
Assignment Sheet 4

Assignment 13 Fuzzy Set Operations

Let the following two fuzzy sets be given:

Compute and draw for each of the pairs

- a) the complement of μ_1 w.r.t. U = [1, 8] using the standard fuzzy negation,
- b) the intersection of μ_1 and μ_2 using the standard fuzzy *t*-norm \top_{\min} ,
- c) the intersection of μ_1 and μ_2 using the algebraic product \top_{prod} ,
- d) the intersection of μ_1 and μ_2 using the Łukasiewicz *t*-norm \top_{Luka} ,
- e) the union of μ_1 and μ_2 using the standard fuzzy *t*-conorm \perp_{\max} ,
- f) the union of μ_1 and μ_2 using the algebraic sum \perp_{sum} ,
- g) the union of μ_1 and μ_2 using the Łukasiewicz *t*-conorm \perp_{Luka} .

Assignment 14 Fuzzy Negation

In order to construct an involutive negation, one can use either a strictly monotonously increasing or decreasing generator function:

Theorem: $\sim: [0,1] \mapsto [0,1]$ is an involutive fuzzy negation if there exists a continuous function $g: [0,1] \mapsto \mathbb{R}$ that fulfills the following properties:

- (i) g(0) = 0.
- (ii) g is strictly monotonously increasing.
- (*iii*) ~ $a = g^{-1}(g(1) g(a)).$

Theorem: $\sim: [0,1] \mapsto [0,1]$ is an involutive fuzzy negation if there exists a continuous function $f:[0,1] \mapsto \mathbb{R}$ that fulfills the following properties:

- (*i*) f(1) = 0.
- (ii) f is strictly monotonously decreasing.
- (*iii*) ~ $a = f^{-1}(f(0) f(a)).$

Now, consider the class of increasing generator functions

$$g_{\lambda}(a) = \frac{a}{\lambda + (1 - \lambda)a}$$

Apply the given theorem, which allows to construct an involutive fuzzy negation from an arbitrary continuous and strictly increasing function g with g(0) = 0. Draw the resulting fuzzy negation for several values of λ .

Assignment 15 Fuzzy Conjunction

Prove the following theorem which was given in the lecture:

Theorem: For all t-norms \top and all fuzzy truth values $a, b \in [0, 1]$ it is

$$\top_{-1}(a,b) \le \top(a,b) \le \top_{\min}(a,b),$$

where $\top_{\min}(a, b) = \min\{a, b\}$ is the standard fuzzy conjunction and \top_{-1} is the so-called drastic product

$$\top_{-1}(a,b) = \begin{cases} a & \text{if } b = 1, \\ b & \text{if } a = 1, \\ 0 & \text{otherwise} \end{cases}$$

Assignment 16 Fuzzy Disjunction

Consider the class of increasing generator functions (cf. Assignment 14)

$$g_{\lambda}(a) = \frac{a}{\lambda + (1 - \lambda)a}.$$

Apply the theorem of the lecture which allows to construct a fuzzy disjunction (t-conorm) from an arbitrary continuous and strictly increasing function g with g(0) = 0. If you have a proper software tool like, for instance, gnuplot available, plot the resulting fuzzy disjunction for several values of λ .