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Parallelization of evolutionary algorithms
EA: fairly expensive optimization methods since one often has
to work with

• large population (a few thousand up to several tens of thousands
of individuals)

• large number of generations (a couple of hundreds)
Advantage: slightly better solution quality compared to other
approaches
Disadvantage: unpleasantly long execution time
one way to improve this: parallelization
distribution of necessary operations on several processors
Questions:

• Which steps can be parallelized?
• What additional, specialized techniques are inspired by a

parallel organization of the algorithm?
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Which steps can be parallelized?
Creating an initial population:

• often easy to parallelize, because usually the chromosomes of the
initial population are created randomly and independently of each
other

• attempt to prevent duplicate individuals may pose obstacles to a
parallel execution
fairly little importance overall though, because the initial
population is created just once

Evaluation of chromosomes:
• easily parallelizable because usually an individual is evaluated

independently of any other ones
• even in prisoner’s dilemma: process pairings in parallel

Computing the (relative) fitness values or a ranking of the
individuals

• central agent that collects and processes evaluations
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Which steps can be parallelized?

Selection: whether the selection of the individuals is parallelizable,
depends heavily on the chosen selection method

• expected value model and elitism:
all require to consider the population as a whole and therefore are
difficult to parallelize

• Roulette-wheel and rank-based selection: can be parallelized
after the initial step of computing the relative fitness values

• Tournament selection: best suited for a parallel execution,
especially for small tournament sizes, because all tournaments are
independent and thus can be held in parallel
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Which steps can be parallelized?
Applying genetic operators
can easily be applied in parallel, since they affect only one
(mutation) or two chromosomes (crossover), and are independent
of any other chromosomes (If combined with tournament
selection, a steady-state evolutionary algorithm can thus be
parallelized very well)
termination criterion:
simple test whether a certain number of generations is reached
does not cause any problems
Termination criteria like

• the best individual of the population exceeds a user-specified
fitness threshold, or

• the best individual has not changed (a lot) over a certain number
of generations

need a central agency that collects this information about the
individuals
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Island Model

if we require a selection method that causes some troubles for
parallelization:
achieving a parallel execution by simply processing several
independent populations
each population can be seen as inhabiting an island, therefore
island model.
pure island ≡ executing the same evolutionary algorithm multiple
times
yields results that are somewhat worse than those of a single run
with a larger population

Prof. R. Kruse, P. Held EA – Applications 03.06.2013 5 / 21



Migration

one may consider exchanging individuals between the island
populations at certain fixed points in time (not in every
generation)
Migration (Wanderung)
usually no direct recombination of chromosomes from different
islands
after migration: Recombination of genetic material of one island
with another
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Control the migration between islands

Random model:
pairs of islands are chosen randomly, which then exchange some
of their inhabitants
any two island can, in principle, exchange individuals

Network model:
Islands are arranged into a network or graph
Individuals can migrate only between islands that are connected
by an edge in the graph
Along which of the edges individuals are exchanged is determined
randomly.
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Contest model

evolutionary algorithms that are applied on the islands differ in
approaches and/or parameters
population size of an island is increased or decreased according to
the average fitness of its individuals
usually: a lower bound for the population size is set
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Cellular Evolutionary Algorithms
also called: “isolation by distance”

Processors are arranged in a rectangular grid
usually in the shape of a torus in order to avoid boundary effects
Selection and crossover are restricted to adjacent processors (to
those connected by an edge), mutation to single processors
Example: each processor is responsible for one chromosome

• Selection: processor chooses the best chromosome of the (four)
processors adjacent to it (or one of these chromosomes randomly
based on their fitness)

• Crossover: processor then performs crossover of the selected
chromosome with its own and may also mutate the chromosome
(The better child resulting from such a crossover replaces the
chromosome of the processor)

construction of groups of adjacent processors that maintain
similar chromosomes
mitigates the usually destructive effect of the crossover
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Approach of Mühlenbein
Combination of EAs and hill climbing

• every individual is optimized with hill climbing, that is
• random mutations are applied and kept if they are advantageous
• otherwise they are retracted

• hill climbing can be easily parallelized
• individuals search for a crossover partner in their (local)

neighborhood (this requires a distance measure for the individuals
— relates to niche techniques, e.g. power law sharing)

• offspring perform local hill climbing
• individuals of the next generation are selected with a local elite

principle
⇒ best two individuals among the four involved individuals (two

parents and two children) replace the parents
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Random numbers

EAs base in general on random changes of exisiting solution
candidates and selection
all created „Random numbers“ #= really random
created by determinic algorithm: Pseudorandomness

• attempts to use random behaviour of physical processes
numbers with worse properties than deterministic methods

• on top: reducability of simulations with deterministic methods
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Historical
aus [Knuth, 1997]

before 1900: Scientist who needed random numbers drew balls
from a „well shuffled urn“, rolled dices or dealed cards
1927, L. Tippet published a table with ≥ 40000 random numbers
Disadvantages of tables: expensive to create and store
machines to generate random numbers
mechanic methods: error-prone and no reproducability
arithmet. operations on computer: John von Neumann (1946)

• calculate square of the last random number and extract middle
digits

• e.g. 10-place random numbers and last number be 5772156649
• square is 33317792380594909201
• therefore, next number is 7923805949
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Argument against arithmetic methods

Can we call a generated sequence "randomïf every number is
completely determined by its predecessor?

Anyone who considers arithmetic methods of producing random digits
is, of course, in a state of sin. — John von Neumann (1951)

• Answer: sequence is not random, but it seems to be!
• deterministic algorithms generate pseudorandom sequences
• von Neumanns method has some issues:

sequence tends to short periods of repeating numbers
• z.B. bei 4-stelligen Zahlen: 6100, 2100, 4100, 8100, 6100, . . .
• following: methods which are advantageous in comparison to the

von Neumann method
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Generating uniform distributed random numbers

• Creating a sequence of real numbers (uniform-distributed from 0
to 1)

• fixed (floating point) precision actually leads to generating
integers Xn between 0 and m

• fraction Un = Xn/m lies between 0 and 1
• in general: m is word size of the computer w
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The linear-congruential method

• most popular random number generators are special
implementations of [Lehmer, 1951]

• we choose 4 magic integers
m, Modules; 0 < m,
a, Factor; 0 ≤ a < m,
c , Increment; 0 ≤ c < m,

X0, Initial value; 0 ≤ X0 < m
• favored sequence of random numbers 〈Xn〉 by

Xn+1 = (a · Xn + c) mod m, n ≥ 0

• Remainder modm: localisation of a ball on a rotating roulette
wheel

Prof. R. Kruse, P. Held EA – Applications 03.06.2013 15 / 21



The linear-congruential method

• for e.g. m = 10 and X0 = a = c = 7 yields to

〈Xn〉 = 7, 6, 9, 0, 7, 6, 9, 0,

• so, sequence is not always random for all values of m, a, c , X0
• such loops: on all sequences with Xn+1 = f (Xn)

• periodic behaviour
• Objective: useful sequences with a fairly long period
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Favourable choice of parameters
• arbitrary initial value X0
• Module m ≥ 230 or greatest prime number smaller w = 2e

whereby e = # representable bits
⇒ sequence with maximum length
• if m Power of 2: factor a = 2k + 1 whereas 2 ≤ k ≤ w

⇒ period with maximum length
• Increment c is subsidiary if a is well-chosen: but c may not have a

common divisor with m (e.g. c = 1 or c = a)
⇒ avoid multiplication by shift and add operations:

Xn+1 = ((2k + 1) · Xn + 1) mod 2e

• generate at most m/1000 numbers
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Further methods

• square method of R. R. Coveyou: let

X0 mod 4 = 2, Xn+1 = Xn(Xn + 1) mod 2e , n ≥ 0

be
• computable with similar efficiency like linear-congruential method

• Mitchell and Moore (1958) proposed the approach

Xn = (Xn−24 + Xn−55) mod m, n ≥ 55

whereas m is even and X0, . . . , X54 is chosen arbitrarly
• very efficient to implement using a cyclic list
• period of 255 − 1 ⇒ probably best algorithm
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Generating normal-distributed random numbers
Polar method [Box and Muller, 1958]:
let U1, U2 be independent and uniform distributed from [0, 1]
the following random numbers are generated from the same
distribution N(0, 1)

X1 =
√

−2 ln U1 cos 2πU2, X2 =
√

−2 ln U1 sin 2πU2

• Proof: inverse relations are

U1 = e −(X 2
1 + X 2

2 )
2 , U2 = − 1

2π
arctan X2

X1
⇒ multivariate density of X1, X2 is

f (X1, X2) =
1

2π
e −(X 2

1 + X 2
2 )

2
=

1√
2π

e −X 2
1

2 · 1√
2π

e −X 2
2

2 = f (X1) · f (X2)

Prof. R. Kruse, P. Held EA – Applications 03.06.2013 19 / 21



Generating normal-distributed random numbers

Algorithm Polar-method
Output: two independent, normal-distributed random numbers X1, X2

1: do {
2: U1, U2 ← generate two independent random numbers from

U([0, 1])
3: V1 ← 2U1 − 1
4: V2 ← 2U2 − 1
5: S ← V 2

1 + V 2
2

6: } while S < 1.0 and S #= 0
7: X1 ← V1

√
−2 ln S

S

8: X2 ← V2
√

−2 ln S
S

9: return X1, X2
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Random numbers for EA

• reasonable for an object-oriented approach:
one random number generator per individual

• disadvantage: consequences due to randomness cannot be
estimated

⇒ pro optimization method: only one random number generator

• a clearly defined initial value is advisable ⇒ experiments are
reproducable

• system time or last created number as seed should be avoided
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