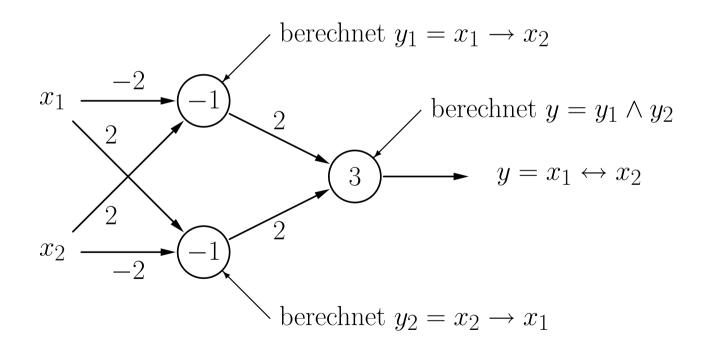
Eingaben	Boolesche Funktionen	linear separable Funktionen
1	4	4
2	16	14
3	256	104
4	65536	1774
5	$4.3 \cdot 10^9$	94572
6	$1.8 \cdot 10^{19}$	$5.0 \cdot 10^6$

- Für viele Eingaben kann ein SWE fast keine Funktion berechnen.
- Netze aus Schwellenwertelementen sind notwendig, um die Berechnungsfähigkeiten zu erweitern.

Netze aus Schwellenwertelementen

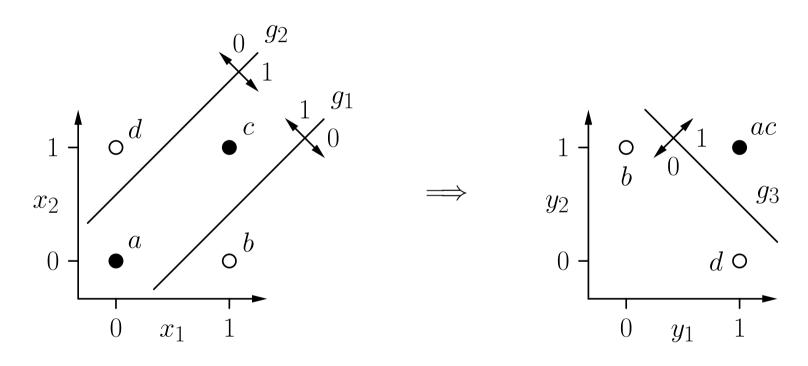
Biimplikationsproblem, Lösung durch ein Netzwerk.

Idee: logische Zerlegung $x_1 \leftrightarrow x_2 \equiv (x_1 \to x_2) \land (x_2 \to x_1)$



20

Lösung des Biimplikationsproblems: Geometrische Interpretation



- Die erste Schicht berechnet neue Boolesche Koordinaten für die Punkte.
- Nach der Koordinatentransformation ist das Problem linear separabel.

Darstellung beliebiger Boolescher Funktionen

Sei $y = f(x_1, \dots, x_n)$ eine Boolesche Funktion mit n Variablen.

- (i) Stelle $f(x_1, \ldots, x_n)$ in disjunktiver Normalform dar. D.h. bestimme $D_f = K_1 \vee \ldots \vee K_m$, wobei alle K_j Konjunktionen von n Literalen sind, d.h., $K_j = l_{j1} \wedge \ldots \wedge l_{jn}$ mit $l_{ji} = x_i$ (positives Literal) oder $l_{ji} = \neg x_i$ (negatives Literal).
- (ii) Lege ein Neuron für jede Konjunktion K_j der disjunktiven Normalform an (mit n Eingängen ein Eingang pro Variable), wobei

$$w_{ji} = \begin{cases} 2, & \text{falls } l_{ji} = x_i, \\ -2, & \text{falls } l_{ji} = \neg x_i, \end{cases}$$
 und $\theta_j = n - 1 + \frac{1}{2} \sum_{i=1}^n w_{ji}.$

(iii) Lege ein Ausgabeneuron an (mit m Eingängen — ein Eingang für jedes Neuron, das in Schritt (ii) angelegt wurde), wobei

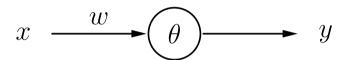
$$w_{(n+1)k} = 2, \quad k = 1, \dots, m,$$
 und $\theta_{n+1} = 1.$

- Die geometrische Interpretation bietet eine Möglichkeit, SWE mit 2 und 3 Eingängen zu konstruieren, aber:
 - Es ist keine automatische Methode (Visualisierung und Begutachtung ist nötig).
 - Nicht möglich für mehr als drei Eingabevariablen.

• Grundlegende Idee des automatischen Trainings:

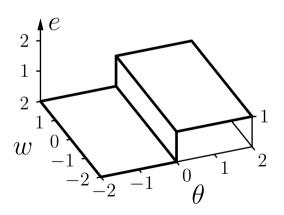
- Beginne mit zufälligen Werten für Gewichte und Schwellenwert.
- o Bestimme den Ausgabefehler für eine Menge von Trainingsbeispielen.
- o Der Fehler ist eine Funktion der Gewichte und des Schwellenwerts: $e = e(w_1, \ldots, w_n, \theta)$.
- Passe Gewichte und Schwellenwert so an, dass der Fehler kleiner wird.
- Wiederhole diese Anpassung, bis der Fehler verschwindet.

Schwellenwertelement mit einer Eingabe für die Negation $\neg x$.

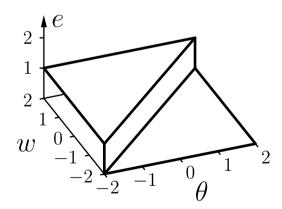


x	y
0	1
1	0

Ausgabefehler als eine Funktion von Gewicht und Schwellenwert.



Fehler für x = 0



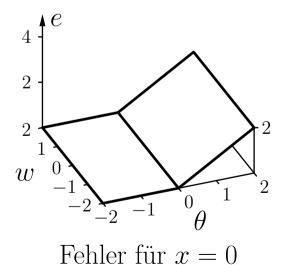
Fehler für x = 1

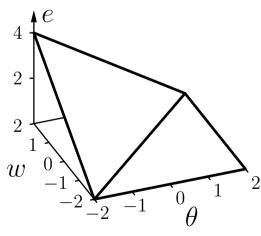


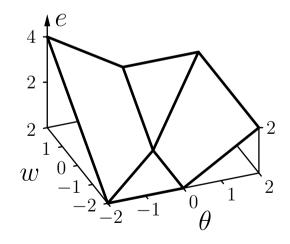
Summe der Fehler

- Die Fehlerfunktion kann nicht direkt verwendet werden, da sie aus Plateaus besteht.
- Lösung: Falls die berechnete Ausgabe falsch ist, berücksichtige, wie weit die gewichtete Summe vom Schwellenwert entfernt ist.

Modifizierter Ausgabefehler als Funktion von Gewichten und Schwellenwert.

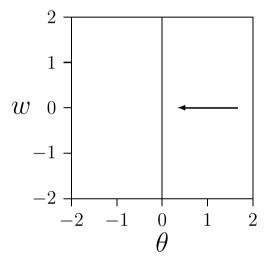




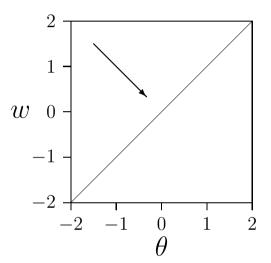


Fehler für x = 1

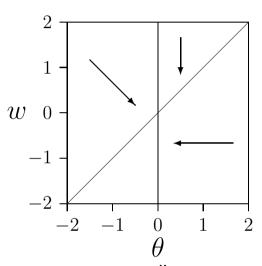
Schema der resultierenden Richtungen der Parameteränderungen.



Änderungen für x = 0



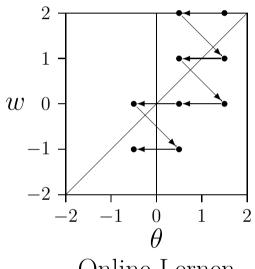
Änderungen für x = 1

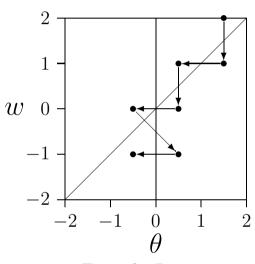


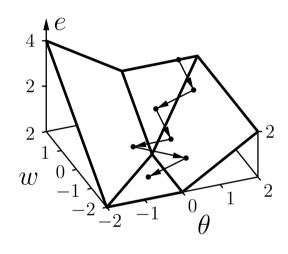
Summe der Änderungen

- Beginne an zufälligem Punkt.
- Passe Parameter iterativ an, entsprechend der zugehörigen Richtung am aktuellen Punkt.

Beispieltrainingsprozedur: Online- und Batch-Training.



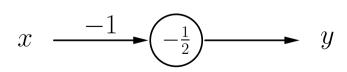


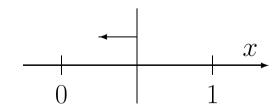


Online-Lernen

Batch-Lernen

Batch-Lernen





Trainieren von Schwellenwertelementen: Delta-Regel

Formale Trainingsregel: Sei $\mathbf{x} = (x_1, \dots, x_n)$ ein Eingabevektor eines Schwellenwertelements, o die gewünschte Ausgabe für diesen Eingabevektor, und y die momentane Ausgabe des Schwellenwertelements. Wenn $y \neq o$, dann werden Schwellenwert θ und Gewichtsvektor $\mathbf{w} = (w_1, \dots, w_n)$ wie folgt angepasst, um den Fehler zu reduzieren:

$$\theta^{(\text{neu})} = \theta^{(\text{alt})} + \Delta\theta \quad \text{wobei} \quad \Delta\theta = -\eta(o - y),$$

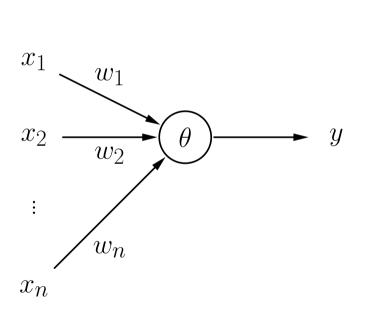
$$\forall i \in \{1, \dots, n\}: \quad w_i^{(\text{neu})} = w_i^{(\text{alt})} + \Delta w_i \quad \text{wobei} \quad \Delta w_i = -\eta(o - y)x_i,$$

wobei η ein Parameter ist, der **Lernrate** genannt wird. Er bestimmt die Größenordnung der Gewichtsänderungen. Diese Vorgehensweise nennt sich **Delta-Regel** oder **Widrow-Hoff-Procedure** [Widrow and Hoff 1960].

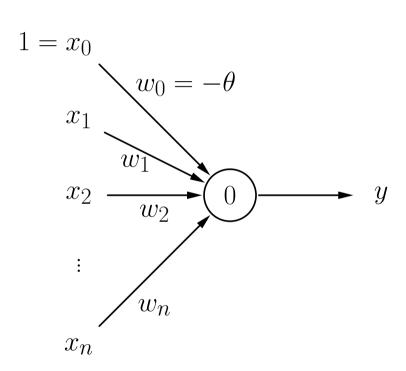
- Online-Training: Passe Parameter nach jedem Trainingsmuster an.
- Batch-Training: Passe Parameter am Ende jeder Epoche an, d.h. nach dem Durchlaufen aller Trainingsbeispiele.

Trainieren von Schwellenwertelementen: Delta-Regel

Ändern des Schwellenwerts in ein Gewicht:



$$\sum_{i=1}^{n} w_i x_i \ge \theta$$



$$\sum_{i=1}^{n} w_i x_i - \theta \ge 0$$

```
procedure online_training (var \boldsymbol{w}, var \theta, L, \eta);
                                               (* Ausgabe, Fehlersumme *)
\mathbf{var}\ y,\ e;
begin
  repeat
                                               (* initialisiere Fehlersumme *)
     e := 0;
                                               (* durchlaufe Trainingsmuster*)
     for all (\boldsymbol{x}, o) \in L do begin
       if (\boldsymbol{w}\boldsymbol{x} \geq \theta) then y := 1; (* berechne Ausgabe*)
                      else y := 0; (* des Schwellenwertelements *)
       if (y \neq o) then begin
                                     (* Falls Ausgabe falsch *)
          \theta := \theta - \eta(o-y);
                                              (* passe Schwellenwert *)
                                              (* und Gewichte an *)
          \boldsymbol{w} := \boldsymbol{w} + \eta(o - y)\boldsymbol{x};
          e := e + |o - y|;
                                               (* summiere die Fehler*)
       end;
     end;
  until (e \leq 0);
                                               (* wiederhole die Berechnungen*)
                                               (* bis der Fehler verschwindet*)
end;
```

Trainieren von Schwellenwertelementen: Delta-Regel

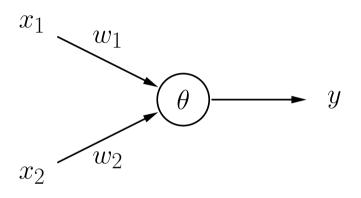
```
procedure batch training (var w, var \theta, L, \eta);
                                                      (* Ausgabe, Fehlersumme *)
var y, e,
                                                      (* summierte Änderungen *)
     \theta_c, \boldsymbol{w}_c;
begin
  repeat
                                                      (* Initialisierungen *)
     e := 0; \theta_c := 0; \mathbf{w}_c := \mathbf{0};
                                                      (* durchlaufe Trainingsbeispiele*)
     for all (\boldsymbol{x}, o) \in L do begin
                                                      (* berechne Ausgabe *)
        if (\boldsymbol{w}\boldsymbol{x} \geq \theta) then y := 1;
                        else y := 0:
                                                      (* des Schwellenwertelements *)
        if (y \neq o) then begin
                                                      (* Falls Ausgabe falsch*)
                                                      (* summiere die Änderungen von*)
          \theta_c := \theta_c - \eta(o-y);
          \boldsymbol{w}_c := \boldsymbol{w}_c + \eta(o-y)\boldsymbol{x};
                                                      (* Schwellenwert und Gewichten *)
                                                      (* summiere Fehler*)
           e := e + |o - y|;
        end:
     end;
                                                      (* passe Schwellenwert*)
     \theta := \theta + \theta_c;
                                                      (* und Gewichte an *)
     \boldsymbol{w} := \boldsymbol{w} + \boldsymbol{w}_c:
                                                      (* wiederhole Berechnungen *)
  until (e \leq 0);
                                                      (* bis der Fehler verschwindet*)
end;
```

Epoche	x	0	xw	y	e	$\Delta\theta$	Δw	θ	w
								1.5	2
1	0	1	-1.5	0	1	-1	0	0.5	2
	1	0	1.5	1	-1	1	-1	1.5	1
2	0	1	-1.5	0	1	-1	0	0.5	1
	1	0	0.5	1	-1	1	-1	1.5	0
3	0	1	-1.5	0	1	-1	0	0.5	0
	1	0	0.5	0	0	0	0	0.5	0
4	0	1	-0.5	0	1	-1	0	-0.5	0
	1	0	0.5	1	-1	1	-1	0.5	-1
5	0	1	-0.5	0	1	-1	0	-0.5	-1
	1	0	-0.5	0	0	0	0	-0.5	-1
6	0	1	0.5	1	0	0	0	-0.5	-1
	1	0	-0.5	0	0	0	0	-0.5	-1

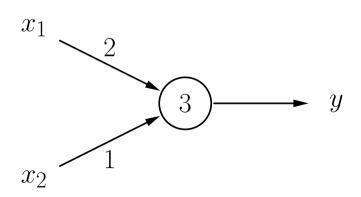
Epoche	x	О	xw	y	e	$\Delta\theta$	Δw	θ	w
								1.5	2
1	0	1	-1.5	0	1	-1	0		
	1	0	0.5	1	-1	1	-1	1.5	1
2	0	1	-1.5	0	1	- 1	0		
	1	0	-0.5	0	0	0	0	0.5	1
3	0	1	-0.5	0	1	-1	0		
	1	0	0.5	1	-1	1	-1	0.5	0
4	0	1	-0.5	0	1	-1	0		
	1	0	-0.5	0	0	0	0	-0.5	0
5	0	1	0.5	1	0	0	0		
	1	0	0.5	1	-1	1	-1	0.5	-1
6	0	1	-0.5	0	1	-1	0		
	1	0	-1.5	0	0	0	0	-0.5	- 1
7	0	1	0.5	1	0	0	0		
	1	0	-0.5	0	0	0	0	-0.5	- 1

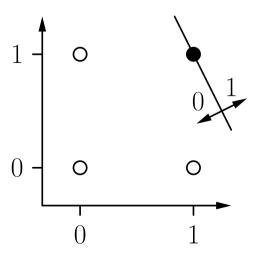
Trainieren von Schwellenwertelementen: Konjunktion

Schwellenwertelement mit zwei Eingängen für die Konjunktion.



x_1	x_2	y
0	0	0
1	0	0
0	1	0
1	1	1





Trainieren von Schwellenwertelementen: Konjunktion

Epoche	x_1	x_2	0	xw	y	e	$\Delta\theta$	Δw_1	Δw_2	θ	w_1	w_2
										0	0	0
1	0	0	0	0	1	-1	1	0	0	1	0	0
	0	1	0	-1	0	0	0	0	0	1	0	0
	1	0	0	-1	0	0	0	0	0	1	0	0
	1	1	1	-1	0	1	-1	1	1	0	1	1
2	0	0	0	0	1	-1	1	0	0	1	1	1
	0	1	0	0	1	-1	1	0	-1	2	1	0
	1	0	0	-1	0	0	0	0	0	2	1	0
	1	1	1	-1	0	1	-1	1	1	1	2	1
3	0	0	0	-1	0	0	0	0	0	1	2	1
	0	1	0	0	1	-1	1	0	-1	2	2	0
	1	0	0	0	1	-1	1	-1	0	3	1	0
	1	1	1	-2	0	1	-1	1	1	2	2	1
4	0	0	0	-2	0	0	0	0	0	2	2	1
	0	1	0	-1	0	0	0	0	0	2	2	1
	1	0	0	0	1	-1	1	-1	0	3	1	1
	1	1	1	-1	0	1	-1	1	1	2	2	2
5	0	0	0	-2	0	0	0	0	0	2	2	2
	0	1	0	0	1	-1	1	0	-1	3	2	1
	1	0	0	-1	0	0	0	0	0	3	2	1
	1	1	1	0	1	0	0	0	0	3	2	1
6	0	0	0	-3	0	0	0	0	0	3	2	1
	0	1	0	-2	0	0	0	0	0	3	2	1
	1	0	0	-1	0	0	0	0	0	3	2	1
	1	1	1	0	1	0	0	0	0	3	2	1

Trainieren von Schwellenwertelementen: Biimplikation

Epoch	x_1	x_2	0	xw	y	e	$\Delta \theta$	Δw_1	Δw_2	θ	w_1	w_2
										0	0	0
1	0	0	1	0	1	0	0	0	0	0	0	0
	0	1	0	0	1	-1	1	0	-1	1	0	-1
	1	0	0	- 1	0	0	0	0	0	1	0	-1
	1	1	1	-2	0	1	-1	1	1	0	1	0
2	0	0	1	0	1	0	0	0	0	0	1	0
	0	1	0	0	1	-1	1	0	-1	1	1	-1
	1	0	0	0	1	-1	1	-1	0	2	0	-1
	1	1	1	-3	0	1	-1	1	1	1	1	0
3	0	0	1	0	1	0	0	0	0	0	1	0
	0	1	0	0	1	-1	1	0	-1	1	1	-1
	1	0	0	0	1	-1	1	-1	0	2	0	-1
	1	1	1	-3	0	1	-1	1	1	1	1	0

Trainieren von Schwellenwertelementen: Konvergenz

Konvergenztheorem: Sei $L = \{(\boldsymbol{x}_1, o_1), \dots (\boldsymbol{x}_m, o_m)\}$ eine Menge von Trainingsmustern, jedes bestehend aus einem Eingabevektor $\boldsymbol{x}_i \in \mathbb{R}^n$ und einer gewünschten Ausgabe $o_i \in \{0, 1\}$. Sei weiterhin $L_0 = \{(\boldsymbol{x}, o) \in L \mid o = 0\}$ und $L_1 = \{(\boldsymbol{x}, o) \in L \mid o = 1\}$. Falls L_0 und L_1 linear separabel sind, d.h., falls $\boldsymbol{w} \in \mathbb{R}^n$ und $\theta \in \mathbb{R}$ existieren, so dass

$$\forall (\boldsymbol{x},0) \in L_0: \quad \boldsymbol{w}\boldsymbol{x} < \theta \quad \text{und}$$

 $\forall (\boldsymbol{x},1) \in L_1: \quad \boldsymbol{w}\boldsymbol{x} \geq \theta,$

dann terminieren sowohl Online- als auch Batch-Training.

• Für nicht linear separable Probleme terminiert der Algorithmus nicht.

Trainieren von Netzwerken aus Schwellenwertelementen

- Einzelne Schwellenwertelemente haben starke Einschränkungen: Sie können nur linear separable Funktionen berechnen.
- Netzwerke aus Schwellenwertelemente können beliebige Boolesche Funktionen berechnen.
- Das Trainieren einzelner Schwellenwertelemente mit der Delta-Regel ist schnell und findet garantiert eine Lösung, falls eine existiert.
- Netzwerke aus Schwellenwertelementen können nicht mit der Delta-Regel trainiert werden.