
Evolutionary Algorithms
Genetic Programming

Prof. Dr. Rudolf Kruse Pascal Held
{kruse,pheld}@iws.cs.uni-magdeburg.de

Otto-von-Guericke University Magdeburg
Faculty of Computer Science

Institute of Knowledge and Language Engineering
Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 1 / 35

Outline

1. Motivation
Genetic Programming
Terminal- and Function Symbols
Symbolic Expressions
Processing Genetic Programs

2. Initialization

3. Genetic Operators

4. Examples

5. Summary and Prospect

Prof. R. Kruse, P. Held EA – Genetic Programming 27. May 2013

Genetic Programming

Genetic programming (GP) is based on the following ideas:
• describing a solution for a problem by some computer program

that is connecting a certain input with certain output

• searching for a matching computer program

• universal way of learning computer programs

• representating programs by parse trees

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 1 / 35

Learning Programs

Many problems can be seen as „learned programs“, e.g.:
• controlling
• designing
• searching
• representing knowledge
• symbolic regression
• induction of decision trees

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 2 / 35

Genetic Programming

representation of candidate solutions
• previously: by chromosomes of fixed length (vector of genes)
• now: by function expressions or programs, i.e.

– complex chromosomes of variable length

technical fundamentals: grammar for describing a language
• choose two sets:

F – set of function symbols and operators
T – set of terminal symbols (constants and variables)

These sets F and T are specific for each problem. They shouldn’t be
too large (thus limiting the search space) but large enough to allow for
finding a solution

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 3 / 35

Examples for Symbol Sets

• example 1: learning a boolean function
– F = {and, or, not, if . . . then . . . else . . . , . . .}
– T = {x1, . . . , xm, 1, 0} bzw. T = {x1, . . . , xm, t, f }

• examle 2: symbolical regression
– regression: finding an approximating function for given data

while minimizing the sum of squared errors
→ method of least squares

– F = {+, −, ∗, /, √ , sin, cos, log, exp, . . .}
– T = {x1, . . . , xm} ∪ IR

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 4 / 35

Closure of F and T

F and T should be closed so there are no program crashes if incorrect
parameter(types) are passed to function symbols.
different strategies can guarantee closure, e.g.

• implementing stable operators instead of instable ones, e.g.
• safe division, giving 0 or a maximum value
• safe root, operating on absolute values
• safe logarithm: ∀x ≤ 0 : log(x) = 0 or similar

• combination of several different function types
• e.g. numerical and boolean values (FALSE = 0, TRUE (= 0)

• implementation of conditional comparators
• e.g. IF x < 0 THEN . . .

• . . .

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 5 / 35

Completeness of F and T

A GP can only solve problems efficiently and effective, if
function- and terminal symbol sets are sufficient/complete to
ensure an appropriate program can be found.

In boolean algebra F = {∧, ¬} and F = {→, ¬} are complete
operator sets, F = {∧} is not.

• general problem of machine learning: feature selection

• finding the smallest sufficient set is (often) NP-hard

• often there are more functions within F than necessary

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 6 / 35

Symbolic Expressions

chromosomes = expressions (composition of elements from
C = F ∪ T and maybe brackets)
restriction to “well-formed“ expressions
recursive definition (prefix notation):

• Symbols for constants and variables are symbolic expressions.
• If t1, . . . , tn are symbolic expressions, and f ∈ F is an (n-ary)

operator symbol, then (ft1 . . . tn) is a symbolic expression, too.
• No other string is called symbolic expression.

examples:
• „(+ (∗ 3 x) (/ 8 2))“ is a symbolic expression

Lisp- or Scheme-like notation, means: 3 · x + 8
2

• „2 7 ∗ (3 /“ is not a symbolic expression

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 7 / 35

Implementation

• implementation of GPs: represent symbolic expressions by
so-called parse trees
(parse trees are used by parsers to represent and optimize
arithmetical expressions)

symbolic expression:
(+ (∗ 3 x) (/ 8 2))

parse tree:

Within Lisp/Scheme expressions are nested lists:
first list element is a function symbol or operator,
following elements are arguments or operators.

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 8 / 35

Processing Genetic Programs

• generate an initialization population of random expressions
• evaluate these expressions by calculating their fitness

learning boolean functions: ratio of correct output for all inputs
given to a sample
symbolic regression: sum of squared errors of the given
measurement points
1-D: data (xi , yi), i = 1, . . . , n, fitness f (c) = ∑n

i=1(c(xi) − yi)2

• selection with one of the discussed procedures
• application of genetic operators, usually only crossover

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 9 / 35

Outline

1. Motivation

2. Initialization
„grow“
„full“
„ramped half-and-half“

3. Genetic Operators

4. Examples

5. Summary and Prospect

Prof. R. Kruse, P. Held EA – Genetic Programming 27. May 2013

Initialization of a GP-Population

parameter for the process of creation:
• maximal nesting (maximal tree height) dmax or
• maximal number of tree nodes nmax

three different ways for initialization [Koza, 1992]:
1. grow
2. full
3. ramped half-and-half

• as with EAs duplicates can be avoided
• call to grow and full : initialize(root, 0)

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 10 / 35

„grow“

Algorithm 1 initialize-grow
Input: node n, depth d, maximumDepth dmax
1: if d = 0 {
2: n ← draw a node from F uniformly distributed
3: } else { if d = dmax {
4: n ← draw a node from T uniformly distributed
5: } else {
6: n ← draw a node from F ∪ T uniformly distributed
7: }
8: if n ∈ F {
9: for each c ∈ arguments of n {

10: initialize-grow(c, d + 1, dmax)
11: }
12: } else {
13: return
14: }

• generates trees of irregular shape
• nodes: randomly drawn from F and T (except root)
• branch with terminal symbol ends prior to reaching maximum

depth, tooProf. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 11 / 35

„full“

Algorithm 2 initialize-full
Input: nodes n, depth d, maximum depth dmax
1: if d ≤ dmax {
2: n ← draw nodes from F uniformly distributed
3: for each c ∈ arguments of n {
4: initialize-full(c, d + 1, dmax)
5: }
6: } else {
7: n ← draw nodes from T uniformly distributed
8: }
9: return

generates balanced trees
nodes: randomly drawn only from F (except at maximum depth)
at maximum depth: randomly draw only from T

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 12 / 35

„ramped-half-and-half“

Algorithm 3 initialize-ramped half-and-half
Input: maximum depth dmax, population size µ (even multiple of dmax)
1: P ← ∅
2: for i ← 1 . . . dmax {
3: for j ← 1 . . . µ/(2 · dmax) {
4: P ← P ∪ initialize-full(root, 0, i)
5: P ← P ∪ initialize-grow(root, 0, i)
6: }
7: }

combination of grow and full methods
• generates even number of grown and full trees with all possible

depths between 1 and dmax
large variation of trees and shapes

• suitable for GP (see evolutionary principles)
Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 13 / 35

Outline

1. Motivation

2. Initialization

3. Genetic Operators
Crossover
Mutation

4. Examples

5. Summary and Prospect

Prof. R. Kruse, P. Held EA – Genetic Programming 27. May 2013

Genetic Operators

• usually initialized population has no good fitness

• the evolutionary progress changes population via genetic operators

• for GPs: many different genetic operators

• the 3 most important operators are:
crossover,
mutation and
clonale reproduction (duplication of an individual)

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 14 / 35

Crossover
• exchanging two subexpressions (subtrees)

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 15 / 35

Mutation

exchanging a subexpression (subtree) by randomly generated one:

• if possible, exchange only small subtrees
• with very large population: sufficiently large stock of “genetic

material“, so often only crossover is used and no mutation

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 16 / 35

Advantage of Crossover
crossover is more powerful with GPs than with vectors:
crossover of identical parental programs might create different
individuals

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 17 / 35

Outline

1. Motivation

2. Initialization

3. Genetic Operators

4. Examples
11-Multiplexer
Stimulus-Response-Agent

5. Summary and Prospect

Prof. R. Kruse, P. Held EA – Genetic Programming 27. May 2013

Example: 11-Multiplexer

learning a boolean 11-multiplexer [Koza, 1992]
• multiplexer with 8 data- and 3 address lines

(state of the address lines indicates active
data line)

• 211 = 2048 possible inputs with 1
corresponding address each

• choose sets of symbols:
• T = {a0, a1, a2, d0, . . . , d7}
• F = {and, or, not, if}

• fitness function: f (s) = 2048 −
∑2048

i=1 ei ,
with ei being the error for the i-th input

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 18 / 35

Example: 11-Multiplexer

typical values:
popultaion size |P| = 4000
depth of the parse tree on initialization: 6, maximal depth: 17
fitness values in initialization population between 768 and 1280,
with a mean of 1063
(with random output: about half of it is actually right, thus the
expected value = 1024)
23 expressions with a fitness of 1280, one of them represents a
3-Multiplexer: (if a0 d1 d2)
fitness proportional selection

• 90% (3600) of all individuals are used for crossover
• 10% (400) are taken to the next generation unalteredly

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 19 / 35

Example: 11-Multiplexer
• after 9 generations: solution with fitness of 2048

if

a0 if

a2 if

a1 d7 if

a0 d5 d0

if

a0 if

a1 if

a2 d7 d3

d1

d0

if

a2 if

a1 d6 d4

if

a2 d4 if

a1 d2 if

a2 d7 d0

rather complicated for humans to understand
can be simplified by editing

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 20 / 35

Editing
asexual operations on one individual
serves simplification through general and specific rules
general: if function without side effects on constant arguments
occurs within the tree, then evaluate this function and replace the
subtree with the result
specific: boolean algebra (in this case):

¬(¬A) → A, (A ∧ A) → A, (A ∨ A) → A
de Morgan’s Laws, etc.

• transformation: e.g. as an operator during GP-search

reduction of bloated individuals usually is a trade-off with
diversity of the population
usually: transformation only for result interpretation

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 21 / 35

11-Multiplexer

best solution truncated by editing:

if

a0 if

a2 if

a1 d7 d5

if

a1 d3 d1

if

a2 if

a1 d6 d4

if

a1 d2 d0

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 22 / 35

Example: 11-Multiplexer

best individual in 9th generation reaches best fitness
question: What is the probability for having such an occurence
during random search?
estimated number of all boolean functions:

• How many boolean functions are there for 11 variables?
• Why is this value not sufficient for GPs?
• How many possibilities are there without maximum tree depth?

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 23 / 35

Stimulus-Response-Agent
Lerning a Robot Control System [Nilsson, 1998]

Consider Stimulus-Response-Agenten in Grid-World:
• 8 sensors s1, . . . , s8 yield state of the neighboring fields
• 4 actions: go east, go north, go west, go south
• direct deduction of the actions from s1, . . . , s8, no

memory
task: Circulate an object within a room,
or follow the walls of the room!

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 24 / 35

Stimulus-Response-Agent
symbol sets:

• T = {s1, . . . , s8, east, north, west, south, 0, 1}
• F = {and, or, not, if}

complete functions, e.g. by

(and x y) =
{

false, falls x = false,
y , else.

(note: this way a boolean operation can yield an action, too)
population size |P| = 5000, tournament selection with
tournament size 5
generating the subsequent population

• 10% (500) candidate solutions are taken to the next
generation unchanged

• 90% (4500) candidate solutions are generated by crossover
• <1% candidate solutions are mutated

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 25 / 35

Stimulus-Response-Agent
optimal solution created by hand:

if

and

or

s2 s3

not

s4

east if

and

or

s4 s5

not

s6

south if

and

or

s6 s7

not

s8

west north

It is very unlikely to get exactly this solution.
To keep chromosomes simple, it might be useful to use a penalty
term as a measure of the expressions’ complexity.

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 26 / 35

Stimulus-Response-Agent

choose solution candidates by using a test space:
• perfectly operating control unit would

make the agent pass the grey labelled
fields

• initial field is chosen randomly
• if the action cannot be performed, or if a

boolean value is returned, the execution
is quit

Agents will be put to 10 different initial fields, and their actions
(controlled by the corresponding cromosome) are observed.
Total number of visited gray fields is fitness. (maximum fitness:
10 · 32 = 320)

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 27 / 35

Following the Wall
Most of the 5000 programs of generation 0 are useless:

(and sw ne)
• just evaluates and terminates
• fitness of 0

(or east west)
• sometimes yields west thus running one step west
• sometimes ends up besides a wall
• fitness of 5

best program achieves fitness of 92
• difficult for testing, because of redundant operators
• path is visualized with 2 differend initial fields on the following slide

(east till wall, then north till east or west possible, then trapped in
the upper left corner)

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 28 / 35

best individual of generation no. 0

(and (not (not (if (if (not s1)
(if s4 north east)
(if west 0 south))

(or (if s1 s3 s8) (not s7))
(not (not north)))))

(if (or (not (and (if s7 north s3)
(and south 1)))

(or (or (not s6) (or s4 s4))
(and (if west s3 s5)

(if 1 s4 s4))))
(or (not (and (not s3)

(if east s6 s2)))
(or (not (if s1 east s6))

(and (if s8 s7 1)
(or s7 s1))))

(or (not (if (or s2 s8)
(or 0 s5)
(or 1 east)))

(or (and (or 1 s3)
(and s1 east))

(if (not west)
(and west east)
(if 1 north s8))))))

best individual of
generation no. 0:

(movements from 2
different initial

positions)

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 29 / 35

best individual of generation no. 2:

(not (and (if s3
(if s5 south east)
north)

(and not s4)))

best individual of generation no. 6:
(if (and (not s4)

(if s4 s6 s3))
(or (if 1 s4 south)

(if north east s3))
(if (or (and 0 north)

(and s4 (if s4
(if s5 south east)
north)))

(and s4 (not (if s6 s7 s4)))
(or (or (and s1 east) west) s1)))

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 30 / 35

best individual of generation no. 10:

(if (if (if s5 0 s3)
(or s5 east)
(if (or (and s4 0)

s7)
(or s7 0)
(and (not (not (and s6 s5)))

s5)))
(if s8

(or north
(not (not s6)))

west)
(not (not (not (and (if (not south)

s5
s8)

(not s2))))))

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 31 / 35

development of fitness

 0
 50

 100
 150
 200
 250
 300
 350

 0 1 2 3 4 5 6 7 8 9 10

fit
ne

ss

generation number
development of fitness during learning process

(best individual of the current generation)
Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 32 / 35

Outline

1. Motivation

2. Initialization

3. Genetic Operators

4. Examples

5. Summary and Prospect
Problem of Introns
Extensions

Prof. R. Kruse, P. Held EA – Genetic Programming 27. May 2013

Problem of Introns

individuals are growing in size with progressing generation count
• reason: so-called Introns:

• Biology: some strips of DNA carry no information
• inactive (maybe outdated) strips within one gene that serves no

function (junk DNA)
• e.g. arithmetical expressions a + (1 − 1) is easy to simplify
• in if 2 < 1 then ...else ... the “then“-branch is useless
• changes by operators within active parts of the individual often

cause negative effects
• changes within introns often have no effect

⇒ leads to synthetical expansion of the individuals
⇒ portion of active program code decreases - optimization stagnates

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 33 / 35

Preventing Introns

modify operators:
• breeding recombination generates many children from two

parents by usnig different parameters, with only the best one going
on into the next generation

• intelligent recombination chooses crossover points selectively

• continuous slight changes of the evaluation function can
change constraints thus inactive subprograms (introns) might
become active again ⇒ works only with non-trivial introns being
created by non-changing values

penalty of large individuals
discrimination during selection

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 34 / 35

Extensions

Encapsulation of automatically defined functions
• potentially promising subexpressions should be protected from

being destroyed by crossover or manipulation
• a new function is defined for subexpressions (of a good

chromosome), and it’s symbol is added to the set F
• number of arguments of the new function = number of (different)

arguments of the subtree

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 35 / 35

Literatur zur Lehrveranstaltung I

Banzhaf, W., Nordin, P., Keller, R. E., and Francone, F. D.
(1998).
Genetic Programming — An Introduction: On the Automatic
Evolution of Computer Programs and Its Applications.
Morgan Kaufmann Publisher, Inc. and dpunkt-Verlag, San
Francisco, CA, USA and Heidelberg, Germany.
Koza, J. R. (1992).
Genetic Programming: On the Programming of Computers by
Means of Natural Selection.
MIT Press, Boston, MA, USA.
Nilsson, N. J. (1998).
Artificial Intelligence: A New Synthesis.
Morgan Kaufmann Publishers, Inc., San Francisco, CA, USA.

Prof. R. Kruse, P. Held EA – Genetic Programming 27/05/2013 1

