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Why Do Evolutionary Algorithms Work?

Approach from [Holland, 1975]:

• consider schemata (that is, partly specified binary chromosomes)

• investigate how the number of chromosomes matching a schema
evolve over several generations

Objective: rough stochastic statement that describes how a genetic
algorithm explores the search space
To keep things simple: Confinement to

• bit strings (chromosomes of zero and one) of a fixed length L

• fitness-proportionate selection (Roulette-wheel selection)

• bit-mutation (using the mutation probability pm)

• one point-crossover
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Algorithm 1 Genetic Algorithm
Input: target function F

1: t ← 0
2: P(t)← create population with µ individuals /* µ must be even */
3: evaluate P(t) with F

4: while termination criterion is not fulfilled {
5: P′(t)← select µ individuals A(1), . . . , A(µ) from P(t) with roulette wheel selection

6: P′′ ← ∅
7: for i ← 1, . . . ,

µ

2
{

8: u ← choose random number from U([0, 1))
9: if u ≤ px { /* recombin. prob. px */

10: B, C ← one-point crossover(A(2i−1), A(2i))
11: } else {
12: B ← A(2i−1)

13: C ← A(2i)

14: }
15: B ← Bit-Mutation(B)
16: C ← Bit-Mutation(C)
17: P′′ ← P′′ ∪ {B, C}
18: }
19: evaluate P′′ with F

20: t ← t + 1
21: P(t)← P′′

22: }
23: return best individual from P(t)



Schemata

Definition (Schema)

A schema h is a character string of length L over the
alphabet {0, 1, ∗}, that is h ∈ {0, 1, ∗}L.
The character ∗ is called wildcard character or Don’t-Care-Symbol.

Definition (Matching)

A chromosome c ∈ {0, 1}L matches a schema h ∈ {0, 1, ∗}L, written
as: c ⊳ h, if and only if it coincides with h at all positions where h is 0
or 1.
Positions at which h is ∗ are not taken into account

Prof. R. Kruse, P. Held EA – The Schema Theorem 13.05.2013 3 / 31

mailto:kruse@iws.cs.uni-magdeburg.de
mailto:pheld@ovgu.de


Schemata: an Illustration

h = **0*11*10* schema of length 10
c1 = 1100111100 matches schema h, that is c1 ⊳ h

c2 = 1111111111 does not match h, that is c2 6⊳ h

• there are 2L possible chromosomes and 3L schemata

• every chromosome matches
∑L

i=0

(L
i

)
= 2L schemata

• population of size µ can match close to µ2L different schemata
(usually a lot smaller due to similar chromosomes)

• observation of a chromosome =̂ Observation of many schemata
at the same time

• implicit parallelism
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Schemata: Hyperplanes

Geometrically, a schema can be seen as describing a hyperplane in a
unit hypercube (but only hyperplanes that are parallel or orthogonal to
the sides of the hypercube).

011 111

001 101

010 110

000 100

*11

0*1

11*

00*

*00

1*0

Examples:
*00 =̂ edge connecting the corners 000 and 100 (bottom front)
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Schemata: Domain of the Fitness Function

given: real function f : x ∈ [0, 1] → IR

suppose: binary enconding of x (no Gray code)

schema =̂ „strip pattern“ (periodical Fct.) in dom(f ) = [0, 1]

0 11
8

2
8

3
8

4
8

5
8

6
8

7
8

schema 0**...*

0 11
8

2
8

3
8

4
8

5
8

6
8

7
8

schema **1*...*

schemata with Gray-Encoding: see also exercise sheet
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Influence of Selection

• Examination how selection and applying genetic operators
(Mutation und Crossover) influence the chromosomes

• Tracing the breeding of chromosomes which match the schema

• Effect of selection: what fitness the chromosomes have that
match a schema h?
Approach: defining the mean relative fitness of chromosomes

Definition (Mean Relative Fitness)

The mean relative fitness of chromosomes that match schema h in
the population P(t) is

frel(h) =

∑
A∈P(t),A.G⊳h A.Frel

|{A ∈ P(t) | A.G ⊳ h}|
.
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Influence of Selection

The average number of chromosomes in the next generation of a
Schema h matching chromosome is

frel(h) · |P|

The expected number of chromosomes that match schema h after
selection, is

(Zahl vorher passender Chromosomen) · frel(h) · |P|
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Influence of Selection

Further observations of the relative fitness of a schema:

frel(h) · |P| =

∑
A∈P(t),A.G⊳h A.Frel(c)

|{A ∈ P(t) | A.G ⊳ h}|
· |P|

=

∑
A∈P(t),A.G⊳h

A.F∑
B∈P(t)

B.F

|{A ∈ P(t) | A.G ⊳ h}|
· |P|

=

∑
A∈P(t),A.G⊳h

A.F

|{A∈P(t) | A.G⊳h}|∑
B∈P(t)

B.F

|P|

=
ft(h)

ft

ft(h) average fitness of the chromosomes matching h in P(t)
ft average fitness of all chromosomes of the t-th generation

The average number of offsprings can be written by the ratio of the
average fitness of a schema and the total average fitness.
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Influence of Mutation

We need measures with which we can compute probabilities that the
match to a schema is preserved

Definition (Order (for 1-Bit- and Bit-Mutation))

The order of a schema h is the number of zeroes and ones in h, that
is ord(h) = #0 + #1 = L − #∗ (#: number of occurences of).

For instance: ord(**0*11*10*) = 5

Prof. R. Kruse, P. Held EA – The Schema Theorem 13.05.2013 10 / 31

mailto:kruse@iws.cs.uni-magdeburg.de
mailto:pheld@ovgu.de


Influence of Mutation

Match to schema h is preserved...

• with Bit-Mutation using prob. (1 − pm)ord(h)

• with 1-Bit-Mutation with
Prob. 1 − ord(h)

L
, if bit is inverted,

Prob. 1 − ord(h)
2L

, if new bit is determined by random

Explaination:

• Bit-Mutation inverts a bit with prob. pm and with prob. (1 − pm)
otherwise

• 1-Bit-Mutation chooses one of the L genes of a chromosome of
length L with same probability
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Influence of Crossover

Definition (Defining Length (for one-point crossover))

The defining length of a schema h is the difference between the
position of the last 0/1 and the first 0/1 in h.

Example: dl(**0*11*10*) = 9 − 3 = 6
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Influence of Crossover

• One-point crossover: probability that the cut point splits a
chromosome in such a way that some of the fixed characters of a
schema lie on one side of the cut and some on the other is dl(h)

L−1

Explaination:

• One-point crossover: L − 1 possible cut points on chromosomes of
length L (all equally likely)

• with dl(h) of these cut points, genes specified by the schema are
exchanged between individuals

• matching might (or might not) get lost
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Definitions

Definition (expected value of matching chromosomes)

N(h, t) is the expected value of the number of chromosomes that
match the schema h during the t-th generation.

Definition (expected value after selection)

N(h, t + ∆ts) is the expected value of the number of chromosomes
that match the schema h during the t-th generation after selection.
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Definitions

Definition (expected value after crossover)

N(h, t + ∆ts + ∆tx ) is the expected value of the number of
chromosomes that match the schema h during the t-th generation
after selection and crossover.

Definition (expected value after mutation)

N(h, t + ∆ts + ∆tx + ∆tm) = N(h, t + 1) is the expected value of the
number of chromosomes that match the schema h during the t-th
generation after selection, crossover and mutation (and thus during
the t + 1-th generation).

• searched: relation between N(h, t) and N(h, t + 1)
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Selection

approach: analyze the impact of selection, crossover and mutation
step by step, based on average fitness, order and defining length of a
schema.

• impact of selection: can be described by average fitness

N(h, t + ∆ts) = N(h, t) · frel(h) · |P|

N(h, t) · frel(h) probability that chosen chromosome matches
schema h

frel(h) · |P| average number of offsprings for one chromosome
matching schema h

• note: relative fitness frel(h) cannot be determined exactly, as the
number chromosomes matching schema h is only an
approximation
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Crossover
impact of Crossover: described by

N(h, t + ∆ts + ∆tx ) = (1 − px ) · N(h, t + ∆ts)︸ ︷︷ ︸
EA

+ px · N(h, t + ∆ts) · (1 − ploss)︸ ︷︷ ︸
EB

+ C

px probability of crossover
ploss probability of a chromosome matching schema h losing its mat-

ching during 1-point-crossover
EA expected value of the number of chromosomes matching sche-

ma h and not taking part in crossover
EB expected value of the number of chromosomes taking part in

crossover without losing its matching to schema h

C gained number of chromosomes matching schema h, won by...
(see exercise)
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Considering the Probability ploss

examples: h = **0*|1*1* **0*1*1* = h

h ⊲ c1 = 0000|1111 → 00000000 = c ′1 6⊳ h

h 6 ⊲ c2 = 1111|0000 → 11111111 = c ′2 6⊳ h

h = **0*|1*1* **0*1*1* = h

h ⊲ c1 = 0000|1111 → 00001010 = c ′1 ⊳ h

h ⊲ c2 = 1101|1010 → 11011111 = c ′2 ⊳ h

thus:

ploss ≤
dl(h)

L − 1︸ ︷︷ ︸
PrA=p∗

x (h)

·




1 −
N(h, t + ∆ts)

|P|︸ ︷︷ ︸
PrB




PrA probability of cut position between fixed genes
PrB probability of 2nd chromosome matching schema h

quesion: why does only ≤ hold, and = not? (see exercise)

Prof. R. Kruse, P. Held EA – The Schema Theorem 13.05.2013 18 / 31

mailto:kruse@iws.cs.uni-magdeburg.de
mailto:pheld@ovgu.de


Crossover
substitution of the expression for ploss yields:

N(h, t + ∆ts + ∆tx )

≥ (1 − px ) · N(h, t + ∆ts)

+ px · N(h, t + ∆ts) ·

(
1 −

dl(h)

L − 1
·

(
1 −

N(h, t + ∆ts)

|P|

))

= N(h, t + ∆ts)

(
1 − px + px ·

(
1 −

dl(h)

L − 1
·

(
1 −

N(h, t + ∆ts)

|P|

)))

= N(h, t + ∆ts) ·

(
1 − px

dl(h)

L − 1
·

(
1 −

N(h, t + ∆ts)

|P|

))

(∗)
= N(h, t) · frel(h) · |P| ·

(
1 − px

dl(h)

L − 1
· (1 − N(h, t) · frel(h))

)

step (∗): twice use of the previously derived relation
N(h, t + ∆ts) = N(h, t) · frel(h) · |P|
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Mutation

impact of binary mutation: described by order

N(h, t + 1) = N(h, t + ∆ts + ∆tx + ∆tm)

= N(h, t + ∆ts + ∆tx ) · (1 − pm)ord(h)

explaination: in order to not lose matching, none of the ord(h) genes
fixed in schema h must be altered

alternative models possible, e.g.:
exactly one bit altered per chromosome ⇒ 1 bit mutation

N(h, t + 1) = N(h, t + ∆ts + ∆tx + ∆tm)

= N(h, t + ∆ts + ∆tx ) ·

(
1 −

ord(h)

L

)
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The Schema Theorem
including binary mutation, following holds:

N(h, t + 1) ≥ frel(h) · |P| ·

(
1 − px

dl(h)

L − 1
· (1 − N(h, t) · frel(h))

)

· (1 − pm)ord(h) · N(h, t)

substitution of the fitness relations yields

N(h, t + 1) ≥
ft(h)

ft

(
1 − px

dl(h)

L − 1

(
1 −

N(h, t)

|P|
·

ft(h)

ft

))

· (1 − pm)ord(h) · N(h, t)

interpretation: schemata with

• a score above average,
• short defining length and
• low order

do breed very heavily (approx. exponential)
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Building Block Hypothesis

• a GA explores Ω particularly well in hyperplanes (schemata with
good average fitness, low defining length and low order)

• chromosomes breed particularly well in these regions

• these schemata are called building blocks,
thus the name Building Block Hypothesis

• note: this form of this hypothesis only holds for bit sequences,
fitness proportional selection, binary mutation and 1 point
crossover

• with other genetic operations the blocks can possibly be described
by other characteristics

• a high average finess is always a good characteristic, as every
selection method prefers chromosomes with high fitness
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Building Block Hypothesis

GA operates best, if short schemes with low order (so-called blocks)
are used to create schemata with higher Fitness.

• but: combining blocks leads to schemata of higher order and
higher defining length of blocks

• thus new building blocks are more likely to be destroyed by an
operation

• operation methods of GAs still aren’t studied and explored
sufficiently.
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Summary

Schema Theorem only holds for one schema independently of other
schemata within the population.

• other schemata will breed, too

• given time: convergence of the population, thus decreasing
evolutionary pressure

• relative fitness of a schema converges towards 1/|P| (same fitness
for all individuals)

• finally: expected number of copies decreases, because of genetic
operations
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Summary

• implicit assumption: only little interdependencies between genes
(low epistasis), thus fitness of chromosomes that are matching
the same scheme is quite similar

• implicit assumption: on chromosome, interacting genes are
located close to each other for small blocks

• this argument only concerns the restriction to 1 point crossover
(not the approach itself)

• other operation specific measures instead of defining length
possible

Prof. R. Kruse, P. Held EA – The Schema Theorem 13.05.2013 25 / 31

mailto:kruse@iws.cs.uni-magdeburg.de
mailto:pheld@ovgu.de


Outline

1. Motivation

2. Proving the Schema Theorem

3. Building Block Hypothesis

4. Summary

5. No Free Lunch Theorem
Technical Definitions
The Theorem
Consequences and Summary

Prof. R. Kruse, P. Held EA – The Schema Theorem 13. Mai 2013

mailto:kruse@iws.cs.uni-magdeburg.de
mailto:pheld@ovgu.de


No Free Lunch Theorem
Preconditions

search space Ω

F space of all optimization problems (objective function)

Ω and F are alike

lack of knowledge regarding optimization problem
• uniform distribution among all these problems
• every problem F ∈ F occurs with a probability of 1

|F|

• further simplifications
• ∀F ∈ F F : Ω 7→ IR holds
• ∀F ∈ F are defined on the same search space Ω

• Let A be the set of all optimization algorithms operating on Ω
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No Free Lunch Theorem
Characterization of an algorithm

• which individuals are considered in which order on F ∈ F

• only n evaluations possible for optimization
• optimizationF ,n : A 7→ Ωn

• with every optimization the algorithm assesses an individual 1x

⇒ optimizationF ,n(Alg) contains n different individuals in total

• let every algorithm Alg be deterministically

⇒ optimizationF ,n(Alg) unique, too

For a problem F ∈ F , an optimization problem Alg ∈ A and n ∈ IN:

optimizationF ,n(Alg) = (y1, . . . , yn) ∈ Ωn

with yi 6= yj for i 6= j and yk being the individual, which analyzes Alg
with F as k-th element.
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comparison of Alg1, Alg2 ∈ A

• via performance schemata QuAlg (quality of an algorithm)
• defined with optimizationF ,n(Alg) = (y1, . . . , yn) by qn : IR

n 7→ IR

as
QuAlgF ,n(Alg) = qn (F (y1), . . . , F (yn))

• e.g. average / best goodness or
• number of needed evaluations until optimum is reached

• expected performance E of the first n evaluations of Alg on an
arbitrary problem

E
[
QuAlgF ,n(Alg) | F ∈ F

]
=

1

#F

∑

F∈F

QuAlgF ,n(Alg)

⇒ average on all possible problems
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No Free Lunch

Theorem (No free lunch)

For two algorithms Alg1, Alg2 ∈ A and the class of all problems F the

following applies to a performance schema QuAlg:

E
[
QuAlgF ,n(Alg1) | F ∈ F

]
= E

[
QuAlgF ,n(Alg2) | F ∈ F

]
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Consequences

no algorithm is superior to all others on average

if there was an algorithm superior on F ′ ⊂ F , thus

E
[
QuAlgF ,n(Alg1) | F ∈ F ′

]
< E

[
QuAlgF ,n(Alg2) | F ∈ F ′

]

• then it immediately follows that

E
[
QuAlgF ,n(Alg1) | F ∈ F \ F ′

]
> E

[
QuAlgF ,n(Alg2) | F ∈ F \ F ′

]

• for every algorithm: ∃ niche within the space of all problems which
it is particularly good for

• application: which algorithm to use for which problem?
• research: which class of problems is best for a particular algorithm?

Prof. R. Kruse, P. Held EA – The Schema Theorem 13.05.2013 30 / 31

mailto:kruse@iws.cs.uni-magdeburg.de
mailto:pheld@ovgu.de


Summary

if there is no previous knowledge regarding the problem

⇒ expected results of an EA not better than those of any other
method

if there is knowledge regarding the problem
• e.g. assumptions about the goodness space

⇒ general application of certain algorithms is suggested

knowledge regarding structure of the problem should influence the
choice or design of an optimization algorithm
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