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Variation by mutation [Weicker, 2007]

• Variations (mutations): small changes in biology
⇒ Mutation operator: changes as few as possible on the solution

candidate concerning the fitness (function)

• below: investigation of the interaction with the selection
• here: behaviour of a simple optimization algorithm on a very

simple optimization problem (comparison with a given bit string)
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Meaning of mutation

Exploration oder Erforschung
• exploration at random
• also: further away regions of the space

Exploitation oder Feinabstimmung
• local improving of a solution candidate
• important: embedding of phenotypic neighborhood
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Binary Mutation

Algorithm 1 Binary Mutation
Input: individual A with A.G ∈ {0, 1}l

Output: individual B
B ← A
for i ∈ {1, . . . , l} {

u ← choose randomly according to U([0, 1))
if u ≤ pm { /* probability of mutation pm */

B.Gi ← 1 − A.Gi
}

}
return B
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Gaussian-Mutation
alternative real-valued mutation

• directly applied on real-valued numbers
• Addition of a normal distributed random number on each gene

Algorithm 2 Gaussian-Mutation
Input: individual A mit A.G ∈ IRl

Output: individual B
for i ∈ {1, . . . , l} {

ui ← choose randomly according to N(0, σ) /* standard deviation
σ */
Bi ← Ai + ui
Bi ← max{Bi , ugi } /* lower bound ugi */
Bi ← min{Bi , ogi } /* upper bound ogi */

}
return B
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Comparison of the methods

Approach
• Optimizing of the simple function

f2(x) =
{

x falls x ∈ [0, 10] ⊂ IR,

undef. sonst

• individual of the parents (1.0 und 4.99)
• Determining the distribution of the descendants with 10000

mutations each
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Comparison of the methods

• Gaussian-Mutation with lower σ ⇒ well applicable on exploitation
• with higher σ ⇒ wide exploration

• Hamming-Cliffs = break in frequency distribution

• Gray-Code succeeds on including phenotypical neighborhood
• tends to one part of the space, though

⇒ Gaussian-Mutation orients itself on phenotypical neighborhood
⇒ binary mutation faster detects interesting regions in Ω
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Genetic operators
• are applied on certain fraction of chosen individuals (intermediary

population)
• generating variants and recombinations of already existing

solution candidates
• gen. classification of genetic operators according to the number of

parents:
• One-Parent-Operators („Mutation“)
• Two-Parent-Operators („Crossover“)
• Multipe-Parent-Operators

• genetic operators have special properties (dep. on the encoding)
• if solution candidates = permutations, then

permutation-conserving genetic operators
• gen.: if certain combination of alleles unreasonable, genetic

operators should never create them

Prof. R. Kruse, C. Moewes EA – Variation and genetic operators 8. Oktober 2013 8 / 47



Outline

1. Motivation

2. One-Parent-Operators
Standard mutation and Pair swap
Operations on subsequences

3. Two- or Multiple-Parent-Operators

4. Interpolating and extrapolating recombination

5. Self-adapting algorithms

6. Summary
Prof. R. Kruse, C. Moewes EA – Variation and genetic operators 8. Oktober 2013



Standard mutation and Pair swap
• Standard mutation:

Exchange the form/value of a gene by another allele

3 1 4 2 5 4 6 3 1 6 2 5 4 6

• if necessary, multiple genes are mutated (see. n-Queens-Problem)
• Parameter: probability of mutation pm, 0 < pm ' 1

for Bitstrings of length l : pm = 1/l approximately optimal

• Pair swap:
Exchange the forms/values of two gene in a chromosome

3 1 4 2 5 4 6 3 5 4 2 1 4 6

• Precondition: same allele sets of the exchanged genes
• Generalization: cyclic change of 3, 4, . . . , k genes
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Operations on subsequences
• Shift:

3 1 4 2 5 4 6 3 2 5 1 4 4 6

• arbitrary permutation:
3 1 4 2 5 4 6 3 2 1 5 4 4 6

• Inversion:

3 1 4 2 5 4 6 3 5 2 4 1 4 6

• Precondition: same sets of alleles in the involved section
• Parameter: if necessary, probability distribution over the lengths
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One-point- and Two-point-Crossover
One-point-Crossover

• Determining a random cutting line
• Exchange the gene sequences on one side of the cutting line

5 2 1 4 3 6 1
1 2 3 4 5 6

3 1 4 2 5 4 6

5 2 1 4 5 4 6
1 2 3 4 5 6

3 1 4 2 3 6 1

Two-point-Crossover
• Dertermining of two random cutting points
• Exchange of the gene sequences between both cutting points

5 2 1 4 3 6 1
1 2 3 4 5 6

3 1 4 2 5 4 6

5 1 4 2 5 6 1
1 2 3 4 5 6

3 2 1 4 3 4 6
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n-point- and uniform crossover
n-point-crossover

• Generalization of the One- and Two-point-Crossover
• Determining of n random cutting points
• alternating exchange / keep of the gene sequences between two

following cutting points
Uniform crossover

• on each gene: determine whether to exchange or not(+: yes, −:
no, Parameter: probability px of exchange)

5 2 1 4 3 6 1
+ − + − − + −
3 1 4 2 5 4 6

3 2 4 4 3 4 1

5 1 1 2 5 6 6

• Attention: uniform crossover not equivalent to the
(l − 1)-point-crossover! number of the crossover points is chosen
by random
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Shuffle Crossover
• before One-Point-Crossover: random permutation of the genes
• after: Unmixing the genes

Permutation Crossover Unmix
5 2 1 4 3 6
1 2 3 4 5 6
3 1 4 2 5 4

4 2 6 3 5 1
4 2 6 5 1 3
2 1 4 5 3 4

435624
315624
153412

654423
654321
432115

• Shuffle crossover is not equivalent to the uniform crossover!
• each count of gene exchanges between chromosomes has the

same probability
• uniform crossover: count is binomial distributed with parameter px
• Shuffle crossover: one of the most recommending methods
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Uniform order-based crossover
• similar to uniform crossover: for each gene decide whether to keep

it or not
(+: yes, −: no, Parameter: probability pk of keeping the gene)

• fill gaps by missing alleles (in order of the occurence in the other
chromosome)

5 7 2 4 6 3 1
+ − + + − − +

4 2 3 1 5 7 6

5 2 4 1
+ − + + − − +

4 3 1 6

5 3 2 4 7 6 1
+ − + + − − +

4 5 3 1 7 2 6

• preserves order information
• alternative: Keeping the „+“ resp. „−“ marked genes in one of

the chromosomes
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Edge recombination (developed for TSP)

• chromosom is interpreted as a graph (chain or ring) each gene
contains edges to its neighboors in the chromosome

• Edges of the graphs of two chromosomes are mixed
• preserve neighborhood information

Procedure: 1. Constructing an edge table
• for every allele its neighbors (in both parents) are listed (including

the last allele as a neighbor of the first and vice versa)
• if an allele has the same neighbor in both parents (where the side

is irrelevant), this neighbor is listed only once(but marked)
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Edge recombination
Procedure: 2. Constructing a child

• the first allele of a randomly chosen parent is taken for the first
allele of the child

• chosen allele is deleted from all neighbor lists in the edge table
and its own list of neighbors is retrieved

• From this neighbor list an allele is chosen respecting the following
precedences:

1. marked neighbors (i.e. neighbors that occur in both parents)
2. neighbors with the shortest neighborhood list

(marked neighbors count once)
3. any neighbor

In analogy to this: a second child may be constructed from the first
allele of the other parent (this is rarely done)
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Edge recombination
Example:
A: 6 3 1 5 2 7 4 B: 3 7 2 5 6 1 4

Constructing the edge table
Neighbors

Allele in A in B aggregated
1 3, 5 6, 4 3, 4, 5, 6
2 5, 7 7, 5 5∗, 7∗

3 6, 1 4, 7 1, 4, 6, 7
4 7, 6 1, 3 1, 3, 6, 7
5 1, 2 2, 6 1, 2∗, 6
6 4, 3 5, 1 1, 3, 4, 5
7 2, 4 3, 2 2∗, 3, 4

• both chromosomes = ring
(first gene is neighbor of the
last gene): in A 4 is left
neighbor of 6, 6 is right
neighbor of 4; B analog to
this

• in both: 5, 2 and 7 are next
to each other – should be
preserved (see marks)
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Edge recombination
Constructing a child 6 5 2 7 4 3 1

Allele Neighbor Selection: 6 5 2 7 4 3 1
1 3, 4, 5, 6 3, 4, 5 3, 4 3, 4 3, 4 3
2 5∗, 7∗ 5∗, 7∗ 7∗ 7∗ — — — —
3 1, 4, 6, 7 1, 4, 7 1, 4, 7 1, 4, 7 1, 4 1 1 —
4 1, 3, 6, 7 1, 3, 7 1, 3, 7 1, 3, 7 1, 3 1, 3 — —
5 1, 2∗, 6 1, 2∗ 1, 2∗ — — — — —
6 1, 3, 4, 5 1, 3, 4, 5 — — — — — —
7 2∗, 3, 4 2∗, 3, 4 2∗, 3, 4 3, 4 3, 4 — — —

• start with first allele of the chromosomes A ( also 6) and
delete 6 from all neighborhood lists (third column)

• as 5 has the shortest list of all neighbors of 6 (1, 3, 4, 5), 5 is
selected for the second gene

• after that 2 is following, then 7 aso.
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Edge recombination

• Child has often a new edge (from last to the first gene)
• can also be applied, if first and last gene are not seen as

neighbors: Then, edges are not taken into the edge table
• if first and last gene are neighbors, first allele can be chosen

arbitrarly
if not, an allele which is located at the beginning of the
chromosome should be chosen

• Construction of a child: neighborhood list of a currently chosen
allele can be empty
(priorities should limit the probability as low as possible; they are
not pefect, though)
in this case: random selection of the remaining alleles
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Three- and Multi-Parent-Operators
Diagonal-Crossover

• similar two 1-, 2- and n-point-Crossover, but usable if more
parents exist

• three parents: two crossover points
• shifts gene sequences diagonally on intersection points over the

chromosomes
1 5 2 3 6 2 4

5 2 1 4 3 6 1

3 1 4 2 5 4 6

1 5 1 4 3 4 6

5 2 4 2 5 2 4

3 1 2 3 6 6 1

• Generalization for > 3 parents:
choose k − 1 crossover points for k parents

• leads to a strong exploration of the space,
especially on large number of parents (10–15 parents)
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Characterization of crossover operators
Positional bias (dt. ortsabhängige Verzerrung):

• if the probability that two genes are jointly inherited from the
same parent depends on the (relative) position of these genes in
the chromosome

• undesired because it can make the exact arrangement of the
different genes in a chromosome crucial for the success or failure
of an evolutionary algorithm

• Example: One-Point-Crossover
• 2 genes are separated from each other (arrive in different childs), if

crossover point lies between them
• the closer 2 genes in the chromosome are located, the fewer

crossover points can separate them
⇒ genes next to each other are jointly taken in the same child with

higher probability than distant geness
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Characterization of crossover operators
Distributional bias (dt. Verteilungsverzerrung):

• if the probability that a certain number of genes is exchanged
between the parent chromosomes is not the same for all possible
numbers of genes

• undesired, because it causes partial solutions of different lengths
to have different chances of progressing to the next generation

• distributional bias is usually less critical than positional bias
• Example: uniform crossover

• since for every gene it is decided with probability px and
independently of all other genes whether it is exchanged or not,
the number k of exchanged genes is binomially distributed with the
parameter px :

P(K = k) =
(n

k

)
pk

x (1−px)
n−k mit n =̂ Gesamtzahl der Gene

⇒ very small and very large numbers are less likely
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Motivation [Weicker, 2007]

• so far: operators which recombines alleles that already exist in the
parent chromosomes, but do not create any new alleles

• One-point-, Two-point- und n-point-crossover
• Uniform (order based) crossover
• Shuffle Crossover
• Edge recombination
• Diagonal-Crossover

• depend crucially on the diversity of the population
• no construction of new alleles: only a fraction of Ω can be

reached which is contained in the individuals of the population
• if a population is very diverse, recombination operators can

explore the search space well
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Interpolating operators

• can blend the traits of the parents in such a way that offspring
with new traits is created

⇒ Ω is thus less explored
• interpol. Recombination focusses population on 1 main area
• benefits fine tuning of individuals with very good fitness
• to explore Ω sufficiently at the beginning: using a strong random

and diversity-preserving mutation
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Arithmetic crossover
• example for interpolating reckombination
• works on real-valued genotypes
• geometric interpretation: can create all points on a straight line

between both parents

Algorithm 3 Arithmetic crossover
Input: Individuals A, B with A.G , B.G ∈ IRl

Output: new individual C
1: u ← choose randomly from U([0, 1])
2: for i ∈ {1, . . . , l} {
3: C .Gi ← u · A.Gi + (1 − u) · B.Gi
4: }
5: return C
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Extrapolating operators

• try to infer information from several individuals

⇒ create a prognosis in what direction one can expect fitness
improvements

• extrapolating recombination may leave former Ω

• is only way of recombination which takes fitness values into
account

• influence of diversity is hardly understandable

• example: arithmetic crossover with u ∈ U([1, 2])
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Self-adapting algorithms [Weicker, 2007]

• so far: mutation should change phenotype as small as possible
• now: question if this is valid on every (time) step during the

optimization

• control experiment
• solve TSP (here 51 cities) by Hillclimbing

⇒ no recombination
• differently local mutation operators are

• inversion of a subsequence
• cyclical exchange of three randomly chosen cities
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Influence

fit
ne

ss

generation

• supposed inappropriate triple exchange: more successful in first 50
generations than favored inversion

• therefore: definition of the relative expected improvement as
metric of what improvement an operator enables
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Relative expected improvement

Definition
The fitness improvement of an individual A ∈ G to another individual
B ∈ G is defined as

Improvement(A, B) =

{
|B.F − A.F | if B.F ( A.F ,

0 otherwise.

Then, the relative expected improvement of an operator Mut
concerning individual A can be defined as

relEVMut,A = E
(
Improvement(A, Mutξ(A)

)
.
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• determining the relative
expected improvement in
different fitness ranges by
random samples from Ω

• responsible for illustrated
effect

⇒ How frequent are the different
fitness values in Ω?
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Complete space
fre

qu
en

cy

fitness

• left: density distribution of a TSP with 11 cities
• right: idealized density distribution of a minimization problem
• similar distribution on children (generated after mutation)
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Variance of the generated fitness
• locality of the mutation operator is very important
• very local ⇒ fitness values in vicinity of the fitness of the parents
• less local ⇒ bigger range of fitness values is covered

Va
ria

nc
of

ch
ild

fit
ne

ss

Güte

• inverting mutation is more local over the complete fitness range
than triple exchange





Results of consideration

• quality of a mutation operator cannot be judged independently of
the current fitness level

• operator is never optimal over the complete process of
optimization

• on increasing approximization to the optimum: more local
operators!
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Adaptation strategies: 3 techniques

Predefined adaptation:
• define change before

Adaptive adaptation:
• define measure of appropriateness
• deduce adapting from rules

Selbst-adaptive adaptation:
• use additional information in individual
• parameter should align individually by a random process
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Predefined adaptation

Considered parameter:
• real valued gaussian mutation
• σ determines average step width
• modifying parameter 0 < α < 1 lets decrease σ exponentially

Realization:

Algorithm 4 Predefined adaptation
Input: Standard deviation σ, modifying parameter α
Output: adapted standard deviation σ

1: σ′ ← α · σ
2: return σ′
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Adaptive adaptation
• Metric: fraction of improving mutations of last k generations
• if fraction is too „high“ σ should be increased

Algorithm 5 Adaptive adaptation
Input: standard deviation σ, success rate ps , threshold θ, modifying

parameter α > 1
Output: adapted standard deviation σ

1: if ps > θ {
2: return α · σ
3: }
4: if ps < θ {
5: return σ/α
6: }
7: return σ
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Self-adaption

Implementation:
• storing the standard deviation σ on generating the individual as

additional information
⇒ using a strategy parameter

(will be varied on mutation by random very likely)
• „good“ values for σ win through better quality of the childs
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Experimental comparison

testing environment
• 10-dimensional sphere
• Hillclimber
• but: λ = 10 child individuals per generation will be generated
• real-valued Gaussian-Mutation with σ = 1
• Environment selection of the best of parents and children
• θ = 1

5 und α = 1.224
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Self-adaptive Gaussian Mutation

Algorithm 6 Self-adaptive Gaussian Mutation
Input: individual A with A.G ∈ IRl

Output: varied individual B with B.G ∈ IRl

1: u ← choose randomly according to N (0, 1)
2: B.S1 ← A.S1 · exp( 1√

l u)
3: for each i ∈ {1, . . . , l} {
4: u ← choose randomly according to N (0, B.S1)
5: B.Gi ← A.Gi + ui
6: B.Gi ← max{B.Gi , ugi } /* lower range bound ugi */
7: B.Gi ← min{B.Gi , ugi} /* upper range bound ogi */
8: }
9: return B
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Result of comparison

generation
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te constant step width

predefined adaptation

adaptive adaptation

selbf-adaptive adaptation
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Relation I

Condition Target value Expected impact
genotype mutation influences vicinity of mutation ope-

rator
mutation exploration random mutations support explora-

tion
mutation fine tuning local mutations(w.r.t fitness) sup-

port fine tuning
mutation diversity mutation increases diversity
mutation local optima local mutations(w.r.t fitness) pre-

serve local optima of the phenotype
(random mutations can introduce
more optima)

recombination exploration extrapolating operators strengthen
exploration

recombination fine tuning interpolating operators strengthen
fine tuning



Relations II

Condition Target value Expected impact
Div./Recomb. mutation small diversity and interpolating re-

combination damp outlier of the
mutation

Diversity Recombination high diversity support mechanism of
the recombination

Selection Exploration small selection pressure strengthen
the exploration

Selection fine tuning high selection pressure strengthen
fine tuning

Selection Diversity Selection mostly decreases diversity
Div./Recomb. Exploration combinating recombination strengt-

hen exploration on high diversity
Div./Recomb. fine tuning combinating recombination strengt-

hen fine tuning on high diversity



Relation III

Condition Target value Expected impact
Exploration Diversity explorating operations increase d

versity
Fine tuning Diversity fine tuning operations decrease d

versity
Diversity Selection small diversity decreases selectio

pressure of the fitness-proportion
selection

local optima search progress huge ammount of local optima inh
bits search progress

Expl./Fine tun./Sel. search progress Counterbalancing of all factors is r
quired



Further reading

Weicker, K. (2007).
Evolutionäre Algorithmen.
Teubner Verlag, Stuttgart, Germany, 2nd edition.
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