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Multi-Criteria Optimization

in many everyday problems: optimization of more than one
variable
achieve different objectives as good as possible
Example: requirements when bying a car

• low price,
• low fuel consumption, low emissions
• best comfort (electric windows, air conditioning)

often many different objectives are not independent, but
conflicting
Example: bying a car

• additional charge for most comfort features
• air conditioning or large inner space require a big engine, thus

higher pricing and more fuel consumption
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Multi-Criteria Optimization
technical description: k critera given, with one objective
function each:

fi : Ω → IR, i = 1, . . . , k

simple approach: put together k objective functions into one
aggregated objective function, e.g. with

f (s) =
k∑

i=1
wi · fi(s)

choosing the weights:
• sign: if f → max, then all weights of f wi > 0,

otherwise wi < 0
• absolute value: relative significance of these criteria (take

fluctuation into account!)
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Multi-Criteria Optimization

problems with this approach:
• relative significance of these criteria needs to be fixed before

starting the search
• choice of weights not always that simple, thus preferences between

criteria might be inadequate

problems occuring with linear combination of the fi are even more
fundamental:

• in general: problem of aggregation of preference
• also occurs in people’s elections (preferences of voters for nominees

need to be aggregated)
• Arrow’s impossibility theorem [Arrow, 1951]: there is no choice

function that possesses all the desired features
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Multi-Criteria Optimization

• Arrow’s impossibility theorem [Arrow, 1951] may be avoided by
using a scaled order of preferences

• however: scaled order of preferences is a new degree of freedom

• the task of finding a suitable scaling is most likely to be even more
complex than finding suitable weights for the linear combination
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Pareto-Optimal Solutions

• alternative approach: try to find as much Pareto-optimal
solutions as possible

Definition
An element s ∈ Ω is called Pareto-optimal regarding the objective
functions fi , i = 1, . . . , k, if there is no such element s ′ ∈ Ω for which

∀i , 1 ≤ i ≤ k : fi(s ′) ≥ fi(s) and
∃i , 1 ≤ i ≤ k : fi(s ′) > fi(s) holds.

• illustration: no value of an objective function can get better
without the value of another function getting worse.
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Definition of “Pareto-Optimum“

element s1 ∈ Ω dominates element s2 ∈ Ω, if

∀i , 1 ≤ i ≤ k : fi(s1) ≥ fi(s2)

element s1 ∈ Ω dominates element s2 ∈ Ω properly, if s1
dominates s2 and

∃i , 1 ≤ i ≤ k : fi(s1) > fi(s2)

element s1 ∈ S is called Pareto-optimal, if it is not properly
dominated by any other element s2 ∈ Ω

set of Pareto-optimal elements is called Pareto-front
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Multi-Criteria Optimization

Advantages when searching for Pareto-optimal solutions:
• no need for aggregating objective functions

i.e. no need to choose weights

• Even for different preferences the search has to be performed
only once.
It is after this search that the solutions are chosen.
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Pareto-Optimal Solution / Pareto-Front
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• all points of Ω are located within the gray zone
• Pareto-optimal solution = bold part of the border
• note: Pareto-optimal solution can be unique (depending on the

location of the candidate solutions)
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Solution with Evolutionary Algorithms

• objective: spreading the population along the Pareto-Front as
widely as possible

• challenge: without previously definded weights
many different, equivalent solutions

• simplest approach: use weighted sum of the objective functions
as fitness function
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Solution with Evolutionary Algorithms

obvious alternative: so-called VEGA-method
• given k criteria with assigned objective functions fi , 1 . . . , k
• ∀i , 1, . . . , k: choose |P|

k individuals according to the fitness
function fi

• advantage: simple, without much computational
effort

• disadvantage: clear handicap for solutions that
satisfy every criterion good, but none perfectly

• consequence: search concentrates on marginal
solutions
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Solution with Evolutionary Algorithms

better approach: use concept of dominance for selection
building a rating scale of the individuals of one population:

• find all non-dominated solutions of a population
• assing solution candidates to the best rank, remove them from the

population
• repeat identification and removal of non-dominated solution

candidates fot other ranks, until population is empty
perform a rank-based selection according to the ranking scale
problem: all individuals of the Pareto-Front are assessed as equally
good

⇒ genetic drift: Pareto-Front converges at a random point, because
of random effects
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Preventing the Genetic Drift

aim: spread along the Pareto-front as equally as possible
solution: niche techniques to be able to decide between individuals
with same rank

• e.g. power law sharing: individuals with frequent combination of
function values get a low fitness score
combinations occuring isolated are as probable as solution
candidates of frequent occuring combinations

• sharing as for evaluation functions, but with distance measure for
function values

problem: calculating the ranking scale is costly
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NSGA-Selection
Non-Dominated Sorted Genetic Algorithm

alternatively: tournament selection, with the winner being
determined by the dominance concept and niche techniques
method:

• choose reference individual
• select non-dominated individual
• otherwise: individual with less individuals in niche

here: niche defined by radius ε
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Algorithm 1 NSGA-Selection
Input: goodness 〈A(i).Fj 〉1≤i≤r,1≤j≤k , sample size Ndom
1: I ← {}
2: for t → 1, . . . , s {
3: a ← U({1, . . . , r})
4: b ← U({1, . . . , r})
5: Q ← subset of {1, . . . , r} of size Ndom
6: da ← ∃i ∈ Q : A(i) >dom A(a)

7: db ← ∃i ∈ Q : A(i) >dom A(b)
8: if da and not db {
9: I ← I ∪ {b}
10: } else {
11: if not da and db {
12: I ← I ∪ {a}
13: } else {
14: na ←

∣∣{1 ≤ i ≤ r | d(A(i), A(a)) < ε
}∣∣

15: nb ←
∣∣{1 ≤ i ≤ r | d(A(i), A(b)) < ε

}∣∣
16: if na > nb {
17: I ← I ∪ {b}
18: } else {
19: I ← I ∪ {a}
20: }
21: }
22: }
23: }
24: return I
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NSGA-Selection

nonetheless poor approximation of the Pareto-Front.
reasons:
parameter setting of ε

population used for two purposes
• as storage for non-dominated individuals (Pareto-Front)
• as living population (for searching the search space)

solution: separate archive for non-dominated individuals from the
population

• archive often finite
• testing all individuals for dominance by archive individuals
• for newbies: remove dominated individuals from the archive
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Strength Pareto EA (SPEA2)

is a simple EA
evaluation function: two components:

1. how many individuals dominate individuals dominating this
individual

2. distance to the √n-th closest individual
the archive influences the calculation of fitness and contains
non-dominating individuals

• if too few: fittest individuals additionally
• replace in archive, because of distance to other archived individuals
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Algorithm 2 SPEA2
Input: objective function F1, . . . , Fk , population size µ, archive size µ̃
1: t ← 0
2: P(t) ← create population with µ individuals
3: R(t) ← ∅
4: while termination condition not satisfied {
5: evaluate P(t) by F1, . . . , Fk
6: for each A ∈ P(t) ∪ R(t) {
7: numDom(A) ← |{B ∈ P(t) ∪ R(t) | A >dom B}|
8: }
9: for each A ∈ P(t) ∪ R(t) {

10: d ← distance of A and its
√

µ + µ̃ closest individuals in P(t) ∪ R(t)

11: A.F ← 1
d+2 +

∑
B∈P(t)∪R(t),B>dom A

numDom(B)

12: }
13: R(t + 1) ← {A ∈ P(t) ∪ R(t) | A is non-dominated}
14: while |R(t + 1)| > µ̃ {
15: remove the individual with the smalles / second smallest distance from R(t + 1)
16: }
17: if |R(t + 1)| < µ̃ {
18: fill R(t + 1) with the best individuals from P(t) ∪ R(t)
19: }
20: if termination condition not satisfied {
21: select from P(t) via tournament selection
22: P(t + 1) ← apply recombination and mutation
23: t ← t + 1
24: }
25: }
26: return non-dominated individuals from R(t + 1)



Pareto-Archived ES (PAES)

• (1 + 1)-evolution strategy
• condition of acceptance: archived individual is dominated or

codomain is not frequented enough
• niches: follow from organization of the archive as a

multi-dimensional hash table
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Algorithm 3 PAES
Input: objective function F1, . . . , Fk , archive size µ̃
1: t ← 0
2: A ← generate a random individual
3: R(t) ← {A} organized as a multi-dimensional hash-table
4: while termination condition not satisfied {
5: B ← mutation on A
6: assess B by F1, . . . , Fk
7: if ∀C ∈ R(t) ∪ {A} : not (C >dom B) {
8: if ∃C ∈ R(t) : (B >dom C) {
9: remove all individuals being dominated by B from R(t)

10: R(t) ← R(t) ∪ {B}
11: A ← B
12: } else {
13: if |R(t)| = µ̃ {
14: g∗ ← hash entry with most entries
15: g ← hash entry for B
16: if entries in g < entries in g∗ {
17: remove entries from g∗

18: R(t) ← add B to R(t)
19: }
20: } else {
21: R(t) ← add B to R(t)
22: gA ← hash entry for A
23: gB ← hash entry for B
24: if entries in gB < entries in gA {
25: A ← B
26: }
27: }
28: }
29: }
30: t ← t + 1
31: }
32: return non-dominated individuals from R(t + 1)



Summary

Even up-to-date methods got problems in approximating the
Pareto-front with more than 3 criteria.
reason: massive computation time is needed for detection
solution: iterative presentation of current solutions found so far
user decides on the field the search should concentrate on
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Task: Setting Up Antennas

• base antennas for mobile networks
• highest priority: high network availability
• second aim: low costs
• common method:

• place base antennas and configure their size/scope ⇒ satisfy the
demand

• assign frequencies ⇒ minimize interferences

Prof. R. Kruse, P. Held EA – Multi-Critera Optimization 03/06/2013 21 / 46



Initial Situation

both problems are N P-hard
the placing might restrain the frequency assignment a lot
within one iteration the results of frequency assignment can only
partially be taken into account

basic policy decision:
both problems are processed in parallel!
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Formalization

rectangular space (xmin, ymin) and (xmax, ymax) with grid res

set of all (possible) positions:

Pos =

{

(xmin + i · res , ymin + j · res) | 0 ≤ i ≤ xmax − xmin
res

and 0 ≤ j ≤ ymax − ymin
res

}
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Call Demand Zurich

statistically determined call demands demand(cell) ∈ IN for some
cell ∈ pos
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Formalization: Antenna

antenna t = (pow , cap, pos, frq)
transmission / signal strength pow ∈ [MinPow , MaxPow ] ⊂ IN
call capacity cap ⊂ [0, MaxCap] ⊂ IN]

frequencies/channels frq ⊂ Frequ = {f1, . . . , fk} mit |frq| ≤ cap
all possible antenna configurations:

T = [MinPow , MaxPow ] × [0, MaxCap] × Pos × Frequ
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Genotype

problem-related genotype

Ω = G = {{t1, . . . , tk} | k ∈ IN and ∀i ∈ {1, . . . , k} : ti ∈ T}

variable length
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Constraints

highest priority on network availability ⇒
coded as a hard constraint
reachable positions according to wave propagation model:
wp : pos × [MinPow , MaxPow ] → P(pos)
A.G = (t1, . . . , tk) is called legal, if there is a mapping
serves(ti , cell) ∈ IN (with cell ∈ pos) for all ti , such that

• serves(ti , cell) > 0 ⇒ cell ∈ wp(ti)
•

∑k
i=1 serves(ti , cell) ≥ demand(cell)

•
∑

cell∈pos serves(ti , pos) ≤ cap with ti = (pow , cap, pos, frq)
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Evaluation Functions

interference with antennas of same (or close) frequencies within
one cell

finterference(A) =
∑k

i=1 #disruptedCalls(ti)∑
cell∈pos demand(cell)

costs costs(pow i , capi ) per antenna

fcosts(A) =
k∑

i=1
costs(ti)
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„Design Patterns“

Only legal individuals! Thus a repair function is needed.
Every antenna configuration needs to be accessible.
Extending and shortening operators are balanced.
Fine tuning and exploration are balanced:
problem specific operators and random operators
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Repair Function

consider cells in a random order
if the demand is not satisfied:

1. if there is at least one antenna with some availabe capacity:
choose the most powerful antenna, and assign a frequency

2. if necessary, determine the antenna that could satisfy the demand
when increasing its power with minimal costs

3. if necessary, check the costs for setting up a new antenna within
close proximity

4. if necessary, deploy solution (2) or (3)
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Repair Function

use:
for every new generated individual
for initialization of the initial population

• repair function for an empty individual
• max. 2|pos| individuals by (preferably) random order of the demand

cells

mutation operators
• 6 „directed“ mutations, following certain concepts
• 5 „random“ mutations
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Directed Mutation Operators

name effect
DM1 if antenna got unsused frequencies

⇒ reduce capacity accordingly
DM2 if antenna uses maximal capacity

⇒ place another antenna nearby
DM3 if some antennas share large overlapping areas

⇒ remove one antenna
DM4 if some antennas share large overlapping areas

⇒ reduce intensity of 1 antenna (still satisfying the demand!)
DM5 if there are interferences

⇒ change affected frequencies
DM6 if antenna serves only little amount of calls

⇒ remove this antenna
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Random Mutation Operators

name effect
RM1 change position of an antenna (intensity and capacity

unchanged, frequencies new according to repair function)
RM2 fully random individual (as during initialization)
RM3 change intensity of an antenna randomly

⇒ compensation for DM4
RM4 change capacity of an antenna randomly

⇒ compensation for DM1
RM5 change assigned frequencies of an antenna

⇒ compensation for DM5
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Recombination

• split the antennas in two halves (vertically or horizontally)
• exchange the two halves between the individuals
• fill corridor arount the split with a repair function
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Recombination: Example
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Selection
modern multi-objective selection is needed
problem of existing algorithms (e.g. SPEA):

• individual is integrated with O(µ2) in archive of size µ
• unfavorable because of „steady state“-approach (see basic policy

decision!)

parental selection as tournament selection, based on
• dominates(A) = set of individuals (in the population) being

dominated by A
• isDominated(A) = set of individuals dominating A

assign rank

rank(A) = #isDominated(A) · µ +#dominates(A)

only problem: genetic drift, if all individuals are equivalent
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Selection
Four Options

Will the new individual be included in the next generation?
Which one will be replaced?

1. both sets empty ⇒ include and delete individual with poorest rank
2. dominates(B) ,= ∅ ⇒ include and delete worst individual from

dominates(B)

3. dominates(B) = ∅ ∧ isDominated(B) ,= ∅
⇒ B is unconsidered

4. both sets empty and no individual is dominated by another one
⇒ include and delete according to measure of niche technique
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Selection
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Selection

data structure for population: 2D range tree
ranges according to both objective function values
searching, inserting and deleting in O(log2 µ)

2D range queries (all individuals within this range) in
O(k + log2 µ) with number k of found individuals
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Altorithm
Algorithm 4 Antenna Optimization
Input: antenna problem

1: t ← 0
2: P(t) ← initialize µ individuals with repair function
3: calculate rank for individuals in P(t)
4: while t ≤ G { /* maximum number of generations G */
5: A, B ← select from P(t) according to rank and tournament

selection
6: C ← apply operator to A (and for recombination to B)
7: calculate sets dominates(C) and isDominated(C)
8: P(t + 1) ← integrate C in P(t) and update ranks
9: t ← t + 1

10: }
11: return non-dominating individuals from P(t)
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Specific Problem Data

• 9 × 9 km2 area within Zurich
• creating grid

• demand 500m
• placing antennas 100m

• 505 calls in total
• #frequ = 128
• maximum capacity MaxCap = 64
• intensity between MinPow = 10dBmW and MaxPow =

130dBmW

Prof. R. Kruse, P. Held EA – Multi-Critera Optimization 03/06/2013 41 / 46



Cost Function and Parameters

cost function
• costs of one antenna:

costs(pow i , capi) = 10 · pow i + capi

parameter adjustment
• population size µ = 80
• 64000 evaluations
• archive size of 80 individuals (SPEA)
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Pareto-Front
SPEA2, pRM = pDM = 0.5 and pRek = 0
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Pareto-Front
eigene Selektion, pRM = pDM = 0.5 and pRek = 0
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Sa Fronts roughly convex:

̂finference(A) =
finference

0.7
f̂costs(A) =

fcosts − 7500
4500

qual(P) = min
A∈P

(
α · ̂finference(A) + (1 − α) · f̂costs (A)

)

t-test for values of 16 experiments
positive only, if significant for all α ∈ {0.1, 0.2, . . . , 0.9}
significant: combination better than just chance
no difference: previous figures
best result: next slide
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Pareto-Front
own selection, pRM = pDM = 0.3 and pRek = 0.4
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