

Evolutionary Algorithms The Schema Theorem, No Free Lunch Theorem

Prof. Dr. Rudolf Kruse Pascal Held

{kruse,pheld}@iws.cs.uni-magdeburg.de
 Otto-von-Guericke University Magdeburg
 School of Computer Science
 Department of Knowledge and Language Processing

Prof. R. Kruse, P. Held

EA – The Schema Theorem

Outline

1. Motivation

Schemata Influence of Selection Influence of Mutation Influence of Crossover

2. Proving the Schema Theorem

3. Building Block Hypothesis

4. Summary

5. No Free Lunch Theorem

Why Do Evolutionary Algorithms Work?

Approach from [Holland, 1975]:

- consider schemata (that is, partly specified binary chromosomes)
- investigate how the number of chromosomes matching a schema evolve over several generations

Objective: rough stochastic statement that describes how a genetic algorithm explores the search space To keep things **simple**: Confinement to

- bit strings (chromosomes of zero and one) of a fixed length L
- fitness-proportionate selection (Roulette-wheel selection)
- bit-mutation (using the mutation probability p_m)
- one point-crossover

Algorithm 1 Genetic Algorithm

Input: target function F 1: $t \leftarrow 0$ 2: $P(t) \leftarrow$ create population with μ individuals /* μ must be even */ 3: evaluate P(t) with F 4: **while** termination criterion is not fulfilled { $P'(t) \leftarrow$ select μ individuals $A^{(1)}, \ldots, \tilde{A}^{(\mu)}$ from P(t) with roulette wheel selection 5: P'' ← Ø 6: 7: for $i \leftarrow 1, \ldots, \frac{\mu}{2}$ { 8: $u \leftarrow$ choose random number from U([0,1))/* recombin. prob. p_x */ 9: if $u < p_{v}$ $B, C \leftarrow one-point crossover(A^{(2i-1)}, A^{(2i)})$ 10: 11: } else { $B \leftarrow A^{(2i-1)}$ 12: $C \leftarrow A^{(2i)}$ 13 14: 15: $B \leftarrow Bit-Mutation(B)$ 16[.] $C \leftarrow Bit-Mutation(C)$ 17: $P'' \leftarrow P'' \cup \{B, C\}$ 18: 19. evaluate P'' with F 20: $t \leftarrow t+1$ 21. $P(t) \leftarrow P''$ 22: } 23: **return** best individual from P(t)

Schemata

Definition (Schema)

A schema *h* is a character string of length *L* over the alphabet $\{0, 1, *\}$, that is $h \in \{0, 1, *\}^{L}$. The character * is called wildcard character or Don't-Care-Symbol.

Definition (Matching)

A chromosome $c \in \{0,1\}^L$ matches a schema $h \in \{0,1,*\}^L$, written as: $c \triangleleft h$, if and only if it coincides with h at all positions where h is 0 or 1.

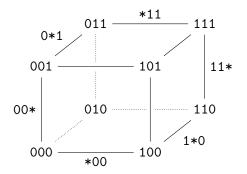
Positions at which h is * are not taken into account

Schemata: an Illustration

- h = **0*11*10* schema of length 10
- $c_1 =$ 1100111100 matches schema h, that is $c_1 \triangleleft h$
- $c_2 =$ 1111111111 does not match h, that is $c_2 \not \leq h$
 - there are 2^L possible chromosomes and 3^L schemata
 - every chromosome matches $\sum_{i=0}^{L} {L \choose i} = 2^{L}$ schemata
 - population of size μ can match close to $\mu 2^L$ different schemata (usually a lot smaller due to similar chromosomes)
 - observation of a chromosome $\widehat{=}$ Observation of many schemata at the same time
 - implicit parallelism

Schemata: Hyperplanes

Geometrically, a schema can be seen as describing a hyperplane in a unit hypercube (but only hyperplanes that are parallel or orthogonal to the sides of the hypercube).

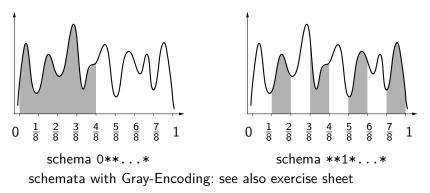


Examples:

*00 $\hat{=}$ edge connecting the corners 000 and 100 (bottom front)

Schemata: Domain of the Fitness Function

given: real function $f : x \in [0, 1] \rightarrow \mathbb{R}$ suppose: binary enconding of x (no Gray code) schema $\hat{=}$ "strip pattern" (periodical Fct.) in dom(f) = [0, 1]



Influence of Selection

- Examination how **selection** and applying **genetic operators** (Mutation und Crossover) influence the chromosomes
- Tracing the breeding of chromosomes which match the schema
- Effect of selection: what fitness the chromosomes have that match a schema h?
 Approach: defining the mean relative fitness of chromosomes

Definition (Mean Relative Fitness)

The **mean relative fitness** of chromosomes that match schema h in the population P(t) is

$$f_{\mathsf{rel}}(h) = \frac{\sum_{A \in P(t), A.G \triangleleft h} A.F_{\mathsf{rel}}}{|\{A \in P(t) \mid A.G \triangleleft h\}|}.$$

Influence of Selection

The average number of chromosomes in the next generation of a Schema h matching chromosome is

 $f_{\mathsf{rel}}(h) \cdot |P|$

The expected number of chromosomes that match schema h after selection, is

(Zahl vorher passender Chromosomen) $\cdot f_{rel}(h) \cdot |P|$

Influence of Selection

Further observations of the relative fitness of a schema:

$$\begin{aligned} F_{\text{rel}}(h) \cdot |P| &= \frac{\sum_{A \in P(t), A.G \triangleleft h} A.F_{\text{rel}}(c)}{|\{A \in P(t) \mid A.G \triangleleft h\}|} \cdot |P| \\ &= \frac{\sum_{A \in P(t), A.G \triangleleft h} \frac{A.F}{\sum_{B \in P(t)} B.F}}{|\{A \in P(t) \mid A.G \triangleleft h\}|} \cdot |P| \\ &= \frac{\frac{\sum_{A \in P(t), A.G \triangleleft h} A.F}{|\{A \in P(t) \mid A.G \triangleleft h\}|}}{\frac{\sum_{B \in P(t)} B.F}{|P|}} = \frac{\overline{f_t(h)}}{\overline{f_t}} \end{aligned}$$

 $\overline{f_t(h)}$ average fitness of the chromosomes matching h in P(t) $\overline{f_t}$ average fitness of all chromosomes of the *t*-th generation The average number of offsprings can be written by the ratio of the average fitness of a schema and the total average fitness.

Influence of Mutation

We need measures with which we can compute probabilities that the match to a schema is preserved

Definition (Order (for 1-Bit- and Bit-Mutation))

The **order** of a schema *h* is the number of zeroes and ones in *h*, that is ord(h) = #0 + #1 = L - #* (#: number of occurences of).

For instance: ord(**0*11*10*) = 5

Influence of Mutation

Match to schema h is preserved...

- with Bit-Mutation using prob. $(1 p_m)^{\operatorname{ord}(h)}$
- with 1-Bit-Mutation with Prob. $1 - \frac{\operatorname{ord}(h)}{L}$, if bit is inverted, Prob. $1 - \frac{\operatorname{ord}(h)}{2L}$, if new bit is determined by random

Explaination:

- Bit-Mutation inverts a bit with prob. p_m and with prob. $(1 p_m)$ otherwise
- 1-Bit-Mutation chooses one of the *L* genes of a chromosome of length *L* with same probability

Influence of Crossover

Definition (Defining Length (for one-point crossover))

The **defining length** of a schema h is the difference between the position of the last 0/1 and the first 0/1 in h.

Example: dl(**0*11*10*) = 9 - 3 = 6

Influence of Crossover

 One-point crossover: probability that the cut point splits a chromosome in such a way that some of the fixed characters of a schema lie on one side of the cut and some on the other is dl(h) <u>I-1</u>

Explaination:

- One-point crossover: L 1 possible cut points on chromosomes of length L (all equally likely)
- with dl(h) of these cut points, genes specified by the schema are exchanged between individuals
- matching might (or might not) get lost

Outline

1. Motivation

2. Proving the Schema Theorem

- Selection Crossover Mutation The Schema Theorem
- 3. Building Block Hypothesis
- 4. Summary

5. No Free Lunch Theorem

Definitions

Definition (expected value of matching chromosomes)

N(h, t) is the expected value of the number of chromosomes that match the schema h during the t-th generation.

Definition (expected value after selection)

 $N(h, t + \Delta t_s)$ is the expected value of the number of chromosomes that match the schema *h* during the *t*-th generation after selection.

Definitions

Definition (expected value after crossover)

 $N(h, t + \Delta t_s + \Delta t_x)$ is the expected value of the number of chromosomes that match the schema *h* during the *t*-th generation after selection and crossover.

Definition (expected value after mutation)

 $N(h, t + \Delta t_s + \Delta t_x + \Delta t_m) = N(h, t + 1)$ is the expected value of the number of chromosomes that match the schema *h* during the *t*-th generation after selection, crossover and mutation (and thus during the *t* + 1-th generation).

• searched: relation between N(h, t) and N(h, t+1)

Selection

approach: analyze the impact of selection, crossover and mutation step by step, based on average fitness, order and defining length of a schema.

• impact of selection: can be described by average fitness

$$N(h, t + \Delta t_s) = N(h, t) \cdot f_{\mathsf{rel}}(h) \cdot |P|$$

- $N(h, t) \cdot f_{rel}(h)$ probability that chosen chromosome matches schema h
- $f_{rel}(h) \cdot |P|$ average number of offsprings for one chromosome matching schema h
- note: relative fitness f_{rel}(h) cannot be determined exactly, as the number chromosomes matching schema h is only an approximation

Crossover

impact of Crossover: described by

$$N(h, t + \Delta t_s + \Delta t_x) = \underbrace{(1 - p_x) \cdot N(h, t + \Delta t_s)}_{E_A} + \underbrace{p_x \cdot N(h, t + \Delta t_s) \cdot (1 - p_{\text{loss}})}_{E_B} + C$$

 p_x probability of crossover

- p_{loss} probability of a chromosome matching schema *h* losing its matching during 1-point-crossover
- E_A expected value of the number of chromosomes matching schema *h* and *not* taking part in crossover
- E_B expected value of the number of chromosomes taking part in crossover without losing its matching to schema h
- *C* gained number of chromosomes matching schema *h*, won by... (see exercise)

Considering the Probability p_{loss}

examples: h = **0*|1*1* **0*1*1* = h $h \triangleright c_1 = 0000|1111 \rightarrow 00000000 = c'_1 \not \triangleleft h$ $h \not \triangleright c_2 =$ 1111 $\mid 0000 \rightarrow$ 11111111 $= c'_2 \not \triangleleft h$ h = **0*|1*1* **0*1*1* = h $h \triangleright c_1 = 0000|1111 \rightarrow 00001010 = c'_1 \triangleleft h$ $h \triangleright c_2 = 1101 | 1010 \rightarrow 11011111 = c'_2 \triangleleft h$ thus: $p_{\text{loss}} \leq \frac{\mathrm{dl}(h)}{L-1} \cdot \left(1 - \frac{N(h, t + \Delta t_s)}{|P|}\right)$

 Pr_A probability of cut position between fixed genes Pr_B probability of 2nd chromosome matching schema *h* **quesion:** why does only \leq hold, and = not? (see exercise)

Crossover

1

substitution of the expression for p_{loss} yields:

$$\begin{split} \mathsf{N}(h, t + \Delta t_s + \Delta t_x) \\ &\geq (1 - p_x) \cdot \mathsf{N}(h, t + \Delta t_s) \\ &+ p_x \cdot \mathsf{N}(h, t + \Delta t_s) \cdot \left(1 - \frac{\mathsf{dl}(h)}{L - 1} \cdot \left(1 - \frac{\mathsf{N}(h, t + \Delta t_s)}{|P|}\right)\right) \\ &= \mathsf{N}(h, t + \Delta t_s) \left(1 - p_x + p_x \cdot \left(1 - \frac{\mathsf{dl}(h)}{L - 1} \cdot \left(1 - \frac{\mathsf{N}(h, t + \Delta t_s)}{|P|}\right)\right)\right) \\ &= \mathsf{N}(h, t + \Delta t_s) \cdot \left(1 - p_x \frac{\mathsf{dl}(h)}{L - 1} \cdot \left(1 - \frac{\mathsf{N}(h, t + \Delta t_s)}{|P|}\right)\right) \\ &= \mathsf{N}(h, t) \cdot f_{\mathsf{rel}}(h) \cdot |P| \cdot \left(1 - p_x \frac{\mathsf{dl}(h)}{L - 1} \cdot (1 - \mathsf{N}(h, t) \cdot f_{\mathsf{rel}}(h))\right) \end{split}$$

step (*): twice use of the previously derived relation $N(h, t + \Delta t_s) = N(h, t) \cdot f_{rel}(h) \cdot |P|$

Mutation

impact of binary mutation: described by order

$$egin{aligned} & \mathcal{N}(h,t+1) = \mathcal{N}(h,t+\Delta t_s+\Delta t_x+\Delta t_m) \ &= \mathcal{N}(h,t+\Delta t_s+\Delta t_x)\cdot (1-p_m)^{\mathrm{ord}(h)} \end{aligned}$$

explaination: in order to not lose matching, none of the ord(h) genes fixed in schema h must be altered

alternative models possible, e.g.: exactly one bit altered per chromosome $\Rightarrow 1$ bit mutation

$$egin{aligned} \mathcal{N}(h,t+1) &= \mathcal{N}(h,t+\Delta t_s+\Delta t_x+\Delta t_m) \ &= \mathcal{N}(h,t+\Delta t_s+\Delta t_x)\cdot \left(1-rac{ ext{ord}(h)}{L}
ight) \end{aligned}$$

The Schema Theorem

including binary mutation, following holds:

$$egin{aligned} \mathsf{N}(h,t+1) &\geq f_{\mathsf{rel}}(h) \cdot |\mathsf{P}| \cdot \left(1 - p_x rac{\mathsf{dl}(h)}{L-1} \cdot (1 - \mathsf{N}(h,t) \cdot f_{\mathsf{rel}}(h))
ight) \ &\cdot (1 - p_m)^{\mathsf{ord}(h)} \cdot \mathsf{N}(h,t) \end{aligned}$$

substitution of the fitness relations yields

$$egin{aligned} \mathcal{N}(h,t+1) \geq \overline{rac{f_t(h)}{\overline{f_t}}} \left(1 - p_{ extsf{x}} rac{\mathsf{dl}(h)}{L-1} \left(1 - rac{\mathcal{N}(h,t)}{|\mathcal{P}|} \cdot rac{\overline{f_t(h)}}{\overline{f_t}}
ight)
ight) \ & \cdot (1 - p_m)^{\mathrm{ord}(h)} \cdot \mathcal{N}(h,t) \end{aligned}$$

interpretation: schemata with

- a score above average,
- short defining length and
- low order

do breed very heavily (approx. exponential)

Outline

1. Motivation

2. Proving the Schema Theorem

3. Building Block Hypothesis Criticism of the Building Block Hypothesis

4. Summary

5. No Free Lunch Theorem

Building Block Hypothesis

- a GA explores Ω particularly well in hyperplanes (schemata with good average fitness, low defining length and low order)
- chromosomes breed particularly well in these regions
- these schemata are called **building blocks**, thus the name **Building Block Hypothesis**
- **note:** this form of this hypothesis only holds for bit sequences, fitness proportional selection, binary mutation and 1 point crossover
- with other genetic operations the blocks can possibly be described by other characteristics
- a high average finess is always a good characteristic, as every selection method prefers chromosomes with high fitness

Building Block Hypothesis

GA operates best, if **short schemes with low order** (so-called blocks) are used to create schemata with higher Fitness.

- **but:** combining blocks leads to schemata of higher order and higher defining length of blocks
- thus new building blocks are more likely to be destroyed by an operation
- operation methods of GAs still aren't studied and explored sufficiently.

Outline

- 1. Motivation
- 2. Proving the Schema Theorem
- 3. Building Block Hypothesis
- 4. Summary
- 5. No Free Lunch Theorem

Summary

Schema Theorem only holds for **one schema** independently of other schemata within the population.

- other schemata will breed, too
- given time: convergence of the population, thus decreasing evolutionary pressure
- relative fitness of a schema converges towards 1/|P| (same fitness for all individuals)
- finally: expected number of copies decreases, because of genetic operations

Summary

- implicit assumption: only little interdependencies between genes (low *epistasis*), thus fitness of chromosomes that are matching the same scheme is quite similar
- implicit assumption: on chromosome, interacting genes are located close to each other for small blocks
 - this argument only concerns the restriction to 1 point crossover (not the approach itself)
 - other operation specific measures instead of defining length possible

Outline

- 1. Motivation
- 2. Proving the Schema Theorem
- 3. Building Block Hypothesis
- 4. Summary
- 5. No Free Lunch Theorem Technical Definitions The Theorem Consequences and Summary

No Free Lunch Theorem Preconditions

search space $\boldsymbol{\Omega}$

 ${\cal F}$ space of all optimization problems (objective function)

 Ω and ${\mathcal F}$ are alike

lack of knowledge regarding optimization problem

- uniform distribution among all these problems
- every problem $F \in \mathcal{F}$ occurs with a probability of $\frac{1}{|\mathcal{F}|}$
- further simplifications
 - $\forall F \in \mathcal{F}$ $F : \Omega \mapsto \mathrm{I\!R}$ holds
 - $\forall F \in \mathcal{F}$ are defined on the same search space Ω
- ${\cal L}et \; A$ be the set of all optimization algorithms operating on Ω

No Free Lunch Theorem Characterization of an algorithm

- which individuals are considered in which order on $F \in \mathcal{F}$
- only *n* evaluations possible for optimization
 - optimization_{*F*,*n*} : $\mathcal{A} \mapsto \Omega^n$
- with every optimization the algorithm assesses an individual $1 \ensuremath{\mathsf{x}}$
- \Rightarrow optimization_{*F*,*n*}(Alg) contains *n* different individuals in total
 - let every algorithm Alg be deterministically
- \Rightarrow optimization_{*F*,*n*}(Alg) unique, too

For a problem $F \in \mathcal{F}$, an optimization problem Alg $\in \mathcal{A}$ and $n \in \mathbb{N}$:

optimization_{*F*,*n*}(Alg) =
$$(y_1, \ldots, y_n) \in \Omega^n$$

with $y_i \neq y_j$ for $i \neq j$ and y_k being the individual, which analyzes Alg with *F* as *k*-th element.

 $\text{comparison of } \mathsf{Alg}_1, \ \mathsf{Alg}_2 \in \mathcal{A}$

- via performance schemata QuAlg (quality of an algorithm)
 - defined with optimization_{*F*,*n*}(Alg) = (y_1, \ldots, y_n) by $q_n : \mathbb{R}^n \mapsto \mathbb{R}$ as

$$\operatorname{QuAlg}_{F,n}(\operatorname{Alg}) = q_n(F(y_1), \ldots, F(y_n))$$

- $\bullet\,$ e.g. average / best goodness or
- number of needed evaluations until optimum is reached
- expected performance *E* of the first *n* evaluations of Alg on an arbitrary problem

$$E\left[\mathsf{QuAlg}_{F,n}(\mathsf{Alg}) \mid F \in \mathcal{F}\right] = \frac{1}{\#\mathcal{F}} \sum_{F \in \mathcal{F}} \mathsf{QuAlg}_{F,n}(\mathsf{Alg})$$

 $\Rightarrow\,$ average on all possible problems

No Free Lunch

Theorem (No free lunch)

For two algorithms $Alg_1, Alg_2 \in A$ and the class of all problems \mathcal{F} the following applies to a performance schema QuAlg:

$$E\left[QuAlg_{F,n}(Alg_1) \mid F \in \mathcal{F}
ight] = E\left[QuAlg_{F,n}(Alg_2) \mid F \in \mathcal{F}
ight]$$

Consequences

no algorithm is superior to all others on average if there was an algorithm superior on $\mathcal{F}' \subset \mathcal{F}$, thus

$$E\left[\operatorname{\mathsf{QuAlg}}_{F,n}(\operatorname{\mathsf{Alg}}_1) \mid F \in \mathcal{F}'\right] < E\left[\operatorname{\mathsf{QuAlg}}_{F,n}(\operatorname{\mathsf{Alg}}_2) \mid F \in \mathcal{F}'\right]$$

• then it immediately follows that

$$E\left[\mathsf{QuAlg}_{F,n}(\mathsf{Alg}_1) \mid F \in \mathcal{F} \setminus \mathcal{F}'\right] > E\left[\mathsf{QuAlg}_{F,n}(\mathsf{Alg}_2) \mid F \in \mathcal{F} \setminus \mathcal{F}'\right]$$

- for every algorithm: \exists niche within the space of all problems which it is particularly good for
- application: which algorithm to use for which problem?
- research: which class of problems is best for a particular algorithm?

Summary

if there is no previous knowledge regarding the problem

- $\Rightarrow~$ expected results of an EA not better than those of any other method
- if there is knowledge regarding the problem
 - e.g. assumptions about the goodness space
 - $\Rightarrow~$ general application of certain algorithms is suggested

knowledge regarding structure of the problem should influence the choice or design of an optimization algorithm

Literature Regarding This Lecture I

📄 Holland, J. H. (1975).

Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence.

University of Michigan Press.