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Example: Automatic Gear Box

7 Mamdani fuzzy rules

Optimized program

• 24 byte RAM

• 702 byte ROM

Runtime 80 ms

• 12 times per second new sport
factor is assigned

How to find these fuzzy rules?
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Learning from Examples

There are lots of methods for learning:

In Statistics:

Parameter fitting, structure identification, model selection

Machine learning:

Decision tree learning

Neural networks: learning from data

Cluster analysis: unsupervised learning

Evolutionary algorithms: Fine tuning of rules

The learning problem becomes an optimization problem.

How to use these methods in fuzzy systems for learning?
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Learning Fuzzy Systems by Clustering



Function Approximation with Fuzzy Rules
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Learning Fuzzy Rules from Data

Perform fuzzy cluster analysis of the input-output data.

Then project the clusters.

Finally, obtain fuzzy rules, e.g. “if x is small, then y is medium”.
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Example: Transfer Passenger Analysis

German Aerospace Center (DLR) developed macroscopic passenger
flow model for simulating passenger movements on airport’s land side

For passenger movements in terminal areas: distribution functions are
used today

Goal: build fuzzy rule base describing transfer passenger amount
between aircrafts

These rules can be used to improve macroscopic simulation

Idea: find rules based on probabilistic fuzzy c-means (FCM)
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Attributes for Passenger Analysis

Maximal amount of passengers in certain aircraft (depending on type
of aircraft)

Distance between airport of departure and airport of destination (in
three categories: short-, medium-, and long-haul)

Time of departure

Percentage of transfer passengers in aircraft
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General Clustering Procedure
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Distance Measure

distance between x = (x1, x2) and c = (0, 0)
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Distance Measure with Size Adaption
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p determines emphasis put on size adaption during clustering
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Constraints for the Objective function

Probabilistic clustering

Noise clustering

Influence of outliers
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Probabilistic and Noise Clustering
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Influence of Outliers

A weighting factor ωj is attached to each datum x j

Weighting factors are adapted during clustering

Using concept of weighting factors:

• outliers in data set can be identified and

• outliers’ influence on partition is reduced
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Membership Degrees and Weighting Factors
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Influence of Outliers

Minimize objective function
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Determining the Number of Clusters

Here, validity measures evaluating
whole partition of data

Getting: global validity measures

Clustering is run for varying
number of clusters

Validity of resulting partitions is
compared
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Fuzzy Rules and Induced Vague Areas

Intensity of color indicates firing
strength of specific rule

Vague areas = fuzzy clusters where
color intensity indicates
membership degree

Tips of fuzzy partitions in single
domains = projections of
multidimensional cluster centers
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Simplification of Fuzzy Rules

Similar fuzzy sets are combined to
one fuzzy set

Fuzzy sets similar to universal
fuzzy set are removed

Rules with same input sets are

• Combined if they also have
same output set(s) or

• Otherwise removed from rule
set
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Results

FCM with c = 18, outlier and size adaptation, Euclidean distance:

resulting fuzzy sets simplified fuzzy sets
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Evaluation of the Rule Base
rule max. no. of pax De st. depart. % transfer pax

1 paxmax1 R1 time1 tpax1
2 paxmax2 R1 time2 tpax2
3 paxmax3 R1 time3 tpax3
4 paxmax4 R1 time4 tpax4
5 paxmax5 R5 time1 tpax5
. . . . . . . . . . . . . . .

rules 1 and 5: aircraft with relatively small amount of maximal
passengers (80-200), short- to medium-haul destination, and departing
late at night usually have high amount of transfer passengers (80-90%)

rule 2: flights with medium-haul destination and small aircraft (about
150 passengers), starting about noon, carry relatively high amount of
transfer passengers (ca. 70%)
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Artificial Neural Networks



Biological Background
Structure of a prototypical biological neuron

cell core

axon

myelin sheath

cell body
(soma)

terminal button

synapsis
dendrites
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Threshold Logic Units

A Threshold Logic Unit (TLU) is a processing unit for numbers with
n inputs x1, . . . , xn and one output y . The unit has a threshold θ and
each input xi is associated with a weight wi . A threshold logic unit
computes the function

y =







1, if xw =
n∑

i=1

wixi ≥ θ,

0, otherwise.

θ

x1

...

xn

w1
...

wn

y
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Threshold Logic Units: Examples

Threshold logic unit for the conjunction x1 ∧ x2.

4

x1 3

x2 2

y

x1 x2 3x1 + 2x2 y

0 0 0 0
1 0 3 0
0 1 2 0
1 1 5 1

Threshold logic unit for the implication x2 → x1.

−1

x1 2

x2 −2

y

x1 x2 2x1 − 2x2 y

0 0 0 1
1 0 2 1
0 1 −2 0
1 1 0 1
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Threshold Logic Units: Geometric Interpretation

Threshold logic unit for x1 ∧ x2.
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Threshold Logic Units: Linear Separability

Two point sets in an-dimensional space are called linear separable if
and only if they can be separated by an (n-1)-dimensional hyperplane.

Points of one set are allowed to lie exactly on the hyperplane.

A boolean function is called linear separable iff the set of the
preimages of 0 and the set of the preimages of 1 are linear separable.
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Threshold Logic Units: Limitations

The biimplication problem x1 ↔ x2: There is no separating line.
x1 x2 y

0 0 1
1 0 0
0 1 0
1 1 1

0 1

1

0

x1

x2

Formal proof by reductio ad absurdum:

since (0, 0) 7→ 1: 0 ≥ θ, (1)
since (1, 0) 7→ 0: w1 < θ, (2)
since (0, 1) 7→ 0: w2 < θ, (3)
since (1, 1) 7→ 1: w1 + w2 ≥ θ. (4)

(2) and (3):w1 + w2 < 2θ. With (4): 2θ > θ, or θ > 0.Contradiction to (1).
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Networks of Threshold Logic Units
Solving the biimplication problem with a network.

Idea: logical decomposition x1 ↔ x2 ≡ (x1 → x2) ∧ (x2 → x1)
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computes y = y1 ∧ y2
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Networks of Threshold Logic Units
Solving the biimplication problem: Geometric interpretation
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The first layer computes new Boolean coordinates for the points.

After the coordinate transformation the problem is linearly separable.
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Backpropagation

In 1986 several researchers independently proposed a method
• to simultaneously find the coefficients for all neurons of a

perceptron

• using the so-called back-propagation.

It replaces the discontinuous sgn{〈w , x〉 − b} by a sigmoid function

y = S (〈w , x〉 − b)

S is a monotonic function with S(−∞) = −1 and S(+∞) = +1,
e.g. S(u) = tanh(u).

The composition of neurons is a continuous function which, for any
fixed x, has a gradient w.r.t. all coefficients of all neurons.

The back-propagation method solves this gradient.

It only guarantees to find one of the local minima.
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Demonstration-Software: xmlp/wmlp

Demonstration of MLP-Training:

Visualization of a training run

Biimplication and exclusive Or, two continuous functions

http://www.borgelt.net/mlpd.html
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Object Recognition in Pictures

Imagenet Large Scale Visual Recognition Challenge (LSVRC) since 2010

Look for 200 classes (chair, table, person, bike, ...)

Pictures with ca. 500 x 400 pxels, 3 color channels

Neural network with ca. 600.000 neurons in the first layer

200 neurons in the last layer

Winner 2015: ResNet, uses more than 150 layers, classification error 3.6%
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Neuro-Fuzzy Systems



Neuro-Fuzzy Systems

Building a fuzzy system requires both

• prior knowledge (fuzzy rules, fuzzy sets),

• manual tuning which is time-consuming and error-prone.

This process can be supported by learning, e.g.

• learning fuzzy rules (structure learning),

• learning fuzzy sets (parameter learning).

How to use approaches from artificial neural networks for that?
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Comparison of Neural Networks and Fuzzy
System

Neural Networks Fuzzy Systems

are low-level deal with reasoning on
computational structures a higher level

perform well when use linguistic information
enough data are present from domain experts

can learn neither learn nor adjust themselves
to new environment

are black-boxes for the user are based on natural language

Neuro-fuzzy systems shall combine the parallel computation and
learning abilities of neural networks with the human-like knowledge
representation and explanation abilities of fuzzy systems.

As a result, neural networks become more transparent, while fuzzy
systems become capable of learning.
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Hybridization of Both Techniques

The idea of hybrid methods is to map fuzzy sets and fuzzy rules to a
neural network structure.

For that, we consider the fuzzy rules Ri of a Mamdani controller

Ri : If x1 is µ
(1)
i and . . . and xn is µ

(n)
i

then y is µi ,

or the fuzzy rules R ′

i of a TSK controller

R ′

i : If x1 is µ
(1)
i and . . . and xn is µ

(n)
i , then y = fi(x1, . . . , xn).

The activation ãi of these rules can be calculated by a t-norm.

With input x and the minimum t-norm, we get

ãi(x1, . . . , xn) = min{µ
(1)
i (x1), . . . , µ

(n)
i xn}.
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Hybridization of Both Techniques

Main idea: We replace each connection weight wji ∈ IR from an input

neuron uj to an inner neuron ui by a fuzzy set µ
(j)
i .

Thus ui represents a rule and the connections from the input units
represent the fuzzy sets of the antecedents of the rules.

To calculate the rule activation of ui , we must modify their network
input functions.

For example, with minimum t-norm we obtain

neti = min{µ
(1)
i (x1), . . . , µ

(n)
i xn}

as network input function.
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Fuzzy Sets as Weights

x1

x2

min �ai

µ
(1)
i

µ
(2)
i

If we replace the activation function of the neuron by the identity, then
it corresponds to the rule activation ãi .

So, the neuron can be used directly to compute the rule activity of any
fuzzy rule.
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Fuzzy Sets as Activation Functions

x1

x2

min �ai

µ
(1)
i

µ
(2)
i

Another representation: The fuzzy sets of the antecedent are modeled
as separate neurons.

The network input function is here the identity and the activation
function is the fuzzy membership function.

We need 2 neuron layers to model the antecedent of a fuzzy rule.

Advantage: The fuzzy sets can be directly used in several rules
(ensures interpretability).
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Neuron Output Computation

For TSK each rule we get one more unit for evaluating the output
function fi .

It will be connected to all of the input units (x1, . . . , xn).

In the output layer, the outputs are be combined with the rule
activations ãi .

This output neuron will finally calculate the output by the network
input function

out =

∑r
i=1 ãi · fi(xi , . . . , xn)

∑r
i=1 ãi

.

For Mamdani rules, it depends on the chosen t-conorm and the
defuzzification method.

Also, a common output neuron combines the activations of the rule
neurons and calculates a crisp output value.
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Summary of Hybridization Steps

1. For every input xi , create a neuron in the input layer.

2. For every fuzzy set µ
(j)
i , create a neuron and connect it to the

corresponding xi .

3. For every output variable yi , create one neuron.

For every fuzzy rule Ri , create an inner (rule) neuron and specify
a t-norm for calculating the rule activation.

4. Every Ri is connected according to its fuzzy rule to the
“antecedent” neurons.

5.a) Mamdani: Every rule neuron is connected to the output neuron
according to the consequent. A t-conorm and the defuzzification
method have to be integrated into the output neurons.

6.b) TSK: For every rule unit, one more neuron is created for the
output function. These neurons are connected to the
corresponding output neuron.
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Advantages and Problems of this Approach

Now learning algorithms of artificial neural networks can be applied to
this structure.

Usually the learning methods have to be modified due to some reasons:

• The network input and activation functions changed.

• Not the real-valued network weights but the parameter of the
fuzzy sets have to be learned.

In the following, we discuss 2 hybrid neuro-fuzzy systems,
i.e. ANFIS [Jang, 1993] and NEFCLASS [Nauck and Kruse, 1997].
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Models with Supervised Learning Methods

NFS with supervised learning optimize the fuzzy sets of a given rule
base by observed input-output tuples.

Requirement: An existing (fuzzy) rule base must exist.

Convenient for replacing a standard controller by a fuzzy controller.

If no initial rule base is available, we might apply fuzzy clustering to
the input data for that.

In the following, we discuss a typical example for a neuro-fuzzy system
with supervised learning, i.e. the ANFIS model

Several other approaches are discussed, e.g. in [Nauck et al., 1997].
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The ANFIS Model

The neuro-fuzzy system ANFIS (Adaptive-Network-based Fuzzy
Inference System)

Has been integrated in many controllers and simulation tools,
e.g. Matlab.

The ANFIS model is based on a hybrid structure, i.e. it can be
interpreted as neural network and as fuzzy system.

The model uses the fuzzy rules of a TSK controller.
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Example of an ANFIS Model

x2

x1

µ
(1)
1

µ
(1)
2

µ
(2)
1

µ
(2)
2

∏

∏

∏

�a3

�a2

�a1

N

N

N

fla3

fla2

fla1
�f1

�f2

�f3

fly1

fly2

fly3

∑ y

1. 2. 3. 4. 5. layer
This is a model with three fuzzy rules:

R1 : If x1 is A1 and x2 is B1 then y = f1(x1, x2)

R2 : If x1 is A1 and x2 is B2 then y = f2(x1, x2)

R3 : If x1 is A2 and x2 is B2 then y = f3(x1, x2)

with linear output functions fi = pix1 + qix2 + ri in the antecedent
part.
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ANFIS: Layer 1 – The Fuzzification Layer

Here, neurons represent fuzzy sets of the fuzzy rule antecedents.

The activation function of a membership neuron is set to the function
that specifies the neuron’s fuzzy set.

A fuzzification neuron receives a crisp input and determines the degree
to which this input belongs to the neuron’s fuzzy set.

Usually bell-curved functions are used, e.g.

µ
(j)
i (xj) =

1

1 +
(

xj −ai

bi

)2ci

where ai , bi , ci are parameters for center, width, and slope, resp.

The output of a fuzzification neuron thus also depends on the
membership parameters.
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ANFIS: Layer 2 – The Fuzzy Rule Layer

Each neuron corresponds to a single TSK fuzzy rule.

A fuzzy rule neuron receives inputs from the fuzzification neurons that
represent fuzzy sets in the rule antecedents.

It calculates the firing strength of the corresponding rule.

In NFS, the intersection is usually implemented by the product.

So, the firing strength ãi of rule Ri is

ãi =
k∏

j=1

µ
(j)
i (xj).
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ANFIS: Layer 3 – The Normalization Layer

Each neuron in this layer receives the firing strengths from all neurons
in the rule layer.

The normalised firing strength of a given rule is calculated here.

It represents the contribution of a given rule to the final result.

Thus, the output of neuron i in layer 4 is determined as

āi = ai = neti =
ãi

∑

j ãj
.
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ANFIS: Layers 4 and 5 – Defuzzification and
Summation

Each neuron in layer 4 is connected to the respective normalisation
neuron, and also receives the raw input values x.

A defuzzification neuron calculates the weighted consequent value of a
given rule as

ȳi = ai = neti = āi fi(x1, . . . , xn).

The single neuron in layer 5 calculates the sum of outputs from all
defuzzification neurons and produces the overall ANFIS output:

y = f (x i) = aout = netout =
∑

i

ȳi =

∑

i ãi fi(x1, . . . , xn)
∑

i ãi
.

R. Kruse, C. Doell FS – Learning Fuzzy Systems Part 5 46 / 95

mailto:kruse@ovgu.de
mailto:doell@ovgu.de


How does ANFIS learn? – The Forward Pass

ANFIS uses a hybrid learning algorithm that combines least-squares
and gradient descent

Each learning epoch is composed of one forward and one backward
pass.

In the forward pass, a training set of input-output tupples (xk , yk) is
presented to the ANFIS, neuron outputs are calculated on the
layer-by-layer basis, and rule consequent parameters are identified by
least squares.

Goal: minimize mean squared error e =
∑m

i=1 |y(k)− f (x(k))|2
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How does ANFIS learn? – The Forward Pass

rij : parameters of output function fi , xi(k): input values, y(k): output
value of k-th training pair, āi(k): relative control activation

Then we obtain

y(k) =
∑

i

āi(k)yi(k) =
∑

i

āi(k)





n∑

j=1

rijxj(k) + ri0



 , ∀i , k.

Therefore, with x̂i(k) := [1, x1(k), . . . , xn(k)]T we obtain the
overdetermined linear equation system

y = āRX

for m > (n + 1) · r with m number of training points, r number of
rules, n number of input variables.

The consequent parameters are adjusted while the antecedent
parameters remain fixed.
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How does ANFIS learn? – The Backward Pass

In the backward pass, the error is determined in the output units
based on the new calculated output functions.

Also, with the help of gradient descent, the parameters of the fuzzy
sets are optimized.

Back propagation is applied to compute the “error” of the neurons in
the hidden layers

It updates the parameters of these neurons by the chain rule.
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ANFIS: Summary

Forward and backward passes improves convergence.

Reason: Least squares already has an optimal solution for the
parameters of the output function w.r.t. the initial fuzzy sets.

Unfortunately ANFIS has no restrictions for the optimization of the
fuzzy sets in the antecedents. So, after optimization the input range
might not be covered completely with fuzzy sets.

Thus definition gaps can appear which have to be checked afterwards.

Fuzzy sets can also change, independently form each other, and can
also exchange their order and so their importance, too.

We have to pay attention to this, especially if an initial rule base was
set manually and the controller has to be interpreted afterwards.
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Learning Fuzzy Sets

Gradient descent procedures are only applicable, if a differentiation is
possible, e.g. for Sugeno-type fuzzy systems.

Applying special heuristic procedures that do not use any gradient
information can facilitate the learning of Mamdani-type rules.

Learning algorithms such as NEFCLASS are based on the idea of
backpropagation but constrain the learning process to ensure
interpretability.
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Learning Fuzzy Sets

Mandatory constraints: Fuzzy sets must . . .

• stay normal and convex,

• not exchange their relative positions (they must not “pass” each
other),

• always overlap.

Optional constraints:

• Fuzzy sets must stay symmetric.

• The membership degrees must add up to 1.

A learning algorithm must enforce these constraints.
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Example: Medical Diagnosis

The Wisconsin Breast Cancer Dataset stores results from patients
tested for breast cancer.

These data can be used to train and evaluate classifiers.

For instance, decision support systems must tell if unseen data indicate
malignant or benign case?

A surgeon must be able to check this classification for plausibility.

We are looking for a simple and interpretable classifier.
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Example: WBC Data Set

699 cases (16 cases have missing values).

2 classes: benign (458), malignant (241).

9 attributes with values from {1, . . . , 10} (ordinal scale, but usually
interpreted numerically).

In the following, x3 and x6 are interpreted as nominal attributes.

x3 and x6 are usually seen as “important” attributes.
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Applying NEFCLASS-J

A tool for developing neuro-
fuzzy classifiers.

It is written in Java.

A free version for research is
available.

This project started at our
group.
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NEFCLASS: Neuro-Fuzzy Classifier

output variables

unweighted connections

fuzzy rules

fuzzy sets (antecedents)

input attributes (variables)
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Representation of Fuzzy Rules

Example: 2 rules
R1 : if x is large and y is small, then class is c1

R2 : if x is large and y is large, then class is c2

Connections x → R1 and x → R2 are linked.

Fuzzy set large is a shared weight,
i.e. the term large has always the same meaning
in both rules.
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1. Training Step: Initialization

Specify initial fuzzy partitions for all input variables.
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3. Training Step: Rule Base Induction

NEFCLASS uses modified Wang-Mendel procedure.
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3. Improving Rules by Backpropagation of the
Fuzzy Error Signal
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4. Improving Fuzzy Sets by Heuristics

Heuristics: A fuzzy set is moved away from x (towards x) and its
support is reduced (enlarged) in order to reduce (enlarge) the degree
of membership of x .
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4. Improving Fuzzy Sets by Heuristics

do {
for each pattern {

accumulate parameter updates
accumulate error
}
modify parameters
} while change in error

observing the error on validation set

variations:

• adaptive learning
rate

• online/batch
learning

• optimistic learning
(n step look ahead)
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Constraints for Training Fuzzy Sets

• valid parameter values

• non-empty intersection of
adjacent fuzzy sets

• keep relative positions

• maintain symmetry

• complete coverage (degrees of
membership add up to 1 for
each element)
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5. Training Step: Pruning

Goal: Remove variables, rules, and fuzzy sets in order to improve the
interpretability and generalization.
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Example: WBC Fuzzy Rules
R1: if uniformity of cell size is small and bare nuclei is fuzzy0 then benign

R2: if uniformity of cell size is large then malignant
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Example: WBC Classification Performance

predicted class

malign benign
∑

malign 228 (32.62%) 13 (1.86%) 241 (34.99%)
benign 15 (2.15%) 443 (63.38%) 458 (65.01%)
∑

243 (34.76) 456 (65.24) 699 (100.00%)

estimated performance on unseen data (cross validation):

NEFCLASS-J: 95.42% NEFCLASS-J (numeric): 94.14%
Discriminant Analysis: 96.05% Multilayer Perceptron: 94.82%
C 4.5: 95.10% C 4.5 Rules: 95.40%
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Example: WBC Fuzzy Sets
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Neuro-Fuzzy Network (section)
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Summary

Neuro-fuzzy systems can be very useful for knowledge discovery.

The interpretability enables plausibility checks and improves the
acceptance.

(Neuro-)fuzzy systems exploit the tolerance for sub-optimal solutions.

Neuro-fuzzy learning algorithms must observe constraints not to
jeopardize the semantics of the model.

There is no automatic model creator! The user must work with the
tool!

Such simple learning techniques support an explorative data analysis.
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Optimization of Fuzzy Systems with

Evolutionary Algorithms



Evolutionary Algorithms

. . . are based on biological theory of evolution.

Fundamental principle:

• Beneficial properties created by random variation are chosen by
natural selection.

• Differential reproduction: Individuals with beneficial properties
have better chances to reproduce themselves.

The theory of evolution describes the diversity and complexity of
species.

It allows to unify all disciplines of biology.
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Fundamental Terms and their Meanings I

Term Biology Computer Science

individual living creature candidate solution

chromosome DNA histone protein string character string
defines “blueprint” and (partly)

properties of individual in coded form
usually several chromosomes usually one chromosome
per individual per individual

gene part of chromosome one character
fundamental unit of inheritance that (partly)

defines property of an individual

allele characteristic of a gene value of a character
(allomorph) there is only one characteristic of a gene per chromosome

locus position of a gene position of a character
exactly just one gene on every position in chromosome
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Fundamental Terms and their Meanings II

Term Biology Computer Science

phenotype outer appearance of a implementation of a
living creature candidate solution

genotype genetic constitution encoding of a
of a living creature candidate solution

population all living creatures family/multiset
of chromosomes

generation population at given time population at given time

reproduction creation of offspring creation of (child)
from one or two (if, then chromosomes from one or
usually two) creatures more (parent) chromosomes

fitness capability/conformity capability/goodness
of a living creature of a candidate solution
determines chances of both survival and reproduction
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Elements of an Evolutionary Algorithm I

An EA consists of

a codebook for the candidate solutions

• This codebook is problem-specific (i.e. no general rules exist).

a method to generate an initial population

• Usually, it generates random character strings.

• Depending on the encoding, sophisticated approaches can be
necessary.

a weighting function (fitness function) for individuals

• It acts as an environment and indicates the goodness of the
individuals.

a technique of sampling based on the fitness function

• It defines both which individuals are used to generate offspring
and which ones reach the next generation without any change.
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Elements of an Evolutionary Algorithm II

Furthermore, an EA consists of

genetic operators that change candidate solutions

• mutation (random modification of particular genes)

• crossover (recombination of chromosomes; actually “crossing
over” due to process in meiosis (period of cell division) where
chromosomes are divided and then joined crossed-over again)

values for several parameters

• e.g. population size, mutation probability, etc.

termination criterion, e.g.

• fixed number of generations has been processed

• for fixed number of generations, no improvement occurred

• predefined minimal goodness of solution has been reached
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Generic Basic EA

Algorithm 1 EA Schema

t ← 0
pop(t)← create population of size µ

evaluate pop(t)
while termination criterion not fulfilled {

pop1 ← select parents for λ offspring from pop(t)
pop2 ← generate offspring by recombination from pop1

pop3 ← variate individuals in pop2

evaluate pop3

t ← t + 1
pop(t)← select µ individuals from pop3 ∪ pop(t − 1)
}
return best individual from pop(t)
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Genetic Operators: Crossover

Exchange of one part of chromosome (or subset of selected genes)
between two individuals, e.g. so-called one-point crossover:

1. Choose a random point of division between two genes.

2. Exchange the gene sequences of one side of the division point.

1

2

3

4

3 1

1 4

4 3

0 2

3 0

3 1

1 4

4 3

2 0

0 3
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Genetic Operators: Mutation

Randomly chosen genes are randomly replaced (alleles change).

The number of replaced genes maybe random, too (should be small).

3

1

4

0

3

3

1

2

2

4

Most mutations are damaging/harmful (they worsen the fitness).

Initially non-existent alleles can (only) be generated by mutation.

R. Kruse, C. Doell FS – Learning Fuzzy Systems Part 5 77 / 95

mailto:kruse@ovgu.de
mailto:doell@ovgu.de


Optimization of Fuzzy Controllers with GAs

Mamdani controller can be induced/optimized as follows:

• rule base (which rules, which outputs)

• fuzzy sets/fuzzy partitions (shape, location, width, number of
fuzzy sets

• t-norm or t-conorm for rule evaluation (rarely)

• parameters of defuzzification method (if present, rarely)

• inputs used in the rules (feature selection)

Here we talk about the optimization of the rule base and the fuzzy
sets with a fixed choice of input values.

Rule evaluation: minimum and maximum

Defuzzification: center of gravity (COG)

R. Kruse, C. Doell FS – Learning Fuzzy Systems Part 5 78 / 95

mailto:kruse@ovgu.de
mailto:doell@ovgu.de


Optimization: Three Possible Approaches

1. Rule base and fuzzy partitions are optimized simultaneously:

• Disadvantage: Many parameters must be optimized at same
time.

2. First, the fuzzy partitions are optimized w.r.t. given rule base,
then rule base is optimized with best fuzzy partitions:

• Disadvantage: Expert knowledge needed to create rule base
(starting with random rule base is not promising).

3. First, rule base is optimized w.r.t. given fuzzy sets, then fuzzy
partitions are optimized with best rule base:

• Fuzzy sets may be distributed, e.g. equidistantly.

• Here, the user must specify the number of fuzzy sets for
input and output.

• We only consider this approach here.
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Optimization: Fitness Function

A good controller should exhibit several properties:
• The target value should be reached from any (initial) situation.

• The target value should be reached quickly.

• The target value should be reached with minimal effort (energy).

The controller is applied multiple times to target system:
• Here, simulation of inverted pendulum problem.

• Several randomly chosen starting points.

• A score is assigned to the controller according to its success
(number of situations, duration of successful control, energy
costs).

Here, the evaluation of individuals is by far the most expensive
operation:
• Every individual must be put in control for at least certain

number of time steps in order to yield reliable fitness score.
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Assessing the Controller Success

If the deviation of the actual value to the target is big, it’s a failure,
e.g. inverted pendulum: It must stay within [−90◦, 90◦].

After some time, the actual value should be close to the target value
and remain within its proximity (range of tolerance). Otherwise the
process is aborted also (failure).

The range of tolerance is shrinked during generations (towards target).

• During the first generations, it suffices if the pendulum doesn’t
topple over.

• Later the pendulum must stand upright within a shrinking angle
interval.

The abs. values of adjusting values are added up as penalty value.

In balance, a fast switch betw. large/small forces effects the controller.
Thus large forces need to be avoided.
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Optimizing the Rule Base: Encoding

We only consider complete rule bases,
that is, one rule for every combination of input fuzzy sets.

For every combination of input fuzzy sets, we need to determine a
linguistic term of the control variable (by filling a table).

Example rule base for inverted pendulum controller

θ̇\θ nb nm ns az ps pm pb

pb az ps ps pb pb pb pb
pm ns az ps pm pm pb pb
ps nm ns az ps pm pm pb
az nb nm ns az ps pm pb
ns nb nm nm ns az ps pm
nm nb nb nm nm ns az ps
nb nb nb nb nb ns ns az

schematic
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Representing the Rule Base as Chromosome

Linearization (transformation into a vector):

The table is traversed in an arbitrary but fixed
order.

Entries are listed in a vector, e.g.

• listing row by row.

• So, neighboring relations between cells are
lost.

Adjacent entries should contain similar linguistic
terms (this is important, e.g. during crossover).

Table (direct usage of scheme)

for two- or higher dimensional chromosomes.

Thus special genetic operators are needed.
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Genetic Operators for Rule Base: Mutation

1. The rule/table entry is chosen randomly.

2. The linguistic term of output is altered randomly.

3. Multiple table entries may be altered.

It might be beneficial to restrict the mutation of the rule base:

An entry is only changed to a linguistic term similar to the current
one, e.g.

• “positive small” 7→ “approximately zero” or “positive medium”,

• “negative big” 7→ “negative medium” or “negative small”.

This prevents a too fast “depletion” of the collected information.

Also, the rule bases are only modified “carefully”.
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Genetic Operators: One-Point Crossover

Choose both interior grid point and corner randomly.

This defines a subtable that will be exchanged between two parents.

The crossover should exhibit a location-dependent bias.

So, it prefers to inherit adjacent rules.
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Genetic Operators: Two-Point Crossover

Choose two grid points randomly (border points allowed).

This defines a subtable that will be exchanged between two parents.

Partial solutions can be exchanged in a more flexible way.

The two-point crossover performs better than one-point crossover.
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Optimizing Fuzzy Sets

Given: optimized rules with fixed and unchanged equidistant fuzzy
sets.

Goal: further improvement of rule behavior by adjusting fuzzy sets
with fixed rule base (“fine tuning”).

Encoding fuzzy sets (first possibility):

1. Choose the shape of the fuzzy sets (e.g. triangle, trapezoid,
Gaussian, parabola, spline, etc.).

2. List the defining parameters of the fuzzy sets (e.g. triangle: left
border, center, right border).

Example: controller with triangular fuzzy sets (excerpt)

. . . nm ns az ps . . .

. . . -45 -30 -15 -30 -15 0 -15 0 15 0 15 30 . . .
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Optimizing Fuzzy Sets: Disadvantages

In advance one must specify that, e.g. triangles or trapezoids are used.

So, the encoding is quite “rigid” w.r.t. the shape of the fuzzy sets.

Genetic operators can violate the order of parameters, e.g.

• considering triangles µl ,m,r , l ≤ m ≤ r must hold.

A possible “overtaking” between fuzzy sets, i.e.

• the meaningful order of the fuzzy sets may be destroyed by
mutation/crossover, e.g. it should hold true that ns lies left of ps.

The condition ∀x :
∑

i µi(x) = 1 might be violated:

• This can be treated by representing identical parameters only
once.

. . . -45 -15 15 -15 15 30 15 30 45 30 45 60 . . .

. . . -45 -30 -20 -30 -20 -10 -20 -10 0 -10 10 30 . . .
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Encoding Fuzzy Partitions

Distinct membership degrees of fuzzy sets are specified for a
predefined and equidistant set of sampling points:

Gene 1
︷ ︸︸ ︷





µ1(x1)
...

µn(x1)




 · · ·

Gene i
︷ ︸︸ ︷





µ1(xi)
...

µn(xi)




 · · ·

Gene m
︷ ︸︸ ︷





µ1(xm)
...

µn(xm)






︸ ︷︷ ︸

Encoding with m × n numbers ∈ [0, 1]

pb 0 0 0 0 0 0 0 0 0 0 0 0 0 .5 1 1 1
pm 0 0 0 0 0 0 0 0 0 0 0 .5 1 .5 0 0 0
ps 0 0 0 0 0 0 0 0 0 .5 1 .5 0 0 0 0 0
az 0 0 0 0 0 0 0 .5 1 .5 0 0 0 0 0 0 0
ns 0 0 0 0 0 .5 1 .5 0 0 0 0 0 0 0 0 0
nm 0 0 0 .5 1 .5 0 0 0 0 0 0 0 0 0 0 0
nb 1 1 1 .5 0 0 0 0 0 0 0 0 0 0 0 0 0

-60 -45 -30 -15 0 15 30 45 60
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Genetic Operators

Mutation (analogous to standard mutation):
• A randomly chosen entry is altered randomly.

• It is reasonable to restrict the magnitude of alteration, e.g. by
specifying an interval or by a normal distribution.

Crossover (basic one-/two-point crossover):
Note that fuzzy sets may be erased by crossover.
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Repairing Fuzzy Sets

Mutation/crossover may violate the unimodality of the fuzzy set,

• i.e. the membership function may have ≥ 1 local maximum.

• Multimodal fuzzy sets are harder to interpret than unimodal ones.

Therefore, fuzzy sets are repaired (made unimodal).

bimodal
fuzzy set

join the
maxima

cut off
left maximum

cut of
right max.

Fuzzy sets may be widened or cut off such that the entire domain is
covered, but without having too many fuzzy sets covering the same
areas.
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Summary

Optimization in two steps:
1. Optimize the rule base with fixed fuzzy partitions.

2. Optimize the fuzzy partitions with an induced rule base.

It was possible to generate a working rule set for the inverted
pendulum problem with evolutionary algorithms.

The approach of inducing a rule base is quite expensive in time.

However, it does not need any background knowledge.

Additional requirements might be considered for fitness:
• compactness (small number of rules and fuzzy sets)

• completeness (coverage of relevant areas of input space)

• consistency (no rules with similar antecedents and different
consequents)

• interpretability (limited overlapping of fuzzy sets)
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