Fuzzy Systems
Fuzzy Sets and Fuzzy Logic

Prof. Dr. Rudolf Kruse Christoph Doell
{kruse,doell}@ovgu.de
Otto-von-Guericke University of Magdeburg
Faculty of Computer Science
Institute of Intelligent Cooperating Systems
Books about the course

http://www.computational-intelligence.eu/
What are we going to talk about?!

Research on fuzzy systems wants to establish

- theoretical and methodological bases for computational intelligence,
- tools and techniques for design of intelligent systems.

Fuzzy systems focus on applications

- where some aspects of imprecision plays an important role.

Fuzzy set theory and fuzzy logic

- with a solid mathematical foundation.
Motivation
Motivation

Every day humans use imprecise linguistic terms e.g. big, fast, about 12 o’clock, old, etc.

All complex human actions are decisions based on such concepts:

• driving and parking a car,
• financial/business decisions,
• law and justice,
• giving a lecture,
• listening to the professor/tutor.

So, these terms and the way they are processed play a crucial role.

Computers need a mathematical model to express and process such complex semantics.

Concepts in classical mathematics are inadequate for such models.
Lotfi Asker Zadeh (1965)

Classes of objects in the real world do not have precisely defined criteria of membership.
Such imprecisely defined “classes” play an important role in human thinking,
Particularly in domains of pattern recognition, communication of information, and abstraction.

Zadeh in 2004 (born 1921)
Imprecision

Any notion is said to be imprecise when its meaning is not fixed by sharp boundaries.

Can be applied fully/to certain degree/not at all.

Gradualness (“membership gradience”) also called fuzziness.

A Proposition is imprecise if it contains gradual predicates.

Such propositions may be neither true nor false, but in-between.

They are true to a certain degree, i.e. partial truth.

Forms of such degrees can be found in natural language, e.g. very, rather, almost not, etc.
Example – The Sorites Paradox

If a sand dune is small, adding one grain of sand to it leaves it small.
A sand dune with a single grain is small.

Hence all sand dunes are small.

Paradox comes from all-or-nothing treatment of small.
Degree of truth of “heap of sand is small” decreases by adding one grain after another.
Certain number of words refer to continuous numerical scales.
Example – The Sorites Paradox

How many grains of sand has a sand dune at least?

Statement $A(n)$: “n grains of sand are a sand dune.”
Let $d_n = T(A(n))$ denote “degree of acceptance” for $A(n)$.
Then
$$0 = d_0 \leq d_1 \leq \ldots \leq d_n \leq \ldots \leq 1$$
can be seen as truth values of a many valued logic.
Imprecision

Consider the notion *bald*: A man without hair on his head is bald, a hairy man is not bald.

Usually, *bald* is only partly applicable.

Where to set *baldness/non baldness* threshold?

Fuzzy set theory does not assume any threshold!
Uncertainty

Uncertainty describes the probability of a well-defined proposition
Rolling a die will either lead to exactly 6 or not, but not something around 6

Uncertainty is different from Imprecision

Uncertainty comes e.g. from randomness or subjective belief
There are lots of non-standard calculi for handling uncertainty e.g.:
 • belief functions
 • possibility theory.
Distinction between Imprecision and Uncertainty

Imprecision:

e.g. “Today the weather is fine.”

Imprecisely defined concepts

neglect of details

computing with words

Uncertainty:

e.g. “How will the exchange rate of the dollar be tomorrow?”

probability, possibility
Examples of Imprecision and Uncertainty

Uncertainty differs from imprecision. It can result from it.

“This car is rather old.” (imprecision)
Lack of ability to measure or to evaluate numerical features.

“This car was probably made in Germany.” (uncertainty)
Uncertainty about well-defined proposition made in Germany, perhaps based on statistics (random experiment).

“The car I chose randomly is perhaps very big.” (uncertainty and imprecision)
Lack of precise definition of notion big.
Modifier very indicates rough degree of “bigness”.

R. Kruse, C. Doell
“Stated informally, the essence of this principle is that as the complexity of a system increases, our ability to make precise and yet significant statements about its behavior diminishes until a threshold is reached beyond which precision and significance (or relevance) become almost mutually exclusive characteristics.”

Fuzzy sets/fuzzy logic are used as mechanism for abstraction of unnecessary or too complex details.
Applications of Fuzzy Systems

Control Engineering
Approximate Reasoning
Data Analysis
Image Analysis

Advantages:
Use of imprecise or uncertain information
Use of expert knowledge
Robust nonlinear control
Time to market
Marketing aspects
Washing Machines Use Fuzzy Logic

Source: http://www.siemens-home.com/
Fuzzy Sets
Membership Functions

Lotfi A. Zadeh (1965)
“A fuzzy set is a class with a continuum of membership grades.”

An imprecisely defined set M can often be characterized by a membership function μ_M.

μ_M associates real number in $[0, 1]$ with each element $x \in X$.

Value of μ_M at x represents grade of membership of x in M.

A Fuzzy set is defined as mapping

$$\mu : X \mapsto [0, 1].$$

Fuzzy sets μ_M generalize the notion of a characteristic function

$$\chi_M : X \mapsto \{0, 1\}.$$
Membership Functions

$\mu_M(u) = 1$ reflects full membership in M.

$\mu_M(u) = 0$ expresses absolute non-membership in M.

Sets can be viewed as special case of fuzzy sets where only full membership and absolute non-membership are allowed.

Such sets are called *crisp sets* or Boolean sets.

Membership degrees $0 < \mu_M < 1$ represent *partial membership*.

Representing *young* in “a young person”
A Membership function attached to a given linguistic description (such as *young*) depends on context:
A young retired person is certainly older than young student.
Even idea of young student depends on the user.

Membership degrees are fixed only *by convention*:
Unit interval as range of membership grades is arbitrary.
Natural for modeling membership grades of fuzzy sets of real numbers.
Membership Functions

Consider again representation for predicate *young*

There is no precise threshold between prototypes of *young* and prototypes of *not young*.

Fuzzy sets offer natural interface between linguistic and numerical representations.
Example – Body Height of 4 Year Old Boys

1.5 m is for sure tall, 0.7 m is for sure small, *but in-between*?!

Imprecise predicate *tall* modeled as sigmoid function, e.g. height of 1.1 m has membership degree of 0.65.

So, height of 1.1 m satisfies predicate *tall* with 0.65.
Example – Velocity of Rotating Hard Disk

Let \(x \) be velocity \(v \) of rotating hard disk in revolutions per minute.

If no observations about \(x \) available, use expert’s knowledge:

“\(v \) is impossible that \(v \) drops under \(a \) or exceeds \(d \).

“\(v \) is highly certain that any value between \([b, c]\) can occur.”

Additionally, values of \(v \) with membership degree of 0.5 are provided.

Interval \([a, d]\) is called support of the fuzzy set.

Interval \([b, c]\) is denoted as core of the fuzzy set.
Examples for Fuzzy Numbers

Exact numerical value has membership degree of 1.

Left: monotonically increasing, right: monotonically decreasing, i.e. unimodal function.

Terms like *around* modeled using triangular or Gaussian function.
Linguistic Variables and Linguistic Values

Linguistic variables represent attributes in fuzzy systems. They are partitioned into linguistic values (not numerical!). Partition is usually chosen subjectively (based on human intuition). All linguistic values have a meaning, not a precise numerical value.

Linguistic variable living area of a flat A stores linguistic values: e.g. tiny, small, medium, large, huge

Every $x \in A$ has $\mu(x) \in [0, 1]$ to each value, e.g. let $a = 42.5m^2$. So, $\mu_t(a) = \mu_s(a) = \mu_h(a) = 0$, $\mu_m(a) = \mu_l(a) = 0.5$.
Semantics of Fuzzy Sets

What membership grades may mean?

Fuzzy sets are relevant in three types of information-driven tasks:
classification and data analysis,
decision-making problems,
approximate reasoning.

These three tasks exploit three semantics of membership grades:
similarity
preference
possibility
Degree of Similarity

Oldest interpretation of membership grades.

$\mu(u)$ is degree of proximity of u from prototype elements of μ.

Goes back to interests of fuzzy set concept in pattern classification.

Still used today for cluster analysis, regression, etc.

Here, proximity between pieces of information is modelled.

Also, in fuzzy control: similarity degrees are measured between current situation and prototypical ones.
Degree of Preference

\(\mu \) represents both:
- set of more or less preferred objects and
- values of a decision variable \(X \).

\(\mu(u) \) represents both:
- intensity of preference in favor of object \(u \) and
- feasibility of selecting \(u \) as value of \(X \).

Fuzzy sets then represent criteria or flexible constraints.

This has been used in
- fuzzy optimization (especially fuzzy linear programming) and
- decision analysis.

Typical applications: engineering design and scheduling problems.
Degree of Possibility

This interpretation was implicitly proposed by Zadeh when he introduced possibility theory and developed his theory of approximate reasoning.

\(\mu(u) \) can be viewed as:

- degree of possibility that parameter \(X \) has value \(u \)
- given the only information “\(X \) is \(\mu \)”.

Then support values are mutually exclusive and membership degrees rank these values by their possibility.

This view has been used in expert systems and artificial intelligence.
Representation of Fuzzy Sets
Definition of a “set”

“By a set we understand every collection made into a whole of definite, distinct objects of our intuition or of our thought.” (Georg Cantor).

For a set in Cantor’s sense, the following properties hold:

- \(x \neq \{x\} \).
- If \(x \in X \) and \(X \in Y \), then \(x \notin Y \).
- The Set of all subsets of \(X \) is denoted as \(2^X \).
- \(\emptyset \) is the empty set and thus very important.
Extension to a fuzzy set

<table>
<thead>
<tr>
<th>ling. description</th>
<th>model</th>
<th>characteristic function of a set</th>
</tr>
</thead>
<tbody>
<tr>
<td>all numbers smaller than 10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>all numbers almost equal to 10</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Definition

A fuzzy set μ of $X \neq \emptyset$ is a function from the reference set X to the unit interval, i.e. $\mu : X \rightarrow [0, 1]$. $\mathcal{F}(X)$ represents the set of all fuzzy sets of X, i.e. $\mathcal{F}(X) \overset{\text{def}}{=} \{ \mu | \mu : X \rightarrow [0, 1] \}$.

R. Kruse, C. Doell

FS – Fuzzy Sets and Fuzzy Logic

Part 1 29 / 119
Vertical Representation

So far, fuzzy sets were described by their characteristic/membership function and assigning degree of membership $\mu(x)$ to each element $x \in X$.

That is the **vertical representation** of the corresponding fuzzy set, e.g. linguistic expression like “about m”

$$\mu_{m,d}(x) = \begin{cases}
1 - \left| \frac{m-x}{d} \right|, & \text{if } m - d \leq x \leq m + d \\
0, & \text{otherwise,}
\end{cases}$$

or “approximately between b and c”

$$\mu_{a,b,c,d}(x) = \begin{cases}
\frac{x-a}{b-a}, & \text{if } a \leq x < b \\
1, & \text{if } b \leq x \leq c \\
\frac{x-d}{c-d}, & \text{if } c < x \leq d \\
0, & \text{if } x < a \text{ or } x > d.
\end{cases}$$
Horizontal Representation

Another representation is very often applied as follows:

For all membership degrees α belonging to chosen subset of $[0, 1]$, human expert lists elements of X that fulfill vague concept of fuzzy set with degree $\geq \alpha$.

That is the **horizontal representation** of fuzzy sets by their α-cuts.

Definition

Let $\mu \in \mathcal{F}(X)$ and $\alpha \in [0, 1]$. Then the sets

$$[\mu]_\alpha = \{ x \in X \mid \mu(x) \geq \alpha \}, \quad [\mu]_{\alpha_\text{strict}} = \{ x \in X \mid \mu(x) > \alpha \}$$

are called the α-cut and **strict α-cut** of μ.
A Simple Example

Let $A \subseteq X$, $\chi_A : X \rightarrow [0, 1]$

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{otherwise} \end{cases}$$

Then $[\chi_A]_\alpha = A$ for $0 < \alpha \leq 1$.

χ_A is called indicator function or characteristic function of A.
An Example

Let μ be triangular function on \mathbb{R} as shown above.

α-cut of μ can be constructed by

1. drawing horizontal line parallel to x-axis through point $(0, \alpha)$,
2. projecting this section onto x-axis.

$$[\mu_\alpha] = \begin{cases} [a + \alpha(m - a), b - \alpha(b - m)], & \text{if } 0 < \alpha \leq 1, \\ \mathbb{R}, & \text{if } \alpha = 0. \end{cases}$$
Properties of α-cuts I

Any fuzzy set can be described by specifying its α-cuts. That is the α-cuts are important for application of fuzzy sets.

Theorem
Let $\mu \in \mathcal{F}(X)$, $\alpha \in [0, 1]$ and $\beta \in [0, 1]$.

(a) $[\mu]_0 = X$,
(b) $\alpha < \beta \implies [\mu]_\alpha \supseteq [\mu]_\beta$,
(c) $\bigcap_{\alpha: \alpha < \beta} [\mu]_\alpha = [\mu]_\beta$.

R. Kruse, C. Doell
FS – Fuzzy Sets and Fuzzy Logic
Part 1 34 / 119
Properties of α-cuts II

Theorem (Representation Theorem)

Let $\mu \in \mathcal{F}(X)$. Then

$$\mu(x) = \sup_{\alpha \in [0,1]} \left\{ \min(\alpha, \chi_{[\mu]_\alpha}(x)) \right\}$$

where $\chi_{[\mu]_\alpha}(x) = \begin{cases} 1, & \text{if } x \in [\mu]_\alpha \\ 0, & \text{otherwise.} \end{cases}$

So, fuzzy set can be obtained as upper envelope of its α-cuts.

Simply draw α-cuts parallel to horizontal axis in height of α.

In applications it is recommended to select finite subset $L \subseteq [0,1]$ of relevant degrees of membership.

They must be semantically distinguishable.

That is, fix level sets of fuzzy sets to characterize only for these levels.
System of Sets

In this manner we obtain system of sets

$$\mathcal{A} = (A_\alpha)_{\alpha \in L}, \quad L \subseteq [0, 1], \quad \text{card}(L) \in \mathbb{N}.$$

\(\mathcal{A}\) must satisfy consistency conditions for \(\alpha, \beta \in L\):

(a) \(0 \in L \implies A_0 = X\), \hspace{1cm} \text{(fixing of reference set)}

(b) \(\alpha < \beta \implies A_\alpha \supseteq A_\beta\). \hspace{1cm} \text{(monotonicity)}

This induces fuzzy set

$$\mu_\mathcal{A} : X \rightarrow [0, 1],$$

$$\mu_\mathcal{A}(x) = \sup_{\alpha \in L} \{\min(\alpha, \chi_{A_\alpha}(x))\}.$$

If \(L\) is not finite but comprises all values \([0, 1]\), then \(\mu\) must satisfy

(c) \(\bigcap_{\alpha: \alpha < \beta} A_\alpha = A_\beta\). \hspace{1cm} \text{(condition for continuity)\footnote{\text{R. Kruse, C. Doell}}}}
Representation of Fuzzy Sets

Definition
\(\mathcal{FL}(X) \) denotes the set of all families \((A_\alpha)_{\alpha \in [0,1]} \) of sets that satisfy

(a) \(A_0 = X \),
(b) \(\alpha < \beta \implies A_\alpha \supseteq A_\beta \),
(c) \(\bigcap_{\alpha: \alpha < \beta} A_\alpha = A_\beta \).

Any family \(\mathcal{A} = (A_\alpha)_{\alpha \in [0,1]} \) of sets of \(X \) that satisfy (a)–(b) represents fuzzy set \(\mu_\mathcal{A} \in \mathcal{F}(X) \) with

\[\mu_\mathcal{A}(x) = \sup \{ \alpha \in [0,1] \mid x \in A_\alpha \} . \]

Vice versa: If there is \(\mu \in \mathcal{F}(X) \), then family \(([\mu]_\alpha)_{\alpha \in [0,1]} \) of \(\alpha \)-cuts of \(\mu \) satisfies (a)–(b).
“Approximately 5 or greater than or equal to 7”

An Exemplary Horizontal View

Suppose that \(X = [0, 15] \).

An expert chooses \(L = \{0, 0.25, 0.5, 0.75, 1\} \) and \(\alpha \)-cuts:

- \(A_0 = [0, 15] \),
- \(A_{0.25} = [3, 15] \),
- \(A_{0.5} = [4, 6] \cup [7, 15] \),
- \(A_{0.75} = [4.5, 5.5] \cup [7, 15] \),
- \(A_1 = \{5\} \cup [7, 15] \).

The family \((A_\alpha)_{\alpha \in L}\) of sets induces upper shown fuzzy set.
Approximately 5 or greater than or equal to 7
An Exemplary Vertical View

\(\mu A \) is obtained as upper envelope of the family \(A \) of sets.

The difference between horizontal and vertical view is obvious:

The horizontal representation is easier to process in computers.
Also, restricting the domain of x-axis to a discrete set is usually done.
Horizontal Representation in the Computer

Fuzzy sets are usually stored as chain of linear lists.

For each α-level, $\alpha \neq 0$.

A finite union of closed intervals is stored by their bounds.

This data structure is appropriate for arithmetic operators.
Support and Core of a Fuzzy Set

Definition
The support $S(\mu)$ of a fuzzy set $\mu \in \mathcal{F}(X)$ is the crisp set that contains all elements of X that have nonzero membership. Formally

$$S(\mu) = [\mu]_0 = \{x \in X \mid \mu(x) > 0\}.$$

Definition
The core $C(\mu)$ of a fuzzy set $\mu \in \mathcal{F}(X)$ is the crisp set that contains all elements of X that have membership of one. Formally,

$$C(\mu) = [\mu]_1 = \{x \in X \mid \mu(x) = 1\}.$$
Height of a Fuzzy Set

Definition
The height $h(\mu)$ of a fuzzy set $\mu \in \mathcal{F}(X)$ is the largest membership grade obtained by any element in that set. Formally,

$$h(\mu) = \sup_{x \in X} \{\mu(x)\}.$$

$h(\mu)$ may also be viewed as supremum of α for which $[\mu]_\alpha \neq \emptyset$.

Definition
A fuzzy set μ is called normal, iff $h(\mu) = 1$. It is called subnormal, iff $h(\mu) < 1$.

Convex Fuzzy Sets

Definition
Let X be a vector space. A fuzzy set $\mu \in \mathcal{F}(X)$ is called fuzzy convex if its α-cuts are convex for all $\alpha \in (0, 1]$.

The membership function of a convex fuzzy set is not a convex function.

The classical definition: The membership functions are actually concave.
Fuzzy Numbers

Definition

μ is a fuzzy number if and only if μ is normal and $[\mu]_\alpha$ is bounded, closed, and convex $\forall \alpha \in (0, 1]$.

Example:

The term *approximately* x_0 is often described by a parametrized class of membership functions, *e.g.*

$$\mu_1(x) = \max\{0, 1 - c_1|x - x_0|\}, \quad c_1 > 0,$$

$$\mu_2(x) = \exp(-c_2\|x - x_0\|_p), \quad c_2 > 0, \quad p \geq 1.$$
Convex Fuzzy Sets

Theorem

A fuzzy set \(\mu \in \mathcal{F}(\mathbb{R}) \) is convex if and only if

\[
\mu(\lambda x_1 + (1 - \lambda) x_2) \geq \min\{\mu(x_1), \mu(x_2)\}
\]

for all \(x_1, x_2 \in \mathbb{R} \) and all \(\lambda \in [0, 1] \).
Fuzzy Numbers – Example

\[[\mu]_\alpha = \begin{cases} [1, 2] & \text{if } \alpha \geq 0.5, \\ [0.5 + \alpha, 2) & \text{if } 0 < \alpha < 0.5, \\ \mathbb{R} & \text{if } \alpha = 0 \end{cases} \]

Upper semi-continuous functions are often convenient in applications.

In many applications (e.g. fuzzy control) the class of the functions and their exact parameters have a limited influence on the results.

Only local monotonicity of the functions is really necessary.

In other applications (e.g. medical diagnosis) more precise membership degrees are needed.
Multi-valued Logics
Set Operators...

...are defined by using traditional logics operator

Let X be universe of discourse (universal set):

\[
A \cap B = \{x \in X \mid x \in A \land x \in B\}
\]
\[
A \cup B = \{x \in X \mid x \in A \lor x \in B\}
\]
\[
A^c = \{x \in X \mid x \notin A\} = \{x \in X \mid \neg (x \in A)\}
\]

$A \subseteq B$ if and only if $(x \in A) \rightarrow (x \in B)$ for all $x \in X$

One idea to define fuzzy set operators: use fuzzy logics.
The Traditional or Aristotlelian Logic

What is logic about? Different schools speak different languages!

There are traditional, linguistic, psychological, epistemological and mathematical schools.

Traditional logic has been founded by Aristotle (384-322 B.C.).

Aristotlelian logic can be seen as formal approach to human reasoning.

It’s still used today in Artificial Intelligence for knowledge representation and reasoning about knowledge.

Detail of “The School of Athens” by R. Sanzio (1509) showing Plato (left) and his student Aristotle (right).
Classical Logic: An Overview

Logic studies methods/principles of reasoning.

Classical logic deals with propositions (either true or false).

The propositional logic handles combination of logical variables.

Key idea: how to express n-ary logic functions with logic primitives, e.g. ¬, ∧, ∨, →.

A set of logic primitives is complete if any logic function can be composed by a finite number of these primitives, e.g. {¬, ∧, ∨}, {¬, ∧}, {¬, →}, {↓} (NOR), {||} (NAND) (this was also discussed during the 1st exercise).
Inference Rules

When a variable represented by logical formula is:
true for all possible truth values, i.e. it is called tautology,
false for all possible truth values, i.e. it is called contradiction.

Various forms of tautologies exist to perform deductive inference

They are called inference rules:

\[(a \land (a \rightarrow b)) \rightarrow b\] (modus ponens)

\[(-b \land (a \rightarrow b)) \rightarrow -a\] (modus tollens)

\[((a \rightarrow b) \land (b \rightarrow c)) \rightarrow (a \rightarrow c)\] (hypothetical syllogism)

e.g. modus ponens: given two true propositions \(a\) and \(a \rightarrow b\) (premises), truth of proposition \(b\) (conclusion) can be inferred.

Every tautology remains a tautology when any of its variables is replaced with an arbitrary logic formula.
Boolean Algebra

The propositional logic based on finite set of logic variables is isomorphic to finite set theory.

Both of these systems are isomorphic to a finite Boolean algebra.

Definition
A Boolean algebra on a set B is defined as quadruple $B = (B, +, \cdot, \overline{\cdot})$ where B has at least two elements (bounds) 0 and 1, $+$ and \cdot are binary operators on B, and $\overline{\cdot}$ is a unary operator on B for which the following properties hold.
Properties of Boolean Algebras I

(B1) Idempotence \(a + a = a \) \(a \cdot a = a \)
(B2) Commutativity \(a + b = b + a \) \(a \cdot b = b \cdot a \)
(B3) Associativity \((a + b) + c = a + (b + c) \) \((a \cdot b) \cdot c = a \cdot (b \cdot c) \)
(B4) Absorption \(a + (a \cdot b) = a \) \(a \cdot (a + b) = a \)
(B5) Distributivity \(a \cdot (b + c) = (a \cdot b) + (a \cdot c) \) \(a + (b \cdot c) = (a + b) \cdot (a + c) \)
(B6) Universal Bounds \(a + 0 = a, \ a + 1 = 1 \) \(a \cdot 1 = a, \ a \cdot 0 = 0 \)
(B7) Complementary \(a + \overline{a} = 1 \) \(a \cdot \overline{a} = 0 \)
(B8) Involution \(\overline{\overline{a}} = a \)
(B9) Dualization \(a + b = \overline{a} \cdot \overline{b} \) \(a \cdot b = \overline{a + b} \)

Properties (B1)-(B4) are common to every lattice,

i.e. a Boolean algebra is a distributive (B5), bounded (B6), and complemented (B7)-(B9) lattice,

i.e. every Boolean algebra can be characterized by a partial ordering on a set, i.e. \(a \leq b \) if \(a \cdot b = a \) or, alternatively, if \(a + b = b \).
Set Theory, Boolean Algebra, Propositional Logic

Every theorem in one theory has a counterpart in each other theory.
Counterparts can be obtained applying the following substitutions:

<table>
<thead>
<tr>
<th>Meaning</th>
<th>Set Theory</th>
<th>Boolean Algebra</th>
<th>Prop. Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>values</td>
<td>2^X</td>
<td>B</td>
<td>$\mathcal{L}(V)$</td>
</tr>
<tr>
<td>“meet”/“and”</td>
<td>\cap</td>
<td>\cdot</td>
<td>\wedge</td>
</tr>
<tr>
<td>“join”/“or”</td>
<td>\cup</td>
<td>$+$</td>
<td>\vee</td>
</tr>
<tr>
<td>“complement”/“not”</td>
<td>c</td>
<td>$-$</td>
<td>\neg</td>
</tr>
<tr>
<td>identity element</td>
<td>X</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>zero element</td>
<td>\emptyset</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>partial order</td>
<td>\subseteq</td>
<td>\leq</td>
<td>\rightarrow</td>
</tr>
</tbody>
</table>

power set 2^X, set of logic variables V, set of all combinations $\mathcal{L}(V)$ of truth values of V
The Basic Principle of Classical Logic

The Principle of Bivalence:

“Every proposition is either true or false.”

It has been formally developed by Tarski.

Łukasiewicz suggested to replace it by

The Principle of Valence:

“Every proposition has a truth value.”

Propositions can have intermediate truth value, expressed by a number from the unit interval $[0, 1]$.
The Traditional or Aristotelian Logic II

Short History

Aristotle introduced a logic of terms and drawing conclusion from two premises.

The great Greeks (Chrisippus) also developed logic of propositions.

Jan Łukasiewicz founded the multi-valued logic.

The multi-valued logic is to fuzzy set theory what classical logic is to set theory.
A 2-valued logic can be extended to a 3-valued logic in several ways, i.e. different three-valued logics have been well established:

truth, falsity, indeterminacy are denoted by 1, 0, and 1/2, resp. The negation $\neg a$ is defined as $1 - a$, i.e. $\neg 1 = 0$, $\neg 0 = 1$ and $\neg 1/2 = 1/2$.

Other primitives, e.g. \land, \lor, \rightarrow, \leftrightarrow, differ from logic to logic. Five well-known three-valued logics (named after their originators) are defined in the following.
Primitives of Some Three-valued Logics

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>Łukasiewicz</th>
<th>Bochvar</th>
<th>Kleene</th>
<th>Heyting</th>
<th>Reichenbach</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0 0 1 1</td>
</tr>
<tr>
<td>0</td>
<td>½</td>
<td>0 ½ 1 1</td>
<td>½ ½ 1 ½</td>
<td>0 ½ 1 ½</td>
<td>0 ½ 1 ½</td>
<td>0 ½ 1 ½</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0 1 1 0</td>
</tr>
<tr>
<td>½</td>
<td>1</td>
<td>½ ½ ½ 1</td>
<td>½ ½ ½ 1</td>
<td>½ ½ ½ 2</td>
<td>½ ½ ½ 1</td>
<td>½ ½ ½ 1</td>
</tr>
<tr>
<td>½</td>
<td>1</td>
<td>½ ½ ½ 1</td>
<td>½ ½ ½ 1</td>
<td>½ ½ ½ 2</td>
<td>½ ½ ½ 1</td>
<td>½ ½ ½ 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0 1 0 0</td>
</tr>
<tr>
<td>½</td>
<td>1</td>
<td>½ ½ ½ 1</td>
<td>½ ½ ½ 1</td>
<td>½ ½ ½ 2</td>
<td>½ ½ ½ 1</td>
<td>½ ½ ½ 1</td>
</tr>
<tr>
<td>1</td>
<td>½</td>
<td>½ ½ ½ 1</td>
<td>½ ½ ½ 1</td>
<td>½ ½ ½ 2</td>
<td>½ ½ ½ 1</td>
<td>½ ½ ½ 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1 1 1 1</td>
</tr>
</tbody>
</table>

All of them fully conform the usual definitions for $a, b \in \{0, 1\}$. They differ from each other only in their treatment of 1/2.

Question: Do they satisfy the law of contradiction ($a \land \neg a = 0$) and the law of excluded middle ($a \lor \neg a = 1$)?
n-valued Logics

After the three-valued logics: generalizations to \(n \)-valued logics for arbitrary number of truth values \(n \geq 2 \).

In the 1930s, various \(n \)-valued logics were developed.

Usually truth values are assigned by rational number in \([0, 1]\).

Key idea: uniformly divide \([0, 1]\) into \(n \) truth values.

Definition

The set \(T_n \) of truth values of an \(n \)-valued logic is defined as

\[
T_n = \left\{ 0 = \frac{0}{n-1}, \frac{1}{n-1}, \frac{2}{n-1}, \ldots, \frac{n-2}{n-1}, \frac{n-1}{n-1} = 1 \right\}.
\]

These values can be interpreted as degree of truth.
Primitives in \(n \)-valued Logics

Łukasiewicz proposed first series of \(n \)-valued logics for \(n \geq 2 \).

In the early 1930s, he simply generalized his three-valued logic.

It uses truth values in \(T_n \) and defines primitives as follows:

\[
\begin{align*}
\neg a &= 1 - a \\
\land a \land b &= \min(a, b) \\
\lor a \lor b &= \max(a, b) \\
\rightarrow a \rightarrow b &= \min(1, 1 + b - a) \\
\leftrightarrow a \leftrightarrow b &= 1 - |a - b|
\end{align*}
\]

The \(n \)-valued logic of Łukasiewicz is denoted by \(L_n \).

The sequence \((L_2, L_3, \ldots, L_\infty) \) contains the classical two-valued logic \(L_2 \) and an infinite-valued logic \(L_\infty \) (rational countable values \(T_\infty \)).

The infinite-valued logic \(L_1 \) (standard Łukasiewicz logic) is the logic with all real numbers in \([0,1]\) (1 = cardinality of continuum).
From Logic to Fuzzy Logic
Zadeh’s fuzzy logic proposal was much simpler

In 1965, he proposed a logic with values in $[0, 1]$:

$$\neg a = 1 - a,$$
$$a \land b = \min(a, b),$$
$$a \lor b = \max(a, b).$$

The set operators are defined pointwise as follows for μ, μ':

$$\neg \mu : X \to X, \neg \mu(x) = 1 - \mu(x),$$
$$\mu \land \mu' : X \to X (\mu \land \mu')(x) = \min\{\mu(x), \mu'(x)\},$$
$$\mu \lor \mu' : X \to X (\mu \lor \mu')(x) = \max\{\mu(x), \mu'(x)\}.$$
Standard Fuzzy Set Operators – Example

- Fuzzy complement
- Fuzzy intersection
- Two fuzzy sets
- Fuzzy union
Is Zadeh’s logic a Boolean algebra?

Theorem

\((F(X), \land, \lor, \neg)\) is a complete distributive lattice but no Boolean algebra.

Proof.

Consider \(\mu : X \rightarrow X\) with \(x \mapsto 0.5\), then \(\neg \mu(x) = 0.5\) for all \(x\) and \(\mu \land \neg \mu \neq \chi_{\emptyset}\).\qed
Fuzzy Set Theory
Definition
Let $X \neq \emptyset$ be a set.

$$2^X \overset{\text{def}}{=} \{ A \mid A \subseteq X \}$$ power set of X,

$A \in 2^X$, $\chi_A : X \to \{0, 1\}$ characteristic function,

$$\mathcal{X}(X) \overset{\text{def}}{=} \{ \chi_A \mid A \in 2^X \}$$ set of characteristic functions.

Theorem

$(2^X, \cap, \cup, ^c)$ is Boolean algebra,

$\phi : 2^X \to \mathcal{X}(X)$, $\phi(A) \overset{\text{def}}{=} \chi_A$ is bijection.

Theorem

$(\mathcal{X}(X), \land, \lor, \neg)$ is Boolean algebra where

$$\chi_{A \land B} \overset{\text{def}}{=} \min\{\chi_A, \chi_B\}, \quad \chi_{A \lor B} \overset{\text{def}}{=} \max\{\chi_A, \chi_B\}, \quad \chi_{\neg A} \overset{\text{def}}{=} 1 - \chi_A.$$
What does a fuzzy set represent?

Consider fuzzy proposition A ("approximately two") on \mathbb{R}.

Fuzzy logic offers means to construct such imprecise sentences.

A defined by membership function μ_A, i.e. truth values $\forall x \in \mathbb{R}$.

Let $x \in \mathbb{R}$ be a subject/observation.

$\mu_A(x)$ is the degree of truth that x is A.

![Graph showing membership function μ_A]
Standard Fuzzy Set Operators

Definition

We define the following algebraic operators on \(\mathcal{F}(X) \):

\[
(\mu \land \mu')(x) \overset{\text{def}}{=} \min\{\mu(x), \mu'(x)\} \quad \text{intersection ("AND"),}
\]

\[
(\mu \lor \mu')(x) \overset{\text{def}}{=} \max\{\mu(x), \mu'(x)\} \quad \text{union ("OR"),}
\]

\[
\neg \mu(x) \overset{\text{def}}{=} 1 - \mu(x) \quad \text{complement ("NOT").}
\]

\(\mu \) is subset of \(\mu' \) if and only if \(\mu \leq \mu' \).

Theorem

\((\mathcal{F}(X), \land, \lor, \neg) \) is a complete distributive lattice but no boolean algebra.
Standard Fuzzy Set Operators – Example

- Fuzzy complement
- Two fuzzy sets
- Fuzzy intersection
- Fuzzy union
Fuzzy Set Complement
Fuzzy Complement/Fuzzy Negation

Definition

Let X be a given set and $\mu \in \mathcal{F}(X)$. Then the complement $\bar{\mu}$ can be defined pointwise by $\bar{\mu}(x) := \sim(\mu(x))$ where $\sim : [0, 1] \to [0, 1]$ satisfies the conditions

$$\sim(0) = 1, \quad \sim(1) = 0$$

and

for $x, y \in [0, 1], x \leq y \implies \sim x \geq \sim y$ (\sim is non-increasing).

Abbreviation: $\sim x := \sim(x)$
Strict and Strong Negations

Additional properties may be required

- \(x, y \in [0, 1], x < y \implies \sim x > \sim y \) (\(\sim \) is strictly decreasing)
- \(\sim \) is continuous
- \(\sim \sim x = x \) for all \(x \in [0, 1] \) (\(\sim \) is involutive)

According to conditions, two subclasses of negations are defined:

Definition

A negation is called **strict** if it is also strictly decreasing and continuous. A strict negation is said to be **strong** if it is involutive, too.

\[\sim x = 1 - x^2, \] for instance, is strict, not strong, thus not involutive
Families of Negations

<table>
<thead>
<tr>
<th>Negation Type</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard negation</td>
<td>(\sim x = 1 - x)</td>
</tr>
<tr>
<td>Threshold negation</td>
<td>(\sim_\theta (x) = \begin{cases} 1 & \text{if } x \leq \theta \ 0 & \text{otherwise} \end{cases})</td>
</tr>
<tr>
<td>Cosine negation</td>
<td>(\sim x = \frac{1}{2} (1 + \cos(\pi x)))</td>
</tr>
<tr>
<td>Sugeno negation</td>
<td>(\sim_\lambda (x) = \frac{1 - x}{1 + \lambda x}, \quad \lambda > -1)</td>
</tr>
<tr>
<td>Yager negation</td>
<td>(\sim_\lambda (x) = (1 - x^\lambda)^{\frac{1}{\lambda}})</td>
</tr>
</tbody>
</table>

![Graphs of standard, cosine, Sugeno, and Yager negations](image)
Two Extreme Negations

Intuitionistic negation \(\sim_i(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } x > 0 \end{cases} \)

Dual intuitionistic negation \(\sim_{di}(x) = \begin{cases} 1 & \text{if } x < 1 \\ 0 & \text{if } x = 1 \end{cases} \)

Both negations are not strictly increasing, not continuous, not involutive

Thus they are neither strict nor strong

They are “optimal” since their notions are nearest to crisp negation

\(\sim_i \) and \(\sim_{di} \) are two extreme cases of negations

For any negation \(\sim \) the following holds

\(\sim_i \leq \sim \leq \sim_{di} \)
Inverse of a Strict Negation

Any strict negation \sim is strictly decreasing and continuous. Hence one can define its inverse \sim^{-1}.

\sim^{-1} is also strict but in general differs from \sim.

$\sim^{-1} = \sim$ if and only if \sim is involutive.

Every strict negation \sim has a unique value $0 < s_\sim < 1$ such that $\sim s_\sim = s_\sim$.

s_\sim is called membership crossover point.

$A(a) > s_\sim$ if and only if $A^c(a) < s_\sim$ where A^c is defined via \sim.

$\sim^{-1} (s_\sim) = s_\sim$ always holds as well.
Representation of Negations

Any strong negation can be obtained from standard negation.

Let $a, b \in \mathbb{R}, \ a \leq b$.

Let $\varphi : [a, b] \rightarrow [a, b]$ be continuous and strictly increasing.

φ is called automorphism of the interval $[a, b] \subset \mathbb{R}$.

Theorem

A function $\sim : [0, 1] \rightarrow [0, 1]$ is a strong negation if and only if there exists an automorphism φ of the unit interval such that for all $x \in [0, 1]$ the following holds

$$\sim_{\varphi}(x) = \varphi^{-1}(1 - \varphi(x)).$$

$\sim_{\varphi}(x) = \varphi^{-1}(1 - \varphi(x))$ is called φ-transform of the standard negation.
Fuzzy Set Intersection and Union
Classical Intersection and Union

Classical set intersection represents logical conjunction.
Classical set union represents logical disjunction.

Generalization from \(\{0, 1\} \) to \([0, 1]\) as follows:

<table>
<thead>
<tr>
<th>(x \land y)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x \lor y)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Let A, B be fuzzy subsets of X, i.e. $A, B \in \mathcal{F}(X)$.

Their **intersection** and **union** can be defined pointwise using:

$$(A \cap B)(x) = \top(A(x), B(x)) \quad \text{where} \quad \top : [0, 1]^2 \to [0, 1]$$

$$(A \cup B)(x) = \bot(A(x), B(x)) \quad \text{where} \quad \bot : [0, 1]^2 \to [0, 1].$$
Triangular Norms and Conorms I

⊤ is a triangular norm (t-norm) ⟷ ⊤ satisfies conditions T1-T4
⊥ is a triangular conorm (t-conorm) ⟷ ⊥ satisfies C1-C4

for all \(x, y \in [0, 1] \), the following laws hold

Identity Law

\[T1: \quad \top(x, 1) = x \quad (A \cap X = A) \]
\[C1: \quad \bot(x, 0) = x \quad (A \cup \emptyset = A). \]

Commutativity

\[T2: \quad \top(x, y) = \top(y, x) \quad (A \cap B = B \cap A), \]
\[C2: \quad \bot(x, y) = \bot(y, x) \quad (A \cup B = B \cup A). \]
Triangular Norms and Conorms II

for all \(x, y, z \in [0, 1] \), the following laws hold

Associativity

\[T_3: T(x, T(y, z)) = T(T(x, y), z) \quad (A \cap (B \cap C)) = ((A \cap B) \cap C), \]
\[C_3: \perp(x, \perp(y, z)) = \perp(\perp(x, y), z) \quad (A \cup (B \cup C)) = ((A \cup B) \cup C). \]

Monotonicity

\(y \leq z \) implies

\[T_4: T(x, y) \leq T(x, z) \]
\[C_4: \perp(x, y) \leq \perp(x, z). \]
Triangular Norms and Conorms III

\(\top\) is a triangular norm (t-norm) \(\iff\) \(\top\) satisfies conditions T1-T4
\(\bot\) is a triangular conorm (t-conorm) \(\iff\) \(\bot\) satisfies C1-C4

Both identity law and monotonicity respectively imply

\[\forall x \in [0, 1] : \top(0, x) = 0,\]
\[\forall x \in [0, 1] : \bot(1, x) = 1,\]
for any t-norm \(\top : \top(x, y) \leq \min(x, y),\)
for any t-conorm \(\bot : \bot(x, y) \geq \max(x, y).\)

note: \(x = 1 \Rightarrow T(0, 1) = 0\) and \(x \leq 1 \Rightarrow T(x, 0) \leq T(1, 0) = T(0, 1) = 0\)
De Morgan Triplet I

For every \top and strong negation \sim, one can define t-conorm \bot by

$$\bot(x, y) = \sim \top(\sim x, \sim y), \quad x, y \in [0, 1].$$

Additionally, in this case $\top(x, y) = \sim \bot(\sim x, \sim y), \quad x, y \in [0, 1].$

\bot, \top are called N-dual t-conorm and N-dual t-norm to \top, \bot, resp.

In case of the standard negation $\sim x = 1 - x$ for $x \in [0, 1]$, N-dual \bot and \top are called dual t-conorm and dual t-norm, resp.

$$\bot(x, y) = \sim \top(\sim x, \sim y)$$ expresses “fuzzy” De Morgan’s law.

note: De Morgan’s laws $(A \cup B)^c = A^c \cap B^c, \quad (A \cap B)^c = A^c \cup B^c$
De Morgan Triplet II

Definition
The triplet (\top, \bot, \sim) is called De Morgan triplet if and only if
\(\top \) is t-norm, \(\bot \) is t-conorm, \(\sim \) is strong negation,
\(\top, \bot \) and \(\sim \) satisfy \(\bot(x, y) = \sim \top(\sim x, \sim y) \).

In the following, some important De Morgan triplets will be shown,
only the most frequently used and important ones.
In all cases, the standard negation \(\sim x = 1 - x \) is considered.
The Minimum and Maximum I

\(\top_{\min}(x, y) = \min(x, y), \quad \bot_{\max}(x, y) = \max(x, y) \)

Minimum is the greatest \(t \)-norm and max is the weakest \(t \)-conorm.

\(\top(x, y) \leq \min(x, y) \) and \(\bot(x, y) \geq \max(x, y) \) for any \(\top \) and \(\bot \)
The Minimum and Maximum II

τ_{min} and \bot_{max} can be easily processed numerically and visually, e.g. linguistic values *young* and *approx. 20* described by μ_{y}, μ_{20}. $\tau_{\text{min}}(\mu_{y}, \mu_{20})$ is shown below.
The Product and Probabilistic Sum

\[\top_{\text{prod}}(x, y) = x \cdot y, \quad \bot_{\text{sum}}(x, y) = x + y - x \cdot y \]

Note that use of product and its dual has nothing to do with probability theory.
The Łukasiewicz t-norm and t-conorm

\[\top_{Łuka}(x, y) = \max\{0, x + y - 1\}, \quad \bot_{Łuka}(x, y) = \min\{1, x + y\} \]

$\top_{Łuka}$, $\bot_{Łuka}$ are also called **bold intersection** and **bounded sum**.
The Nilpotent Minimum and Maximum

\[\top_{\text{min}_0}(x, y) = \begin{cases} \min(x, y) & \text{if } x + y > 1 \\ 0 & \text{otherwise} \end{cases} \]

\[\bot_{\text{max}_1}(x, y) = \begin{cases} \max(x, y) & \text{if } x + y < 1 \\ 1 & \text{otherwise} \end{cases} \]

The Drastic Product and Sum

\[T_{-1}(x, y) = \begin{cases}
\min(x, y) & \text{if } \max(x, y) = 1 \\
0 & \text{otherwise}
\end{cases} \]

\[\bot_{-1}(x, y) = \begin{cases}
\max(x, y) & \text{if } \min(x, y) = 0 \\
1 & \text{otherwise}
\end{cases} \]

\(T_{-1} \) is the weakest \(t \)-norm, \(\bot_{-1} \) is the strongest \(t \)-conorm.

\[T_{-1} \leq T \leq T_{\min}, \quad \bot_{\max} \leq \bot \leq \bot_{-1} \] for any \(T \) and \(\bot \)
Examples of Fuzzy Intersections

- t-norm T_{min}
- t-norm T_{prod}
- t-norm $T_{\text{Łuka}}$
- t-norm T_{-1}

Note that all fuzzy intersections are contained within upper left graph and lower right one.
Examples of Fuzzy Unions

\[\text{t-conorm } \perp_{\text{max}} \]
\[\text{t-conorm } \perp_{\text{Łuka}} \]
\[\text{t-conorm } \perp_{\text{sum}} \]
\[\text{t-conorm } \perp_{-1} \]

Note that all fuzzy unions are contained within upper left graph and lower right one.
The Special Role of Minimum and Maximum I

\(\top_{\text{min}} \) and \(\bot_{\text{max}} \) play key role for intersection and union, resp.

In a practical sense, they are very simple.

Apart from the identity law, commutativity, associativity and monotonicity, they also satisfy the following properties for all \(x, y, z \in [0, 1] \):

Distributivity

\[
\begin{align*}
\bot_{\text{max}}(x, \top_{\text{min}}(y, z)) &= \top_{\text{min}}(\bot_{\text{max}}(x, y), \bot_{\text{max}}(x, z)), \\
\top_{\text{min}}(x, \bot_{\text{max}}(y, z)) &= \bot_{\text{max}}(\top_{\text{min}}(x, y), \top_{\text{min}}(x, z))
\end{align*}
\]

Continuity

\(\top_{\text{min}} \) and \(\bot_{\text{max}} \) are continuous.
The Special Role of Minimum and Maximum II

Strict monotonicity on the diagonal
\[x < y \text{ implies } \top_{\min}(x, x) < \top_{\min}(y, y) \text{ and } \bot_{\max}(x, x) < \bot_{\max}(y, y). \]

Idempotency
\[\top_{\min}(x, x) = x, \quad \bot_{\max}(x, x) = x \]

Absorption
\[\top_{\min}(x, \bot_{\max}(x, y)) = x, \quad \bot_{\max}(x, \top_{\min}(x, y)) = x \]

Non-compensation
\[x < y < z \text{ imply } \top_{\min}(x, z) \neq \top_{\min}(y, y) \text{ and } \bot_{\max}(x, z) \neq \bot_{\max}(y, y). \]
Is \((\mathcal{F}(X), \top, \bot, \sim)\) a boolean algebra?

Consider the properties (B1)-(B9) of any Boolean algebra.

For \((\mathcal{F}(X), \top, \bot, \sim)\) with strong negation \(\sim\) only complementary (B7) does not hold.

Hence \((\mathcal{F}(X), \top, \bot, \sim)\) is a completely distributive lattice with identity element \(\mu_X\) and zero element \(\mu_\emptyset\).

No lattice \((\mathcal{F}(X), \top, \bot, \sim)\) forms a Boolean algebra due to the fact that complementary (B7) does not hold:

- There is no complement/negation \(\sim\) with \(\top(A, \sim A) = \mu_\emptyset\).
- There is no complement/negation \(\sim\) with \(\bot(A, \sim A) = \mu_X\).
Complementary Property of Fuzzy Sets

Using fuzzy sets, it’s **impossible** to keep up a Boolean algebra. Verify, *e.g.* that law of contradiction is violated, *i.e.*

\[(\exists x \in X)(A \cap A^c)(x) \neq \emptyset.\]

We use \(\min\), \(\max\) and strong negation \(\sim\) as fuzzy set operators. So we need to show that

\[\min\{A(x), 1 - A(x)\} = 0\]

is violated for at least one \(x \in X\).

easy: This Equation is violated for all \(A(x) \in (0, 1)\).
It is satisfied only for \(A(x) \in \{0, 1\}\).
The concept of a pseudoinverse

Definition

Let $f : [a, b] \rightarrow [c, d]$ be a monotone function between two closed subintervals of extended real line. The pseudoinverse function to f is the function $f^{-1} : [c, d] \rightarrow [a, b]$ defined as

$$f^{-1}(y) = \begin{cases} \sup\{x \in [a, b] \mid f(x) < y\} & \text{for } f \text{ non-decreasing}, \\ \sup\{x \in [a, b] \mid f(x) > y\} & \text{for } f \text{ non-increasing}. \end{cases}$$
Continuous Archimedean t-norms and t-conorms

broad class of problems relates to representation of multi-place functions by composition of a “simpler” function, e.g.

$$K(x, y) = f^{-1}(f(x) + f(y))$$

So, one should consider suitable subclass of all t-norms.

Definition
A t-norm \top is
(a) *continuous* if \top as function is continuous on unit interval,
(b) *Archimedean* if \top is continuous and $\top(x, x) < x$ for all $x \in]0, 1[$.

Definition
A t-conorm \bot is
(a) *continuous* if \bot as function is continuous on unit interval,
(b) *Archimedean* if \bot is continuous and $\bot(x, x) > x$ for all $x \in]0, 1[$.
Continuous Archimedean t-norms

Theorem

A t-norm \top is continuous and Archimedean if and only if there exists a strictly decreasing and continuous function $f : [0, 1] \to [0, \infty]$ with $f(1) = 0$ such that

$$
\top(x, y) = f^{-1}(f(x) + f(y))
$$

(1)

where

$$
f^{-1}(x) = \begin{cases}
 f^{-1}(x) & \text{if } x \leq f(0) \\
 0 & \text{otherwise}
\end{cases}
$$

is the pseudoinverse of f. Moreover, this representation is unique up to a positive multiplicative constant.

\top is generated by f if \top has representation (1).

f is called additive generator of \top.

Additive Generators of t-norms – Examples

Find an additive generator f of $\top_{\text{Łuka}}(x, y) = \max\{x + y - 1, 0\}$.

for instance $f_{\text{Łuka}}(x) = 1 - x$
then, $f_{\text{Łuka}}^{(-1)}(x) = \max\{1 - x, 0\}$
thus $\top_{\text{Łuka}}(x, y) = f_{\text{Łuka}}^{(-1)}(f_{\text{Łuka}}(x) + f_{\text{Łuka}}(y))$

Find an additive generator f of $\top_{\text{prod}}(x, y) = x \cdot y$.

to be discussed in the exercise

hint: use of logarithmic and exponential function
Continuous Archimedean t-conorms

Theorem

A t-conorm \bot is continuous and Archimedean if and only if there exists a strictly increasing and continuous function $g : [0, 1] \rightarrow [0, \infty]$ with $g(0) = 0$ such that

$$\bot(x, y) = g^{-1}(g(x) + g(y))$$

(2)

where

$$g^{-1}(x) = \begin{cases} g^{-1}(x) & \text{if } x \leq g(1) \\ 1 & \text{otherwise} \end{cases}$$

is the pseudoinverse of g. Moreover, this representation is unique up to a positive multiplicative constant.

\bot is generated by g if \bot has representation (2).

g is called additive generator of \bot.
Additive Generators of t-conorms – Two Examples

Find an additive generator g of $\perp_{\text{Łuka}}(x, y) = \min\{x + y, 1\}$.

for instance $g_{\text{Łuka}}(x) = x$

then, $g_{\text{Łuka}}^{(-1)}(x) = \min\{x, 1\}$

thus $\perp_{\text{Łuka}}(x, y) = g_{\text{Łuka}}^{(-1)}(g_{\text{Łuka}}(x) + g_{\text{Łuka}}(y))$

Find an additive generator g of $\perp_{\text{sum}}(x, y) = x + y - x \cdot y$.

to be discussed in the exercise

hint: use of logarithmic and exponential function

Now, let us examine some typical families of operations.
Hamacher Family I

\[\top_\alpha(x, y) = \frac{x \cdot y}{\alpha + (1 - \alpha)(x + y + x \cdot y)}, \quad \alpha \geq 0, \]

\[\bot_\beta(x, y) = \frac{x + y + (\beta - 1) \cdot x \cdot y}{1 + \beta \cdot x \cdot y}, \quad \beta \geq -1, \]

\[\sim_\gamma(x) = \frac{1 - x}{1 + \gamma x}, \quad \gamma > -1 \]

Theorem

\((\top, \bot, \sim)\) is a De Morgan triplet such that

\[\top(x, y) = \top(x, z) \implies y = z, \]

\[\bot(x, y) = \bot(x, z) \implies y = z, \]

\[\forall z \leq x \exists y, y' \text{ such that } \top(x, y) = z, \bot(z, y') = x \]

and \(\top\) and \(\bot\) are rational functions if and only if there are numbers \(\alpha \geq 0, \beta \geq -1\) and \(\gamma > -1\) such that \(\alpha = \frac{1+\beta}{1+\gamma}\) and \(\top = \top_\alpha, \bot = \bot_\beta\) and \(\sim = \sim_\gamma\).
Hamacher Family II

Additive generators f_α of T_α are

$$f_\alpha = \begin{cases}
\frac{1-x}{x} & \text{if } \alpha = 0 \\
\log \frac{\alpha+(1-\alpha)x}{x} & \text{if } \alpha > 0.
\end{cases}$$

Each member of these families is strict t-norm and strict t-conorm, respectively.

Members of this family of t-norms are decreasing functions of parameter α.
Sugeno-Weber Family I

For $\lambda > 1$ and $x, y \in [0, 1]$, define

$$T_\lambda(x, y) = \max \left\{ \frac{x + y - 1 + \lambda xy}{1 + \lambda}, 0 \right\},$$

$$\perp_\lambda(x, y) = \min \{x + y + \lambda xy, 1\}.$$

$\lambda = 0$ leads to $T_{\hat{\text{Ł}}uka}$ and $\perp_{\hat{\text{Ł}}uka}$, resp.

$\lambda \to \infty$ results in T_{prod} and \perp_{sum}, resp.

$\lambda \to -1$ creates T_{-1} and \perp_{-1}, resp.
Sugeno-Weber Family II

Additive generators f_λ of \top_λ are

$$f_\lambda(x) = \begin{cases} 1 - x & \text{if } \lambda = 0 \\ 1 - \frac{\log(1+\lambda x)}{\log(1+\lambda)} & \text{otherwise.} \end{cases}$$

$\{\top_\lambda\}_{\lambda > -1}$ are increasing functions of parameter λ.

Additive generators of \bot_λ are $g_\lambda(x) = 1 - f_\lambda(x)$.
Yager Family

For $0 < p < \infty$ and $x, y \in [0, 1]$, define

$$\top_p(x, y) = \max \left\{ 1 - ((1 - x)^p + (1 - y)^p)^{1/p}, 0 \right\},$$

$$\bot_p(x, y) = \min \left\{ (x^p + y^p)^{1/p}, 1 \right\}.$$

Additive generators of \top_p are

$$f_p(x) = (1 - x)^p,$$

and of \bot_p are

$$g_p(x) = x^p.$$

$\{\top_p\}_{0 < p < \infty}$ are strictly increasing in p.

Note that $\lim_{p \to +0} \top_p = \top_{\Luka}$.

\[\text{R. Kruse, C. Doell} \]

FS – Fuzzy Sets and Fuzzy Logic Part 1
Fuzzy Sets Inclusion
Fuzzy Implications

crisp: \(x \in A \Rightarrow x \in B \), **fuzzy:** \(x \in \mu \Rightarrow x \in \mu' \)
Definitions of Fuzzy Implications

One way of defining I is to use $\forall a, b \in \{0, 1\}$

$$I(a, b) = \neg a \lor b.$$

In fuzzy logic, disjunction and negation are t-conorm and fuzzy complement, resp., thus $\forall a, b \in [0, 1]$

$$I(a, b) = \perp(\sim a, b).$$

Another way in classical logic is $\forall a, b \in \{0, 1\}$

$$I(a, b) = \max\{x \in \{0, 1\} \mid a \land x \leq b\}.$$

In fuzzy logic, conjunction represents t-norm, thus $\forall a, b \in [0, 1]$

$$I(a, b) = \sup\{x \in [0, 1] \mid \top(a, x) \leq b\}.$$

So, classical definitions are equal, fuzzy extensions are not.
Definitions of Fuzzy Implications

\(I(a, b) = \bot(\sim a, b) \) may also be written as either

\[
I(a, b) = \neg a \lor (a \land b) \quad \text{or} \\
I(a, b) = (\neg a \land \neg b) \lor b.
\]

Fuzzy logical extensions are thus, respectively,

\[
I(a, b) = \bot(\sim a, \top(a, b)), \\
I(a, b) = \bot(\top(\sim a, \sim b), b)
\]

where \((\top, \bot, n)\) must be a De Morgan triplet.

So again, classical definitions are equal, fuzzy extensions are not.

reason: Law of absorption of negation does not hold in fuzzy logic.
S-Implications

Implications based on \(I(a, b) = \bot(\sim a, b) \) are called **S-implications**. Symbol \(S \) is often used to denote \(t \)-conorms.

Four well-known S-implications are based on \(\sim a = 1 - a \):

<table>
<thead>
<tr>
<th>Name</th>
<th>(I(a, b))</th>
<th>(\bot(a, b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kleene-Dienes</td>
<td>(I_{\text{max}}(a, b) = \max(1 - a, b))</td>
<td>(\max(a, b))</td>
</tr>
<tr>
<td>Reichenbach</td>
<td>(I_{\text{sum}}(a, b) = 1 - a + ab)</td>
<td>(a + b - ab)</td>
</tr>
<tr>
<td>Łukasiewicz</td>
<td>(I_{\text{Ł}}(a, b) = \min(1, 1 - a + b))</td>
<td>(\min(1, a + b))</td>
</tr>
<tr>
<td>largest</td>
<td>(I_{-1}(a, b) = \begin{cases} b, & \text{if } a = 1 \ 1 - a, & \text{if } b = 0 \ 1, & \text{otherwise} \end{cases})</td>
<td>(\begin{cases} b, & \text{if } a = 0 \ a, & \text{if } b = 0 \ 1, & \text{otherwise} \end{cases})</td>
</tr>
</tbody>
</table>
S-Implications

The drastic sum \(\perp_1 \) leads to the largest S-implication \(I_1 \) due to the following theorem:

Theorem

Let \(\perp_1, \perp_2 \) be t-conorms such that \(\perp_1(a, b) \leq \perp_2(a, b) \) for all \(a, b \in [0, 1] \). Let \(I_1, I_2 \) be S-implications based on same fuzzy complement \(\sim \) and \(\perp_1, \perp_2 \), respectively. Then \(I_1(a, b) \leq I_2(a, b) \) for all \(a, b \in [0, 1] \).

Since \(\perp_1 \) leads to the largest S-implication, similarly, \(\perp_{\text{max}} \) leads to the smallest S-implication \(I_{\text{max}} \).

Furthermore,

\[
I_{\text{max}} \leq I_{\text{sum}} \leq I_\ell \leq I_1.
\]
R-Implications

$I(a, b) = \sup \{x \in [0, 1] \mid \top(a, x) \leq b\}$ leads to R-implications. Symbol R represents close connection to residuated semigroup.

Three well-known R-implications are based on $\sim a = 1 - a$:

- Standard fuzzy intersection leads to **Gödel implication**

\[
I_{\min}(a, b) = \sup \{x \mid \min(a, x) \leq b\} = \begin{cases}
1, & \text{if } a \leq b \\
 b, & \text{if } a > b.
\end{cases}
\]

- Product leads to **Goguen implication**

\[
I_{\prod}(a, b) = \sup \{x \mid ax \leq b\} = \begin{cases}
1, & \text{if } a \leq b \\
 b/a, & \text{if } a > b.
\end{cases}
\]

- Łukasiewicz t-norm leads to **Łukasiewicz implication**

\[
I_{\L}(a, b) = \sup \{x \mid \max(0, a + x - 1) \leq b\} = \min(1, 1 - a + b).
\]
R-Implications

<table>
<thead>
<tr>
<th>Name</th>
<th>Formula</th>
<th>$\top(a, b) =$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gödel</td>
<td>$l_{\text{min}}(a, b) = \begin{cases} 1, & \text{if } a \leq b \ b, & \text{if } a > b \end{cases}$</td>
<td>$\min(a, b)$</td>
</tr>
<tr>
<td>Goguen</td>
<td>$l_{\text{prod}}(a, b) = \begin{cases} 1, & \text{if } a \leq b \ b/a, & \text{if } a > b \end{cases}$</td>
<td>ab</td>
</tr>
<tr>
<td>Łukasiewicz</td>
<td>$l_L(a, b) = \min(1, 1 - a + b)$</td>
<td>$\max(0, a + b - 1)$</td>
</tr>
<tr>
<td>largest</td>
<td>$l_L(a, b) = \begin{cases} b, & \text{if } a = 1 \ 1, & \text{otherwise} \end{cases}$</td>
<td>not defined</td>
</tr>
</tbody>
</table>

l_L is actually the limit of all R-implications. It serves as least upper bound. It cannot be defined by $l(a, b) = \sup \{x \in [0, 1] \mid \top(a, x) \leq b\}$.
Theorem

Let \top_1, \top_2 be t-norms such that $\top_1(a, b) \leq \top_2(a, b)$ for all $a, b \in [0, 1]$. Let I_1, I_2 be R-implications based on \top_1, \top_2, respectively. Then $I_1(a, b) \geq I_2(a, b)$ for all $a, b \in [0, 1]$.

It follows that Gödel I_{\min} is the smallest R-implication. Furthermore,

$$I_{\min} \leq I_{\text{prod}} \leq I_\land \leq I_L.$$
QL-Implications

Implications based on $I(a, b) = \bot(\sim a, \top(a, b))$ are called **QL-implications** (*QL* from quantum logic).

Four well-known *QL*-implications are based on $\sim a = 1 - a$:
- Standard min and max lead to **Zadeh implication**
 \[
 I_Z(a, b) = \max[1 - a, \min(a, b)].
 \]
- The algebraic product and sum lead to
 \[
 I_p(a, b) = 1 - a + a^2 b.
 \]
- Using $\top_\mathbb{L}$ and $\bot_\mathbb{L}$ leads to **Kleene-Dienes implication** again.
- Using $\top_{\mathbb{L}1}$ and $\bot_{\mathbb{L}1}$ leads to
 \[
 I_q(a, b) = \begin{cases}
 b, & \text{if } a = 1 \\
 1 - a, & \text{if } a \neq 1, b \neq 1 \\
 1, & \text{if } a \neq 1, b = 1.
 \end{cases}
 \]
Axioms

All I come from generalizations of the classical implication. They collapse to the classical implication when truth values are 0 or 1. Generalizing classical properties leads to following axioms:

1) $a \leq b$ implies $I(a, x) \geq I(b, x)$ (monotonicity in 1st argument)
2) $a \leq b$ implies $I(x, a) \leq I(x, b)$ (monotonicity in 2nd argument)
3) $I(0, a) = 1$ (dominance of falsity)
4) $I(1, b) = b$ (neutrality of truth)
5) $I(a, a) = 1$ (identity)
6) $I(a, I(b, c)) = I(b, I(a, c))$ (exchange property)
7) $I(a, b) = 1$ if and only if $a \leq b$ (boundary condition)
8) $I(a, b) = I(\sim b, \sim a)$ for fuzzy complement \sim (contraposition)
9) I is a continuous function (continuity)
Generator Function

A function $I : [0, 1]^2 \rightarrow [0, 1]$ satisfies Axioms 1–9 of fuzzy implications for a particular fuzzy complement \sim if and only if there exists a strict increasing continuous function $f : [0, 1] \rightarrow [0, \infty)$ such that $f(0) = 0$,

$$I(a, b) = f^{-1}(f(1) - f(a) + f(b))$$

for all $a, b \in [0, 1]$, and

$$\sim a = f^{-1}(f(1) - f(a))$$

for all $a \in [0, 1]$.

R. Kruse, C. Doell
FS – Fuzzy Sets and Fuzzy Logic
Part 1 113 / 119
Example

Consider \(f_\lambda(a) = \ln(1 + \lambda a) \) with \(a \in [0, 1] \) and \(\lambda > 0 \).

Its pseudo-inverse is

\[
f_\lambda^{(-1)}(a) = \begin{cases} \frac{e^a - 1}{\lambda}, & \text{if } 0 \leq a \leq \ln(1 + \lambda) \\ 1, & \text{otherwise.} \end{cases}
\]

The fuzzy complement generated by \(f \) for all \(a \in [0, 1] \) is

\[n_\lambda(a) = \frac{1 - a}{1 + \lambda a}. \]

The resulting fuzzy implication for all \(a, b \in [0, 1] \) is thus

\[I_\lambda(a, b) = \min \left(1, \frac{1 - a + b + \lambda b}{1 + \lambda a} \right). \]

If \(\lambda \in (-1, 0) \), then \(I_\lambda \) is called **pseudo-Łukasiewicz implication**.
List of Implications in Many Valued Logics

<table>
<thead>
<tr>
<th>Name</th>
<th>Class</th>
<th>Form (I(a, b) =)</th>
<th>Axioms</th>
<th>Complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaines-Rescher</td>
<td></td>
<td>[\begin{cases} 1 & \text{if } a \leq b \ 0 & \text{otherwise} \end{cases}]</td>
<td>1–8</td>
<td>1 (-) (a)</td>
</tr>
<tr>
<td>Gödel</td>
<td>R</td>
<td>[\begin{cases} 1 & \text{if } a \leq b \ b & \text{otherwise} \end{cases}]</td>
<td>1–7</td>
<td></td>
</tr>
<tr>
<td>Goguen</td>
<td>R</td>
<td>[\begin{cases} 1 & \text{if } a \leq b \ b/a & \text{otherwise} \end{cases}]</td>
<td>1–7, 9</td>
<td></td>
</tr>
<tr>
<td>Kleene-Dienes</td>
<td>S, QL</td>
<td>max((1 - a, b))</td>
<td>1–4, 6, 8, 9</td>
<td>1 (-) a</td>
</tr>
<tr>
<td>Łukasiewicz</td>
<td>R, S</td>
<td>min((1, 1 - a + b))</td>
<td>1–9</td>
<td>1 (-) a</td>
</tr>
<tr>
<td>Pseudo-Łukasiewicz 1</td>
<td>R, S</td>
<td>(\min \left[1, \frac{1-a+(1+\lambda)b}{1+\lambda a} \right])</td>
<td>1–9</td>
<td>(\frac{1-a}{1+\lambda a}, (\lambda > -1))</td>
</tr>
<tr>
<td>Pseudo-Łukasiewicz 2</td>
<td>R, S</td>
<td>(\min \left[1, 1 - a^w + b^w \right])</td>
<td>1–9</td>
<td>((1 - a^w) \frac{1}{w}, (w > 0))</td>
</tr>
<tr>
<td>Reichenbach</td>
<td>S</td>
<td>(1 - a + ab)</td>
<td>1–4, 6, 8, 9</td>
<td>1 (-) a</td>
</tr>
<tr>
<td>Wu</td>
<td></td>
<td>[\begin{cases} 1 & \text{if } a \leq b \ \min(1 - a, b) & \text{otherwise} \end{cases}]</td>
<td>1–3, 5, 7, 8</td>
<td>1 (-) a</td>
</tr>
<tr>
<td>Zadeh</td>
<td>QL</td>
<td>max([1 - a, \min(a, b)])</td>
<td>1–4, 9</td>
<td>1 (-) a</td>
</tr>
</tbody>
</table>
Which Fuzzy Implication?

Since the meaning of I is not unique, we must resolve the following question:

Which I should be used for calculating the fuzzy relation R?

Hence meaningful criteria are needed.

They emerge from various fuzzy inference rules, *i.e.* modus ponens, modus tollens, hypothetical syllogism.

References III
