

# **Evolutionary Algorithms**

Variation and genetic operators

### Prof. Dr. Rudolf Kruse Christian Moewes



### **Outline**

#### 1. Motivation

- 2. One-Parent-Operators
- 3. Two- or Multiple-Parent-Operators
- 4. Interpolating and extrapolating recombination
- 5. Self-adapting algorithms
- 6. Summary



# Variation by mutation [Weicker, 2007]

- Variations (mutations): small changes in biology
- ⇒ Mutation operator: changes as few as possible on the solution candidate concerning the fitness (function)

- below: investigation of the interaction with the selection
- here: behaviour of a simple optimization algorithm on a very simple optimization problem (comparison with a given bit string)



## Meaning of mutation

#### **Exploration oder Erforschung**

- exploration at random
- also: further away regions of the space

#### **Exploitation oder Feinabstimmung**

- local improving of a solution candidate
- important: embedding of phenotypic neighborhood

# **Binary Mutation**

#### Algorithm 1 Binary Mutation

```
Input: individual A with A.G \in \{0,1\}^I

Output: individual B
B \leftarrow A
for i \in \{1, \dots, I\} {
u \leftarrow \text{choose randomly according to } U([0,1))
\text{if } u \leq p_m \{ \qquad \qquad /* \text{ probability of mutation } p_m */ \\ B.G_i \leftarrow 1 - A.G_i
\}
}
return B
```

#### **Gaussian-Mutation**

#### alternative real-valued mutation

- directly applied on real-valued numbers
- Addition of a normal distributed random number on each gene

### Algorithm 2 Gaussian-Mutation

```
Input: individual A mit A.G \in \mathbb{R}^I
Output: individual B
for i \in \{1, \dots, I\} {
    u_i \leftarrow choose randomly according to N(0, \sigma) /* standard deviation \sigma^*/
    B_i \leftarrow A_i + u_i
    B_i \leftarrow \max\{B_i, ug_i\} /* lower bound ug_i^*/
    B_i \leftarrow \min\{B_i, og_i\} /* upper bound og_i^*/
}
return B
```

# Comparison of the methods

### **Approach**

• Optimizing of the simple function

$$f_2(x) = \begin{cases} x & \text{falls } x \in [0, 10] \subset \mathrm{I\!R}, \\ \text{undef.} & \text{sonst} \end{cases}$$

- individual of the parents (1.0 und 4.99)
- Determining the distribution of the descendants with 10000 mutations each





# Comparison of the methods

- Gaussian-Mutation with lower  $\sigma \Rightarrow$  well applicable on exploitation
- with higher  $\sigma \Rightarrow$  wide exploration
- Hamming-Cliffs = break in frequency distribution
- Gray-Code succeeds on including phenotypical neighborhood
- tends to one part of the space, though
- ⇒ Gaussian-Mutation orients itself on phenotypical neighborhood
- $\Rightarrow$  binary mutation faster detects interesting regions in  $\Omega$

## **Genetic operators**

- are applied on certain fraction of chosen individuals (intermediary population)
- generating variants and recombinations of already existing solution candidates
- gen. classification of genetic operators according to the number of parents:
  - One-Parent-Operators ("Mutation")
  - Two-Parent-Operators ("Crossover")
  - Multipe-Parent-Operators
- genetic operators have special properties (dep. on the encoding)
  - if solution candidates = permutations, then permutation-conserving genetic operators
  - gen.: if certain combination of alleles unreasonable, genetic operators should never create them



### **Outline**

- 1. Motivation
- 2. One-Parent-Operators

Standard mutation and Pair swap Operations on subsequences

- 3. Two- or Multiple-Parent-Operators
- 4. Interpolating and extrapolating recombination
- 5. Self-adapting algorithms
- 6. Summary

# Standard mutation and Pair swap

#### • Standard mutation:

Exchange the form/value of a gene by another allele

- if necessary, multiple genes are mutated (see. n-Queens-Problem)
- Parameter: probability of mutation  $p_m$ ,  $0 < p_m \ll 1$  for Bitstrings of length l:  $p_m = 1/l$  approximately optimal

#### • Pair swap:

Exchange the forms/values of two gene in a chromosome

- Precondition: same allele sets of the exchanged genes
- Generalization: cyclic change of 3, 4, ..., k genes

# **Operations on subsequences**

#### • Shift:



• arbitrary permutation:

Inversion:



- Precondition: same sets of alleles in the involved section
- Parameter: if necessary, probability distribution over the lengths



### **Outline**

- 1. Motivation
- 2. One-Parent-Operators

### 3. Two- or Multiple-Parent-Operators

One-point- and Two-point-Crossover n-point- and uniform crossover Shuffle Crossover Permutation-conserving crossover Diagonal-Crossover Characterization

4. Interpolating and extrapolating recombination

# One-point- and Two-point-Crossover

#### **One-point-Crossover**

- Determining a random cutting line
- Exchange the gene sequences on one side of the cutting line

### Two-point-Crossover

- Dertermining of two random cutting points
- Exchange of the gene sequences between both cutting points

# n-point- and uniform crossover

#### n-point-crossover

- Generalization of the One- and Two-point-Crossover
- Determining of *n* random cutting points
- alternating exchange / keep of the gene sequences between two following cutting points

#### Uniform crossover

• on each gene: determine whether to exchange or not(+: yes, -: no, *Parameter:* probability  $p_x$  of exchange)



• Attention: uniform crossover not equivalent to the (I-1)-point-crossover! number of the crossover points is chosen by random



### **Shuffle Crossover**

- before One-Point-Crossover: random permutation of the genes
- after: Unmixing the genes

|   | Permutation |   |   |   |   |   | Crossover |   |   |   | Unmix |  |   |   |   |   |   |   |  |   |   |   |   |   |   |
|---|-------------|---|---|---|---|---|-----------|---|---|---|-------|--|---|---|---|---|---|---|--|---|---|---|---|---|---|
| 5 | 2           | 1 | 4 | 3 | 6 | 4 | 2         | 6 | 3 | 5 | 1     |  | 4 | 2 | 6 | 5 | 3 | 4 |  | 3 | 2 | 4 | 4 | 5 | 6 |
| 1 | 2           | 3 | 4 | 5 | 6 | 4 | 2         | 6 | 5 | 1 | 3     |  | 4 | 2 | 6 | 5 | 1 | 3 |  | 1 | 2 | 3 | 4 | 5 | 6 |
| 3 | 1           | 4 | 2 | 5 | 4 | 2 | 1         | 4 | 5 | 3 | 4     |  | 2 | 1 | 4 | 3 | 5 | 1 |  | 5 | 1 | 1 | 2 | 3 | 4 |

- Shuffle crossover is **not** equivalent to the uniform crossover!
- each count of gene exchanges between chromosomes has the same probability
- ullet uniform crossover: count is binomial distributed with parameter  $p_{\chi}$
- Shuffle crossover: one of the most recommending methods

### Uniform order-based crossover

- similar to uniform crossover: for each gene decide whether to keep it or not
  - $(+: yes, -: no, Parameter: probability <math>p_k$  of keeping the gene)
- fill gaps by missing alleles (in order of the occurrence in the other chromosome)



- preserves order information
- *alternative:* Keeping the "+" resp. "–" marked genes in one of the chromosomes



# Edge recombination (developed for TSP)

- chromosom is interpreted as a graph (chain or ring) each gene contains edges to its neighboors in the chromosome
- Edges of the graphs of two chromosomes are mixed
- preserve neighborhood information

#### Procedure: 1. Constructing an edge table

- for every allele its neighbors (in both parents) are listed (including the last allele as a neighbor of the first and vice versa)
- if an allele has the same neighbor in both parents (where the side is irrelevant), this neighbor is listed only once(but marked)



### Procedure: 2. Constructing a child

- the first allele of a randomly chosen parent is taken for the first allele of the child
- chosen allele is deleted from all neighbor lists in the edge table and its own list of neighbors is retrieved
- From this neighbor list an allele is chosen respecting the following precedences:
  - 1. marked neighbors (i.e. neighbors that occur in both parents)
  - neighbors with the shortest neighborhood list (marked neighbors count once)
  - 3. any neighbor

In analogy to this: a second child may be constructed from the first allele of the other parent (this is rarely done)



### **Example:**

**A**: 6 3 1 5 2 7 4 **B**: 3 7 2 5 6

### Constructing the edge table

|        | Neig        | hbors      |            |  |  |  |  |  |  |  |  |
|--------|-------------|------------|------------|--|--|--|--|--|--|--|--|
| Allele | in <b>A</b> | in ${f B}$ | aggregated |  |  |  |  |  |  |  |  |
| 1      | 3, 5        | 6, 4       | 3, 4, 5, 6 |  |  |  |  |  |  |  |  |
| 2      | 5, 7        | 7, 5       | 5*, 7*     |  |  |  |  |  |  |  |  |
| 3      | 6, 1        | 4, 7       | 1, 4, 6, 7 |  |  |  |  |  |  |  |  |
| 4      | 7, 6        | 1, 3       | 1, 3, 6, 7 |  |  |  |  |  |  |  |  |
| 5      | 1, 2        | 2, 6       | 1, 2*, 6   |  |  |  |  |  |  |  |  |
| 6      | 4, 3        | 5, 1       | 1, 3, 4, 5 |  |  |  |  |  |  |  |  |
| 7      | 2, 4        | 3, 2       | 2*, 3, 4   |  |  |  |  |  |  |  |  |

- both chromosomes = ring
   (first gene is neighbor of the
   last gene): in A 4 is left
   neighbor of 6, 6 is right
   neighbor of 4; B analog to
   this
- in both: 5, 2 and 7 are next to each other – should be preserved (see marks)



#### Constructing a child

| Allele | Neighbor   | Selection: 6 | 5        | 2       | 7    | 4    | 3 | 1 |
|--------|------------|--------------|----------|---------|------|------|---|---|
| 1      | 3, 4, 5, 6 | 3, 4, 5      | 3, 4     | 3, 4    | 3, 4 | 3    |   |   |
| 2      | 5*, 7*     | 5*, 7*       | 7*       | 7*      | _    | _    | _ | _ |
| 3      | 1, 4, 6, 7 | 1, 4, 7      | 1, 4, 7  | 1, 4, 7 | 1, 4 | 1    | 1 | _ |
| 4      | 1, 3, 6, 7 | 1, 3, 7      | 1, 3, 7  | 1, 3, 7 | 1, 3 | 1, 3 | _ | _ |
| 5      | 1, 2*, 6   | 1, 2*        | 1, 2*    | _       | _    | _    | _ | _ |
| 6      | 1, 3, 4, 5 | 1, 3, 4, 5   | _        | 1       | _    | _    | _ | _ |
| 7      | 2*, 3, 4   | 2*, 3, 4     | 2*, 3, 4 | 3, 4    | 3, 4 | _    | _ | _ |

- start with first allele of the chromosomes **A** ( also 6) and delete 6 from all neighborhood lists (third column)
- as 5 has the shortest list of all neighbors of 6 (1, 3, 4, 5), 5 is selected for the second gene
- after that 2 is following, then 7 aso.



- Child has often a new edge (from last to the first gene)
- can also be applied, if first and last gene are not seen as neighbors: Then, edges are not taken into the edge table
- if first and last gene are neighbors, first allele can be chosen arbitrarly
   if not, an allele which is located at the beginning of the chromosome should be chosen
- Construction of a child: neighborhood list of a currently chosen allele can be empty (priorities should limit the probability as low as possible; they are not pefect, though)
  - in this case: random selection of the remaining alleles



# Three- and Multi-Parent-Operators

### **Diagonal-Crossover**

- similar two 1-, 2- and *n*-point-Crossover, but usable if more parents exist
- three parents: two crossover points
- shifts gene sequences diagonally on intersection points over the chromosomes

| 1 | 5 | 2 | 3 | 6 | 2 | 4 |         | 1 | 5 | 1 | 4 | 3 | 4 | 6 |
|---|---|---|---|---|---|---|---------|---|---|---|---|---|---|---|
| 5 | 2 | 1 | 4 | 3 | 6 | 1 | <b></b> | 5 | 2 | 4 | 2 | 5 | 2 | 4 |
| 3 | 1 | 4 | 2 | 5 | 4 | 6 |         | 3 | 1 | 2 | 3 | 6 | 6 | 1 |

- Generalization for > 3 parents:
   choose k 1 crossover points for k parents
- leads to a strong exploration of the space, especially on large number of parents (10–15 parents)



# Characterization of crossover operators

### Positional bias (dt. ortsabhängige Verzerrung):

- if the probability that two genes are jointly inherited from the same parent depends on the (relative) position of these genes in the chromosome
- undesired because it can make the exact arrangement of the different genes in a chromosome crucial for the success or failure of an evolutionary algorithm

#### • Example: One-Point-Crossover

- 2 genes are separated from each other (arrive in different childs), if crossover point lies between them
- the closer 2 genes in the chromosome are located, the fewer crossover points can separate them
- ⇒ genes next to each other are jointly taken in the same child with higher probability than distant geness

## Characterization of crossover operators

### Distributional bias (dt. Verteilungsverzerrung):

- if the probability that a certain number of genes is exchanged between the parent chromosomes is not the same for all possible numbers of genes
- undesired, because it causes partial solutions of different lengths to have different chances of progressing to the next generation
- distributional bias is usually less critical than positional bias
- Example: uniform crossover
  - since for every gene it is decided with probability p<sub>x</sub> and independently of all other genes whether it is exchanged or not, the number k of exchanged genes is binomially distributed with the parameter p<sub>x</sub>:

$$P(K = k) = \binom{n}{k} p_x^k (1-p_x)^{n-k}$$
 mit  $n = Gesamtzahl der Gene$ 

⇒ very small and very large numbers are less likely



### **Outline**

- 1. Motivation
- 2. One-Parent-Operators
- 3. Two- or Multiple-Parent-Operators
- **4. Interpolating and extrapolating recombination**Interpolating operators
  Extrapolating operators
- 5. Self-adapting algorithms
- 6. Summary



# Motivation [Weicker, 2007]

- so far: operators which recombines alleles that already exist in the parent chromosomes, but do not create any new alleles
  - One-point-, Two-point- und *n*-point-crossover
  - Uniform (order based) crossover
  - Shuffle Crossover
  - Edge recombination
  - Diagonal-Crossover
- depend crucially on the diversity of the population
- no construction of new alleles: only a fraction of  $\Omega$  can be reached which is contained in the individuals of the population
- if a population is very diverse, recombination operators can explore the search space well



# Interpolating operators

- can blend the traits of the parents in such a way that offspring with new traits is created
- $\Rightarrow \Omega$  is thus less explored
  - interpol. Recombination focusses population on 1 main area
  - · benefits fine tuning of individuals with very good fitness
  - ullet to explore  $\Omega$  sufficiently at the beginning: using a strong random and diversity-preserving mutation

### **Arithmetic crossover**

- example for interpolating reckombination
- works on real-valued genotypes
- geometric interpretation: can create all points on a straight line between both parents

### Algorithm 3 Arithmetic crossover

**Input:** Individuals A, B with  $A, G, B, G \in \mathbb{R}^{I}$ 

**Output:** new individual *C* 

- 1:  $u \leftarrow \text{choose randomly from } U([0,1])$
- 2: **for**  $i \in \{1, ..., l\}$  {
- 3:  $C.G_i \leftarrow u \cdot A.G_i + (1-u) \cdot B.G_i$
- 4: }
- 5: **return** *C*



### **Extrapolating operators**

- try to infer information from several individuals
- ⇒ create a prognosis in what direction one can expect fitness improvements
  - extrapolating recombination may leave former  $\Omega$
  - is only way of recombination which takes fitness values into account
  - influence of diversity is hardly understandable
  - example: arithmetic crossover with  $u \in U([1,2])$

# Comparison





### **Outline**

- 1. Motivation
- 2. One-Parent-Operators
- 3. Two- or Multiple-Parent-Operators
- 4. Interpolating and extrapolating recombination
- 5. Self-adapting algorithms
  - Experiment based on the TSP Locality of the mutation operator Adaptation strategies
- 6. Summary

Prof. R. Kruse, C. Moewes



# Self-adapting algorithms [Weicker, 2007]

- so far: mutation should change phenotype as small as possible
- now: question if this is valid on every (time) step during the optimization
- control experiment
- solve TSP (here 51 cities) by Hillclimbing
- ⇒ no recombination
  - differently local mutation operators are
    - inversion of a subsequence
    - cyclical exchange of three randomly chosen cities



### Influence



- supposed inappropriate triple exchange: more successful in first 50 generations than favored inversion
- therefore: definition of the relative expected improvement as metric of what improvement an operator enables

# Relative expected improvement

#### Definition

The *fitness improvement* of an individual  $A \in \mathcal{G}$  to another individual  $B \in \mathcal{G}$  is defined as

$$Improvement(A, B) = \begin{cases} |B.F - A.F| & \text{if } B.F > A.F, \\ 0 & \text{otherwise.} \end{cases}$$

Then, the *relative expected improvement* of an operator Mut concerning individual *A* can be defined as

$$\mathsf{relEV}_{\mathsf{Mut}, A} = E\left(\mathsf{Improvement}(A, \mathsf{Mut}^{\xi}(A)\right).$$



### Influence



- determining the relative expected improvement in different fitness ranges by random samples from  $\Omega$
- responsible for illustrated effect
- $\Rightarrow$  How frequent are the different fitness values in  $\Omega$ ?



## Complete space





- left: density distribution of a TSP with 11 cities
- right: idealized density distribution of a minimization problem
- similar distribution on children (generated after mutation)

## Variance of the generated fitness

- *locality* of the mutation operator is very important
- $\bullet$  very local  $\Rightarrow$  fitness values in vicinity of the fitness of the parents
- ullet less local  $\Rightarrow$  bigger range of fitness values is covered



• inverting mutation is more local over the complete fitness range than triple exchange





### **Results of consideration**



- quality of a mutation operator cannot be judged independently of the current fitness level
- operator is never optimal over the complete process of optimization
- on increasing approximization to the optimum: more local operators!



## Adaptation strategies: 3 techniques

#### Predefined adaptation:

• define change before

#### Adaptive adaptation:

- define measure of appropriateness
- deduce adapting from rules

#### **Selbst-adaptive adaptation:**

- use additional information in individual
- parameter should align individually by a random process



## **Predefined adaptation**

#### Considered parameter:

- real valued gaussian mutation
- $\bullet$   $\sigma$  determines average step width
- modifying parameter  $0 < \alpha < 1$  lets decrease  $\sigma$  exponentially

#### Realization:

#### Algorithm 4 Predefined adaptation

**Input:** Standard deviation  $\sigma$ , modifying parameter  $\alpha$ 

**Output:** adapted standard deviation  $\sigma$ 

- 1:  $\sigma' \leftarrow \alpha \cdot \sigma$
- 2: return  $\sigma'$

## Adaptive adaptation

- Metric: fraction of improving mutations of last *k* generations
- ullet if fraction is too "high"  $\sigma$  should be increased

#### Algorithm 5 Adaptive adaptation

**Input:** standard deviation  $\sigma$ , success rate  $p_s$ , threshold  $\theta$ , modifying parameter  $\alpha > 1$ 

```
Output: adapted standard deviation \sigma
```

```
1: if p_s > \theta {
2: return \alpha \cdot \sigma
3: }
```

4: **if** 
$$p_s < \theta$$
 {

5: **return** 
$$\sigma/\alpha$$

- 6: }
- 7: return  $\sigma$



## **Self-adaption**

#### Implementation:

- ullet storing the standard deviation  $\sigma$  on generating the individual as additional information
- ⇒ using a strategy parameter (will be varied on mutation by random very likely)
  - $\bullet$  "good" values for  $\sigma$  win through better quality of the childs

## **Experimental comparison**

#### testing environment

- 10-dimensional sphere
- Hillclimber
- but:  $\lambda = 10$  child individuals per generation will be generated
- real-valued Gaussian-Mutation with  $\sigma=1$
- Environment selection of the best of parents and children
- $\theta = \frac{1}{5}$  und  $\alpha = 1.224$

## **Self-adaptive Gaussian Mutation**

### Algorithm 6 Self-adaptive Gaussian Mutation

```
Input: individual A with A.G \in \mathbb{R}^I
Output: varied individual B with B.G \in \mathbb{R}^I
 1: u \leftarrow choose randomly according to \mathcal{N}(0,1)
 2: B.S_1 \leftarrow A.S_1 \cdot \exp(\frac{1}{\sqrt{I}}u)
 3: for each i \in \{1, ..., l\} {
 4: u \leftarrow choose randomly according to \mathcal{N}(0, B.S_1)
 5: B.G_i \leftarrow A.G_i + u_i
 6: B.G_i \leftarrow \max\{B.G_i, ug_i\}
                                                       /* lower range bound ug<sub>i</sub> */
 7: B.G_i \leftarrow \min\{B.G_i, ug_i\}
                                                       /* upper range bound og; */
 8: }
```

9: **return** B



### Result of comparison



### Result of comparison





### **Outline**

- 1. Motivation
- 2. One-Parent-Operators
- 3. Two- or Multiple-Parent-Operators
- 4. Interpolating and extrapolating recombination
- 5. Self-adapting algorithms
- 6. Summary



### Relation I

| Condition     | Target value | Expected impact                                                     |  |
|---------------|--------------|---------------------------------------------------------------------|--|
| genotype      | mutation     | influences vicinity of mutation ope-                                |  |
|               |              | rator                                                               |  |
| mutation      | exploration  | random mutations support explora-                                   |  |
|               |              | tion                                                                |  |
| mutation      | fine tuning  | local mutations(w.r.t fitness) sup-                                 |  |
|               |              | port fine tuning                                                    |  |
| mutation      | diversity    | mutation increases diversity                                        |  |
| mutation      | local optima | local mutations(w.r.t fitness) pre-                                 |  |
|               |              | serve local optima of the phenotype (random mutations can introduce |  |
|               |              |                                                                     |  |
|               |              | more optima)                                                        |  |
| recombination | exploration  | extrapolating operators strengthen                                  |  |
|               |              | exploration                                                         |  |
| recombination | fine tuning  | interpolating operators strengthen                                  |  |
|               |              | fine tuning                                                         |  |

### Relations II

| Condition    | Target value  | Expected impact                                                                      |
|--------------|---------------|--------------------------------------------------------------------------------------|
| Div./Recomb. | mutation      | small diversity and interpolating re-<br>combination damp outlier of the<br>mutation |
| Diversity    | Recombination | high diversity support mechanism of the recombination                                |
| Selection    | Exploration   | small selection pressure strengthen the exploration                                  |
| Selection    | fine tuning   | high selection pressure strengthen fine tuning                                       |
| Selection    | Diversity     | Selection mostly decreases diversity                                                 |
| Div./Recomb. | Exploration   | combinating recombination strengthen exploration on high diversity                   |
| Div./Recomb. | fine tuning   | combinating recombination strengthen fine tuning on high diversity                   |

### Relation III

| Target value    | Expected impact                                                                  |
|-----------------|----------------------------------------------------------------------------------|
| Diversity       | explorating operations increase of versity                                       |
| Diversity       | fine tuning operations decrease of versity                                       |
| Selection       | small diversity decreases selection pressure of the fitness-proportion selection |
| search progress | huge ammount of local optima inl<br>bits search progress                         |
| search progress | Counterbalancing of all factors is r<br>quired                                   |
|                 | Diversity  Diversity  Selection  search progress                                 |



# Further reading



Weicker, K. (2007).

Evolutionäre Algorithmen.

Teubner Verlag, Stuttgart, Germany, 2nd edition.