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A Simple Example

oil contamination of water by trading vessels

locations of interest: open sea (z3), 12-mile zone (z2), 3-mile zone

(z1), canal (ca), refueling dock (rd), loading dock (ld)

these 6 locations Ω are disjoint and exhaustive

Ω = {z3, z2, z1, ca, rd , ld}

typical formulation: “The accident occurred approximately 10 miles
away from the coast.”
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Modeling Partial Belief

(possibly vague) statements are often not simply true or false

decision maker should be able to quantify his/her degree of belief

this can be objective measurement or subjective valuation

probability theory

sample space Θ (finite set of distinct possible outcomes of some
random experiment)

event A ⊆ Θ

for any Θ, probability P is assumed to be P : 2Θ → [0, 1] satisfying
Kolmogorov axioms
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Kolmogorov Axioms

for any Θ, real-valued function P : 2Θ → [0, 1] must satisfy

(i) 0 ≤ P(A) ≤ 1 for all events A ⊆ Θ,

(ii) P(Θ) = 1,

(iii) if A ∩ B = ∅, then P(A ∪ B) = P(A) + P(B)
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Partial Belief and Evidence Masses

we may conceive not elements of Θ but their observations of some
space Ω

mapping Γ attaches to each sensor θ ∈ Θ its “output” (either element
or subset or fuzzy set of Ω)

probability P on Ω induces via Γ a structure on Ω

this structure represents partial beliefs about actual state of world ω0

if Γ : Θ → 2Ω, then (P, Γ) is “random set”

if subjective valuation is quantified, then evidence masses are
attached to subsets of Ω

thus, expert must partition “belief”, attributing bigger amounts to
more reliable pieces of knowledge
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Mass Distribution

recall example with Ω = {z3, z2, z1, ca, rd , ld}

propositional statement in port equals event {ca, rd , ld}

event may represent maximum level of differentiation for expert

expert specifies mass distribution m : 2Ω → [0, 1]

here, Ω is called frame of discernment

m : 2Ω → [0, 1] must satisfy

(i) m(∅) = 0,

(ii)
∑

A:A⊆Ω(A) = 1

subsets A ⊆ Ω with m(A) > 0 are called focal elements of m
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Belief and Plausibility

m(A) measures belief committed exactly to A

for total amount of belief (credibility) of A, sum up m(B) whereas
B ⊆ A

for maximum amount of belief movable to A, sum up m(B) with
B ∩ A 6= ∅

this leads to belief function and plausibility function

Belm : 2Ω → [0, 1], Belm(A) =
∑

B:B⊆A

m(B)

Plm : 2Ω → [0, 1], Plm(A) =
∑

B:B∩A6=∅

m(B)
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Belief and Plausibility

in any case Bel(Ω) = 1 (“closed world” assumption)

total ignorance modeled by m0 : 2Ω → [0, 1] with m0(Ω) = 1,
m0(A) = 0 for all A 6= Ω

m0 leads to Bel(Ω) = Pl(Ω) = 1 and Bel(A) = 0, Pl(A) = 1 for all
A 6= Ω

for ordinary probability, use m1 : 2Ω → [0, 1] with m1({ω}) = pω and
m1(A) = 0 for all sets A with |A| > 1

m1 is called Bayesian belief function

exact knowledge modeled by m2 : 2Ω → [0, 1], m2({ω0}) = 1 and
m2(A) = 0 for all A 6= {ω0}
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Example

consider statement “ship is in port with degree of certainty of 0.6,
further evidence is not available”

mass distribution
m : 2Ω → [0, 1], m({in port}) = 0.6, m(Ω) = 0.4, m(A) = 0 otherwise

m(Ω) = 0.4 represent inability to attach that amount of mass to any
A ⊂ Ω

e.g. m({in port}) = 0.4 would exceed expert’s statement
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Nested Focal Elements

besides Bayesian belief functions, there is another important case

if focal elements A1, . . . , An of m are nested, i.e. can be arranged such
that A1 ⊆ A2 ⊆ . . . ⊆ An, then belief function is called consonant

simplest case: belief function with only 1 focal element A ⊆ Ω where
m(A) = 1

then it follows

Belm(B) =

{
1 if A ⊆ B,

0 otherwise
and Plm(B) =

{
1 if A ∩ B 6= ∅,

0 otherwise

each ω ∈ A is candidate for being actual but unknown state ω0
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Possibility Distribution

we definitely know that ω0 6∈ Ā

can be used for ρ : Ω → {0, 1}, ρ(ω) = Pl({ω})

ρ attaches 1 to possible and 0 to impossible elements

ρ is thus named possibility distribution
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Possibility and Necessity

truth of “possibly ω0 ∈ B” is called possibility of B ⊆ Ω

this is true if max{ρ(ω) | ω ∈ Ω} = 1

truth of “necessarily ω0 ∈ Ω” is called necessity of B ⊆ Ω

this is true if max{ρ(ω) | ω ∈ B̄} = 0

“necessarily ω0 ∈ Ω” being true requires “possibly ω0 ∈ B̄” being false
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Possibility and Necessity Measures

generally, possibility (and necessity) becomes matter of degree

instead of ρ : Ω → {0, 1}, membership function
π : Ω → [0, 1], π(ω) = Pl({ω})

thus, possibility measure and necessity measure are defined as

Πm : 2Ω → [0, 1], Πm(B) = max{π(ω) : ω ∈ B}

necm : 2Ω → [0, 1], necm(B) = 1 − Π(B̄)

Π and nec are plausibility and belief functions, resp.
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Example – Probability vs. Possibility

statement A(n): “Anna ate n eggs for breakfast.”

(subjective) probability P(A(n)) can be determined by experiments:
“How many eggs will Anna eat for today’s breakfast?”

possibility π(A(n)): “How many eggs can Anna eat for breakfast.”

n 1 2 3 4 5 6 7 8

π(A(n)) 1 1 1 1 .8 .6 .4 .2

P(A(n)) .1 .8 .1 0 0 0 0 0

a possible event need not to be probable

a probable event is always possible
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Properties of Possibility Measures

(i) Π(∅) = 0

(ii) Π(Ω) = 1

(iii) Π(A ∪ B) = max{Π(A), Π(B)} for all A, B ⊆ Ω

possibility of some set is determined by its “most possible” element

nec(Ω) = 1 − Π(∅) = 1 means closed world assumption: “necessarily
ω0 ∈ Ω” must be true

total ignorance: Π(B) = 1, nec(B) = 0 for all B 6= ∅, B 6= Ω

perfect knowledge: Π({ω}) = nec({ω}) = 0 for all ω 6= ω0 and
Π({ω0}) = nec({ω0}) = 1
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Nested Focal Elements

complete sequence of nested focal elements of Π on 2Ω where
Ω = {ω1, . . . , ωn}

ω1 ω2 ω3 ω4 . . . ωn

m(A1)

m(A2)

m(A3)
m(A4) . . .

m(An)

π(x1)

π(x2)
π(x3) π(x4)

. . . π(xn)
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Example

consider ship locations again

given membership function

π(z3) = π(z2) = 0

π(z1) = π(ld) = 0.3

π(ca) = 0.6

π(rd) = 0.1

Π({z3, z2}) = 0 and nec({z1, ca, rd , ld}) = 1

we know it is impossible that ship is located in {z3, z2}

ω0 ∈ {z1, ca, rd , ld}

Π({ca, rd}) = 1, nec({ca, rd}) = 0.7 means “location of ship is
possibly but not with certainty in {ca, rd}”
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Possibility and Fuzzy Sets

let variable T be temperature in ◦C (only integers)

actual but unknown value T0 is given by “T is around 21◦C”

0

0.25

0.50

0.75

1.00

17 18 19 20 21 22 23 24 25

π

b b

b

b

b

b

b

b b b

19 20 21 22 23

π : 1/3 2/3 1 2/3 1/3

incomplete information induces possibility distribution function π

π is numerically identical with membership function

nested α-cuts play same role as focal elements
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Possibility Theory

best-known calculus for handling uncertainty: probability

theory [Laplace, 1812]

less well-known, but noteworthy alternative: possibility

theory [Dubois and Prade, 1988]

possibility theory can handle uncertain and imprecise information,
while probability theory was only designed to handle uncertain

information
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Possibility Theory: Axiomatic Approach

Definition

Let Ω be a (finite) sample space. A possibility measure Π on Ω is a
function Π : 2Ω → [0, 1] satisfying

(i) Π(∅) = 0 and

(ii) ∀E1, E2 ⊆ Ω : Π(E1 ∪ E2) = max{Π(E1), Π(E2)}.

similar to Kolmogorov’s axioms of probability theory

from axioms, it follows Π(E1 ∩ E2) ≤ min{Π(E1), Π(E2)}

attributes are introduced as random variables (as in probability theory)

Π(A = a) is abbreviation of Π({ω ∈ Ω | A(ω) = a})

if event E is possible without restriction, then Π(E ) = 1

if event E is impossible, then Π(E ) = 0
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Possibility Theory and the Context Model

Interpretation of degrees of possibility [Gebhardt and Kruse, 1993]

let Ω be (nonempty) set of all possible states of world, ω0 the actual
(but unknown) state

let C = {c1, . . . , cn} be set of contexts (observers, frame conditions
etc.) and (C , 2C , P) finite probability space (context weights)

let Γ : C → 2Ω be set-valued mapping, which assigns to each context
the most specific correct set-valued specification of ω0

sets Γ(c) are called focal sets of Γ

Γ is random set (i.e. set-valued random variable) [Nguyen, 1978]

basic possibility assignment induced by Γ is mapping

π : Ω → [0, 1]

π(ω) 7→ P({c ∈ C | ω ∈ Γ(c)}).
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Example: Dice and Shakers

shaker 1 shaker 2 shaker 3 shaker 4 shaker 5

tetrahedron hexahedron octahedron icosahedron dodecahedron

1 – 4 1 – 6 1 – 8 1 – 10 1 – 12

numbers degree of possibility

1 – 4 1
5 + 1

5 + 1
5 + 1

5 + 1
5 = 1

5 – 6 1
5 + 1

5 + 1
5 + 1

5 = 4
5

7 – 8 1
5 + 1

5 + 1
5 = 3

5

9 – 10 1
5 + 1

5 = 2
5

11 – 12 1
5 = 1

5
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Definition

Let Γ : C → 2Ω be a random set. The possibility measure induced
by Γ is the mapping

Π : 2Ω → [0, 1],

E 7→ P({c ∈ C | E ∩ Γ(c) 6= ∅}).

problem: from given interpretation it only follows:

∀E ⊆ Ω : max
ω∈E

π(ω) ≤ Π(E ) ≤ min

{
1,
∑

ω∈E

π(ω)

}
.

1 2 3 4 5

c1 : 1
2 •

c2 : 1
4 • • •

c3 : 1
4 • • • • •

π 0 1
2 1 1

2
1
4

1 2 3 4 5

c1 : 1
2 •

c2 : 1
4 • •

c3 : 1
4 • •

π 1
4

1
4

1
2

1
4

1
4
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From Context Model to Possibility Measures

attempts to solve indicated problem:

require focal sets to be consonant

→ mass assignment theory [Baldwin et al., 1996]
problem: “voting model” is not sufficient to justify consonance

use lower bound as “most pessimistic” choice [Gebhardt, 1997]
problem: basic possibility assignments represent negative information,
lower bound is actually most optimistic choice

justify lower bound from decision making purposes
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From Context Model to Possibility Measures

assume: in the end we must decide on one single event

each event is described by values of set of attributes

then it can be useful to assign to set of events the degree of possibility
of “most possible” event in set

example:

∑

max

0

18

18

0

18

0

0

0

18

0

0

0

0

0

0

28

36

18

18

18

18

18

28

28

36

18

18

18

18

18

28

28

max

0

40

0

0

20

0

0 40 0

40

20

40

40

20

40

R. Kruse, C. Moewes FS – Possibility Theory Lecture 1 24 / 32

mailto:kruse@iws.cs.uni-magdeburg.de
mailto:cmoewes@ovgu.de


Definition

Let X = {A1, . . . , An} be a set of attributes defined on a (finite)
sample space Ω with respective domains dom(Ai), i = 1, . . . , n.
A possibility distribution πX over X is the restriction of a possibility
measure Π on Ω to the set of all events that can be defined by stating
values for all attributes in X . That is, πX = Π|EX

, where

EX =

{
E ∈ 2Ω

∣∣∣∣∣ ∃a1 ∈ dom(A1) : . . . ∃an ∈ dom(An) :

E =̂
∧

Aj ∈X

Aj = aj

}

=

{
E ∈ 2Ω

∣∣∣∣∣ ∃a1 ∈ dom(A1) : . . . ∃an ∈ dom(An) :

E =

{
ω ∈ Ω

∣∣∣∣∣
∧

Aj∈X

Aj(ω) = aj

}}
.

corresponds to the notion of probability distribution
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A Possibility Distribution

all numbers in
parts per 1000

small

medium

large s m l

small
medium

large

40 70 10 70
20 10 20 20
30 30 20 10

40 80 10 70
30 10 70 60
60 60 20 10

20 20 10 20
30 10 40 40
80 90 20 10

40 80 10 70
30 10 70 60
80 90 20 10

40 70 20 70
60 80 70 70
80 90 40 40

20 80 70
40 70 20
90 60 30

80 90 70 70

80
70
90

90

80

70

numbers state degrees of possibility of corresponding value
combination
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Reasoning

all numbers in
parts per 1000

small

medium

large s m l

small
medium

large

0 0 0 70
0 0 0 20
0 0 0 10

0 0 0 70
0 0 0 60
0 0 0 10

0 0 0 20
0 0 0 40
0 0 0 10

0 0 0 70
0 0 0 60
0 0 0 10

0 0 0 70
0 0 0 70
0 0 0 40

20 70 70
40 60 20
10 10 10

0 0 0 70

70
60
10

40

70

70

using information that given object is green
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Possibilistic Decomposition

as for relational and probabilistic networks, 3D possibility distribution
can be decomposed into projections to subspaces, i.e.

• maximum projection to subspace color × shape,

• maximum projection to subspace shape × size

can be reconstructed using the following formula:

∀i , j , k : π
(
a

(color)
i , a

(shape)
j , a

(size)
k

)

= min
{

π
(
a

(color)
i , a

(shape)
j

)
, π
(
a

(shape)
j , a

(size)
k

)}

= min

{
max

k
π
(
a

(color)
i , a

(shape)
j , a

(size)
k

)
,

max
i

π
(
a

(color)
i , a

(shape)
j , a

(size)
k

)}
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Reasoning with Projections

again same result can be obtained using only projections to subspaces
(maximal degrees of possibility):

s

s

m

m

l

l

color
new

old

shape
new old

size
old

new

old
new

old
new

min
new

max
line

min
new

max
column

0 0 0 70

80 90 70 70

40
0

80
0

10
0

70
70

30
0

10
0

70
0

60
60

80
0

90
0

20
0

10
10

70 80

60 70

10 90

20
20

80
70

70
70

40
40

70
60

20
20

90
10

60
10

30
10

90 80 70

40 70 70
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Conditional Possibility and Independence

Definition

Let Ω be a (finite) sample space, Π a possibility measure on Ω, and
E1, E2 ⊆ Ω events. Then Π(E1 | E2) = Π(E1 ∩ E2) is called the
conditional possibility of E1 given E2.

Definition

Let Ω be a (finite) sample space, Π a possibility measure on Ω, and A,

B, and C attributes with respective domains dom(A), dom(B), and
dom(C). A and B are called conditionally possibilistically

independent given C , written A ⊥⊥Π B | C , iff

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :

Π(A = a, B = b | C = c) = min{Π(A = a | C = c), Π(B = b | C = c)}

similar to corresponding notions of probability theory
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Possibilistic Evidence Propagation
π(B = b | A = aobs)

= π

(
∨

a∈dom(A)

A = a, B = b,
∨

c∈dom(C)

C = c

∣∣∣∣∣A = aobs

) A: color
B: shape
C : size

(1)
= max

a∈dom(A)
{ max

c∈dom(C)
{π(A = a, B = b, C = c | A = aobs)}}

(2)
= max

a∈dom(A)
{ max

c∈dom(C)
{min{π(A = a, B = b, C = c), π(A = a | A = aobs)}}}

(3)
= max

a∈dom(A)
{ max

c∈dom(C)
{min{π(A = a, B = b), π(B = b, C = c),

π(A = a | A = aobs)}}}

= max
a∈dom(A)

{min{π(A = a, B = b), π(A = a | A = aobs),

max
c∈dom(C)

{π(B = b, C = c)}

︸ ︷︷ ︸
=π(B=b)≥π(A=a,B=b)

}}

= max
a∈dom(A)

{min{π(A = a, B = b), π(A = a | A = aobs)}}
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