
Evolutionary Algorithms
Introduction

Prof. Dr. Rudolf Kruse Pascal Held
{kruse,pheld}@iws.cs.uni-magdeburg.de

Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik

Institut für Wissens- und Sprachverarbeitung
Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 1 / 61

Contents of the lecture

1. Introduction
2. Metaheuristics and related optimization methods I/II
3. Encoding, Fitness, Selection
4. Variation and genetic operators
5. Metaheuristics and related optimization methods I/II
6. The Scheme Theorem
7. Genetic programming
8. Evolution strategies and Verhaltenssimulation
9. No Free Lunch, parallelization, random numbers

10. Multi Criteria optimization
11. Application Example

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 13 / 61

Referenced Books

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 14 / 61

Further reading I

Bäck, T. and Schwefel, H. (1993).
An overview of evolutionary algorithms for parameter optimization.
Evolutionary Computation, 1(1):1–23.

Banzhaf, W., Nordin, P., Keller, R. E., and Francone, F. D. (1998).
Genetic Programming — An Introduction: On the Automatic Evolution of
Computer Programs and Its Applications.
Morgan Kaufmann Publisher, Inc. and dpunkt-Verlag, San Francisco, CA, USA
and Heidelberg, Germany.

Darwin, C. (1859).
On the Origin of Species by Means of Natural Selection, or the Preservation of
Favoured Races in the Struggle for Life.
John Murray, London, United Kingdom.

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 15 / 61

Further reading II

Dawkins, R. (1986).
The Blind Watchmaker.
Norton, New York, NY, USA.

Dawkins, R. (1989).
The Selfish Gene.
Oxford University Press, United Kingdom, 2nd edition.

Dawkins, R. (1990).
Der blinde Uhrmacher: ein neues Plädoyer für den Darwinismus.
Deutscher Taschenbuch-Verlag, Munich, Germany.

Dawkins, R. (1998).
Das egoistische Gen.
Rowohlt, Reinbek bei Hamburg, Germany.

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 16 / 61

Further reading III

Dorigo, M. and Stützle, T. (2004).
Ant Colony Optimization.
MIT Press, Cambridge, MA, USA.

Gerdes, I., Klawonn, F., and Kruse, R. (2004).
Evolutionäre Algorithmen.
Vieweg, Wiesbaden, Germany.

Michalewicz, Z. (1996).
Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, New York, NY, USA, 3rd (extended) edition.

Nissen, V. (1997).
Einführung in evolutionäre Algorithmen: Optimierung nach dem Vorbild der
Evolution.
Vieweg, Braunschweig/Wiesbaden, Germany.

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 17 / 61

Further reading IV

Vollmer, G. (1995).
Der wissenschaftstheoretische status der evolutionstheorie. einwände und
gegenargumente.
In Vollmer, G., editor, Biophilosophie, page 92–106. Reclam, Stuttgart,
Germany.

Weicker, K. (2007).
Evolutionäre Algorithmen.
Teubner Verlag, Stuttgart, Germany, 2nd edition.

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 18 / 61

Outline

1. Organisational

2. Introduction
Optimization problems
Approach

3. Biological basics

4. Principles of evolutionary algorithms

5. Introduction Example: The n-Queens Problem

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 4. April 2010

Classification: Computational Intelligence

Computational Intelligence = Neural Networks (Summer Term)
+ Fuzzy-Systems (Winter Term)
+ Evolutionary Algorithms

Computational Intelligence can be classified by:
• approaches without specific models
• approximation instead of analytical solutions
• finding fast and acceptable solutions

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 19 / 61

Solving optimization problems

Definition (Optimization problem)
An optimization problem (Ω, f , !) is given by a (search) space Ω, an
evaluation function f : Ω → IR, that assigns a quality assessment to all
candidate solutions, as well as a (comparison) relation ! ∈ {<, >}.
Then, the set of global optima H ⊆ Ω is defined as

H =
{x ∈ Ω | ∀x ′ ∈ Ω : f (x) & f (x ′)

}
.

• given: an optimization problem (Ω, f , !)

• wanted: an element x ∈ Ω which optimizes the function f in the
whole search space

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 20 / 61

Fundamental approaches

Analytical solution:
• efficient, but rarely applicable

Exhausting exploration:
• very inefficient, so only usable in small search spaces

Random search:
• always usable, but mostly inefficient

Guided search:
• Precondition: similar elements in Ω have similar function values

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 21 / 61

Application examples
Examples of optimization problems I

Parameter Optimization
• e.g. curvature of pipes (e.g. with a minimum of drag)
• generally: looking for a set of parameters which optimizes a

(real-valued) function as global as possible
Packing/Cutting Problems

• e.g. filling of a knapsack with respect to a maximum value
• wrapping of goods with a minimum of cases (bin packing

problem)
Routing Problems

• e.g. Traveling salesman problem (e.g. drilling of holes in printed
circuit boards)

• optimization of delivery routes, arrangement of printed circuit
board track

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 22 / 61

Application examples
Examples of optimization problems II

Allocation/Arrangepenm Problems
• facility allocation problem (dt: Steiner-Problem):
• positioning of distribution nodes e.g in a telephone network

Scheduling Problems
• e.g. time schedules, working plans, sequences of operations
• even compiler optimization – Reordering of instructions

Strategy Problems
• e.g. prisoner’s dilemma and other models in game theory
• Behavior modeling of different actors in economic life

Biological modeling
• e.g. Netspinner (describes the web building behavior of certain

spiders)
• EA optimizes set of parameters, comparing with reality ⇒ very

applicable model
Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 23 / 61

Outline

1. Organisational

2. Introduction

3. Biological basics

4. Principles of evolutionary algorithms

5. Introduction Example: The n-Queens Problem

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 4. April 2010

Motivation

• EA are grounded on theory of biological
evolution [Darwin, 1859].

• recommended: [Dawkins, 1986, Dawkins, 1989] (english),
[Dawkins, 1990, Dawkins, 1998] (german)

• fundamental principe:
• Beneficial traits resulting from random variation are favored by

natural selection
• better chances of procreation and multiply of individuals with

beneficial traits– „differential reproduction“
• Evolution theory explains diversity and complexity of species
• allows unification of all different disciplines in biology

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 24 / 61

Principles of organismic evolution I
according to [Vollmer, 1995]

Diversity
• all forms of life (even of the same species) differ from each other
• even different genetic material ⇒ diversity of species
• currently existing life forms = tiny fraction of all theoretically

possible ones
Variation

• new variants are continuously created by mutation and genetic
recombination (sexual reproduction)

Inheritance
• variations are heritable, as long as entering the germ line
• are genetically passed to the next generation
• gen. no inheritance of acquired traits (Lamarckisms)

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 25 / 61

Principles of organismic evolution II
Speciation

• genetically diverge of individuals and populations
⇒ new species (no crossbreeding of the members)
• charact. branching structure of phylogenet. „pedigree“

Birth surplus/Overproduction, nearly all life forms:
• more offspring that can ever become mature enough to procreate

themselves
Adaptation/Natural Selection/Differential Reproduction

• on average: hereditary variations of the survivors of a population
⇒ increases adaptation to the local environment
• Herbert Spencers Slogan “survival of the fittest” is misleading
• rather: „different fitness ⇒ different reproduction“

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 26 / 61

Principles of organismic evolution III
Randomness/Blind Variation

• Variations are triggered/initiated/caused by random
• no concentration on certian traits/beneficial adaptions
• non teleological, from the Greek: τελoς — goal, purpose

Gradualism
• Variations happen in comparatively small steps (as measured by

the complete information content(entropy) or the complexity of
an organism)

⇒ phylogenetic changes = gradual and relatively slow
(In contrast: saltationism — large changes in development)

Evolution / Transmutation / Inheritance with Modification
• Adaptation to environment ⇒ species evolve in the course of time
• theory of evolution opposes creationism

(claim: immutability of the species)
Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 27 / 61

Principles of organismic evolution IV
Discrete Genetic Units

• Store/Transfer/Change of genetic information in discrete units
• no continuously blend of hereditary traits
• otherwise: Jenkins nightmare through recombination

(complete disappearance of any differences in a population)
Opportunism

• processes of evolution work exclusively on what is present
• better/optimal solutions are not found if intermediary stages(are

necessary for solutions) exhibit certain fitness handicaps
Evolution-strategic Principles

• not only organisms are optimized, but also the mechanisms of
evolution: reproduction and mortality rates, life spans,
vulnerability to mutations, mutation step sizes, etc.

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 28 / 61

Principles of organismic evolution V
Ecological Niches

• competitive species can tolerate each other if they occupy
different ecological niches (“biospheres“)

• biological diversity of species is possible in spite of competition
and natural selection

Irreversibility
• course of evolution is irreversible and unrepeatable

Unpredictability
• course of evolution is neither determined, nor programmed ⇒ not

predictable
Increasing Complexity

• biological evolution has led to increasingly more complex systems
• open problem: how can we actually measure the complexity of life

forms?
Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 29 / 61

Outline

1. Organisational

2. Introduction

3. Biological basics

4. Principles of evolutionary algorithms
Fundamental terms
Ingredients
Formal definitions

5. Introduction Example: The n-Queens Problem

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 4. April 2010

Fundamental terms and meaning I
notion biology computer science
individual living organism solution candidate
chromosome DNA-histone-protein-strand sequence of comp. objects

describes „construction plan“ or (some of the traits)
of an individual in encoded form

usually multiple chromosomes usually only one chromosome
per individual per individual

gene part of a chromosome computational object
is the fundamental unit of inheritance

which determines a (partial) characteristic of an individual
allele form or „value“ of gene value of comp. object
(allelomorph) in each chromosome at most one form/value of a gene
locus position of a gene position of comp. object

at each position in chromosome exactly one gene

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 30 / 61

Fundamental terms and meaning II
notion biology computer science
phenotype physical appearance implementation

of a living organism of a solution candidate
genotype genetic constitution encoding

of a living organism of a solution candidate
population set of living organism bag/multiset

of chromosomes
generation population at a point in time
reproduction creating offspring of one creating (child) chromosomes

or multiple (usually two) from one or multiple
(parent) organisms (parent) chromosomes

fitness aptitude/conformity aptitude/quality
of a living organism of a solution candidate

determines chances of survival and reproduction

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 31 / 61

Ingredients of an evolutionary algorithm I
Encoding for the solution candidates

• highly problem-specific
• no general rules
• later: discussion of aspects that attention should be paid to when

choosing an encoding

A method to create an initial population
• commonly created by simple generation of random sequences
• depending on the chosen encoding: more complex methods needed

Evaluation function (fitness function) to evaluate the individuals
• represents environment and assess quality of individuals
• often: identical to the function to optimize
• may also contain additional elements (e.g. constraints)

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 32 / 61

Ingredients of an evolutionary algorithm II
Selection method on the basis of the fitness function

• chooses parental individuals to create offspring
• selects individuals transferred to the next generation without

change

A set of genetic operators to modify chromosomes
• Mutation — randomly changes of individual genes
• Crossover — recombination of chromosomes

• better: “crossing over” (meiosis-process, cell division phase)
• chromosomes are dissipated and assembled cross-over

Various parameters (population size, mutation probability, etc.)

Termination criterion
• user-specified number of generations have been created

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 33 / 61

Ingredients of an evolutionary algorithm III

• no improvement (of the best solution candidate) for a
user-specified number of generations

• user-specified minimum solution quality has been obtained

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 34 / 61

Formal definition: Decoding function
according to [Weicker, 2007]

• for every optimization problem: different representations of
solution candidates

• EA seperates space Ω (so called phenotype) from representation
of the solution candidate in individual (so called genotype G)

• Fitness function f is defined on Ω

• Mutation und Recombination is defined on G
• for evaluation: transformation of genotype represented individual

in Ω

Definition (Decoding function)
A decoding function dec : G → Ω is a transformation of a genotype G
to the phenotype Ω.

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 35 / 61

Formal definitions: individual
An individual contains in general:

1. genotype A.G ∈ G of an individual A
2. additional information or strategy parameters A.S ∈ Z

• e.g. parameter settings for genetic operators
• space Z of all possible additional information
• A.S as well as A.G are modifiable by operators

3. quality or fitness A.F ∈ IR

Definition (individual)
An individual A is a tuple (A.G , A.S, A.F) containing the solution
candidate (genotype A.G ∈ G), the optional additional information
A.S ∈ Z and the quality assessment A.F = f (dec(A.G)) ∈ IR.

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 36 / 61

Formal definitions: genetic operators
• Ξ („Xi“): set of all states of the random number generator
• no definition of the change of the actual state ξ ∈ Ξ

Definition (genetic operators)
A mutation operator (which is applied on a G-encoded optimization
problem and Z) is defined by the mapping

Mutξ : G × Z → G × Z.

Analogously, a recombination operator with r ≥ 2 parents and s ≥ 1
offspring (r , s ∈ IN) is defined by the mapping

Rekξ : (G × Z)r → (G × Z)s .

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 37 / 61

Formal definitions: Selection operator
• Input: population of r individuals, whereas s are chosen
• selection is changing/creating no new individuals
• selection defines indices of individuals only by fitness

Definition (Selection operator)
A selection operator Sel is applied on a population
P =

〈
A(1), . . . , A(r)

〉
:

Selξ : (G × Z × IR)r → (G × Z × IR)r
〈

A(i)
〉

1≤i≤r
*→

〈
A(ISξ(c1,...,cr)k)

〉

1≤k≤s
mit A(i) = (ai , bi , ci).

The underlying index-selektion has the shape

ISξ : IRr → {1, . . . , r}s .

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 38 / 61

Simple example for a selection operator

• Parental population consists of individuals A(1), A(2), . . . , A(5)

• related quality assessments of the individuals are given by
1. A(1).F = 2.5
2. A(2).F = 1.9
3. A(3).F = 3.7
4. A(4).F = 4.1
5. A(5).F = 2.4

• selection chooses with ISξ : IR5 → {1, . . . , 5}3 indices 4, 3 and 1
respectively individuals A(4), A(3) and A(1)

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 39 / 61

Fundamental Genetic Algorithm

Definition
A simple evolutionary algorithm on an optimization problem (Ω, f , !)
is an 8-tuple (G, dec, Mut, Rek, ISParents, ISEnvironment, µ, λ). Here, µ
describes the amount of individuals of the parental population and λ
defines the offspring per generation. In addition, it holds

Rek : (G × Z)k → (G × Z)k′
,

ISparents : IRµ → (1, . . . , µ)
k
k′ ·λ with k

k ′ · λ ∈ IN,

ISEnvironment : IRµ+λ → (1, . . . , µ + λ)µ.

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 40 / 61

Generic algorithm

Algorithm 1 General Scheme of an Evolutionary Algorithm
Input: optimization problem (Ω, f , !)

t ← 0
pop(t) ← create the initial population of size µ
evaluate pop(t)
while not termination criterion {

pop1 ← select parents of offsprings with size λ from pop(t)
pop2 ← create offspring by recombination of pop1
pop3 ← mutate individuals in pop2
evaluate pop3
t ← t + 1
pop(t) ← select µ individuals from pop3 ∪ pop(t − 1)

}
return best individual of pop(t)

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 41 / 61

Genetic vs. Evolutionary algorithm
seperation of the terms

Genetic algorithm:
• Encoding: Sequence of ones and zeros

⇒ Chromosome is Bitstring (word on alphabet {0, 1})

Evolutionary algorithm:
• Encoding: problem-related

(Sequence of letters, graphs, formulas, etc.)
• genetic operators: defined in relation to encoding and problem

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 42 / 61

Outline

1. Organisational

2. Introduction

3. Biological basics

4. Principles of evolutionary algorithms

5. Introduction Example: The n-Queens Problem
Backtracking Solution of the n-Queens Problem
Analytical Solution
Solution by using EA
Programme

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 4. April 2010

The n-Queens Problem
place n queens onto a n × n chessboard in such a way that no
rank(row),no file(column) and no diagonal contains more than one
queen
or: place queens in such a way that no queen is in the way of another
queen

Draw options of a queen Solution of the n-Queen Problem
Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 43 / 61

Backtracking Solution of the n-Queens Problem

1. place queens rank-by-rank bottom-up
(or column by column from left to right, o.ä.)

2. consider each row as follows:
• place one queen in a rank sequentially from left to right onto the

squares of the board
• for each placement: check if queen collides with queens in lower

ranks
• if not, work on next rank recursively
• afterwards: shift queen one suqare rightwards

3. return solution if queen is placed in top line without any collision

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 44 / 61

Backtracking Solution of the n-Queens Problem
int search (int y)
{ /* --- depth first search */

int x, i, d; /* loop variables, buffer */
int sol = 0; /* solution counter */

if (y >= size) { /* if a solution has been found, */
show(); return 1; } /* show it and abort the function */

for (x = 0; x < size; x++) { /* traverse fields of the current row */
for (i = y; --i >= 0;) { /* traverse the preceding rows */

d = abs(qpos[i] -x); /* and check for collisions */
if ((d == 0) || (d == y-i)) break;

} /* if there is a colliding queen, */
if (i >= 0) continue; /* skip the current field */
qpos[y] = x; /* otherwise place the queen */
sol += search(y+1); /* and search recursively */

}
return sol; /* return the number of */

} /* search() */ /* solutions found */

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 45 / 61

Analytical Solution
if only one solution (a placement of queens) is required, calculation of
positions for all n > 3 is defined as:

• n mod 2 = 1 ⇒ place 1 queen on (n − 1, n − 1) and n ← n − 1
• n mod 6 .= 2 ⇒ place queens

in the rows y = 0, . . . , n
2 − 1 in the columns x = 2y + 1,

in the rows y = n
2 , . . . , n − 1 in the columns x = 2y − n

• n mod 6 = 2 ⇒ place queens
in the rows y = 0, . . . , n

2 − 1 in the columns x = (2y + n
2) mod n,

in the rows y = n
2 , . . . , n − 1 in the columns x = (2y − n

2 + 2) mod n

Hence: it is not quite appropriate to approach the n-queens problem
with an evolutionary algorithm
Nevertheless: good illustration of certain aspects of evolutionary
algorithms on this problem

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 46 / 61

EA: Encoding
• Representation: 1 solution candidate = 1 chromosome with

n genes
• each gene: one rank of the board with n possibles alleles
• value of the gene: position of the queen in corresponding rank

solution
candidate
(n = 5)

phenotype 0
0

1

1

2

2

3

3

4

4 3
1
4
0
3

chromosome

genotype

• solution candidates with > 1 queen each rank not permitted
⇒ smaller search space

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 47 / 61

EA: data structure
• data type for 1 chromosome, which stores the fitness
• data type for 1 chromosome with buffer for „intermediary

population“ and flag for the best individual

typedef struct { /* --- an individual --- */
int fitness; /* fitness (number of collisions) */
int cnt; /* number of genes (number of rows) */
int genes[1]; /* genes (queen positions in rows) */

} IND; /* (individual) */

typedef struct { /* --- a population --- */
int size; /* number of individuals */
IND **inds; /* vector of individuals */
IND **buf; /* buffer for individuals */
IND *best; /* best individual */

} POP; /* (population) */

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 48 / 61

EA: main loop
shows basic form of an EA:

pop_init(pop); /* initialize the population */
while ((pop_eval(pop) < 0) /* while no solution found and */
&& (--gencnt >= 0)) { /* not all generations computed */

pop_select(pop, tmsize, elitist);
pop_cross (pop, frac); /* select individuals, */
pop_mutate(pop, prob); /* do crossover, and */

} /* mutate individuals */

parameters:
gencnt maximum amount of remaining generations
tmsize size of tournament selection
elitist indicates, if best individual will always be taken
frac fraction of individuals, which will be submitted by cross-over
prob mutation probability

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 49 / 61

EA: Initialize
create random series of n numbers from {0, 1, . . . , n − 1}

void ind_init (IND *ind)
{ /* --- initialize an individual */

int i; /* loop variable */

for (i = ind->n; --i >= 0;) /* initialize the genes randomly */
ind->genes[i] = (int)(ind->n *drand());

ind->fitness = 1; /* fitness is not known yet */
} /* ind_init() */

void pop_init (POP *pop)
{ /* --- initialize a population */

int i; /* loop variable */

for (i = pop->size; --i >= 0;)
ind_init(pop->inds[i]); /* initialize all individuals */

} /* pop_init() */

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 50 / 61

EA: Evaluation
• fitness: negated number of columns and diagonals with ≥ 1 queen

(negated number due to maximizing fitness)

0
0

1

1

2

2

3

3

4

4

2 collisions → fitness = −2

• if queens in 1 column/diagonal ≥ 2: count each pair (easier to
implement)

• fitness-function results immediately in termination criterion:
Solution has (highest possible) fitness 0

• also: termination is guaranteed when maximal generation is
reached

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 51 / 61

EA: Evaluation
count collisions by computation on chromosomes:

int ind_eval (IND *ind)
{ /* --- evaluate an individual */

int i, k; /* loop variables */
int d; /* horizontal distance between queens */
int n; /* number of collisions */

if (ind->fitness <= 0) /* if the fitness is already known, */
return ind->fitness; /* simply return it */

for (n = 0, i = ind->n; --i > 0;) {
for (k = i; --k >= 0;) { /* traverse all pairs of queens */

d = abs(ind->genes[i] -ind->genes[k]);
if ((d == 0) || (d == i-k)) n++;

} /* count the number of pairs of queens */
} /* in the same column or diagonal */
return ind->fitness = -n; /* return the number of collisions */

} /* ind_eval() */

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 52 / 61

EA: Evaluation
• calculation of the fitness of all individuals of the population
• simultaneously: determination of best individual
• best individual fitness 0 ⇒ solution is found

int pop_eval (POP *pop)
{ /* --- evaluate a population */

int i; /* loop variable */
IND *best; /* best individual */

ind_eval(best = pop->inds[0]);
for (i = pop->size; --i > 0;)

if (ind_eval(pop->inds[i]) >= best->fitness)
best = pop->inds[i]; /* find the best individual */

pop->best = best; /* note the best individual */
return best->fitness; /* and return its fitness */

} /* pop_eval() */

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 53 / 61

EA: selection of individuals
tournament selection:

• consider tmsize arbitrarily chosen individuals
• best (of these) individual „wins“ tournament and will be chosen
• the higher the fitness the better chance to get chosen

IND* pop_tmsel (POP *pop, int tmsize)
{ /* --- tournament selection */

IND *ind, *best; /* competing/best individual */

best = pop->inds[(int)(pop->size *drand())];
while (--tmsize > 0) { /* randomly select tmsize individuals */

ind = pop->inds[(int)(pop->size *drand())];
if (ind->fitness > best->fitness) best = ind;

} /* det. individual with best fitness */
return best; /* and return this individual */

} /* pop_tmsel() */

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 54 / 61

EA: selection of individuals
• tournament selection for individuals of the next population

generation
• perhaps best individuals will be applied (and not changed)

void pop_select (POP *pop, int tmsize, int elitist)
{ /* --- select individuals */

int i; /* loop variables */
IND **p; /* exchange buffer */

i = pop->size; /* select ’popsize’ individuals */
if (elitist) /* preserve the best individual */

ind_copy(pop->buf[--i], pop->best);
while (--i >= 0) /* select (other) individuals */

ind_copy(pop->buf[i], pop_tmsel(pop, tmsize));
p = pop->inds; pop->inds = pop->buf;
pop->buf = p; /* set selected individuals */
pop->best = NULL; /* best individual is not known yet */

} /* pop_select() */

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 55 / 61

EA: Crossover

• Exchange of a piece of the chromosomes between two individuals
• here: so called One-Point-Crossover

• choose cutting line between two genes by random
• change sequences of genes on one side of the cutting line
• Example: choose cutting line 2

1
2
3
4

Fitness: -2 -3 0 -3

3
1
4
0
3

1
4
3
2
0

3
1
4
2
0

1
4
3
0
3

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 56 / 61

EA: Crossover
Exchange of pieces of the chromosomes between two individuals
void ind_cross (IND *ind1, IND *ind2)
{ /* --- crossover of two chromosomes */

int i; /* loop variable */
int k; /* gene index of crossover point */
int t; /* exchange buffer */

k = (int)(drand() *(ind1->n-1)) +1; /* choose a crossover point */
if (k > (ind1->n >> 1)) { i = ind1->n; }
else { i = k; k = 0; }
while (--i >= k) { /* traverse smaller section */

t = ind1->genes[i];
ind1->genes[i] = ind2->genes[i];
ind2->genes[i] = t; /* exchange genes */

} /* of the chromosomes */
ind1->fitness = 1; /* invalidate the fitness */
ind2->fitness = 1; /* of the changed individuals */

} /* ind_cross() */

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 57 / 61

EA: Crossover

• certain rate of individuals is submitted by crossover
• include of both crossover-products in new population
• „parental individuals“ are getting lost
• no crossover on best individual (if taken over)

void pop_cross (POP *pop, double frac)
{ /* --- crossover in a population */

int i, k; /* loop variables */

k = (int)((pop->size -1) *frac) & ~1;
for (i = 0; i < k; i += 2) /* crossover of pairs of individuals */

ind_cross(pop->inds[i], pop->inds[i+1]);
} /* pop_cross() */

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 58 / 61

EA: Mutation
• replacement of randomly chosen genes (changing of alleles)
• perhaps number of replaced genes is chosen by random

(number of replaced genes should be as small as possible)

Fitness: -2 -4

3
1
4
0
3

3
1
2
0
4

• mutations are mostly damaging (decrease the fitness)
• not existing alleles can be created by mutation

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 59 / 61

EA: Mutation
• decide whether to continue mutating or not
• best individual (if taken over) won’t be submitted by mutation

void ind_mutate (IND *ind, double prob)
{ /* --- mutate an individual */

if (drand() >= prob) return; /* det. whether to change individual */
do ind->genes[(int)(ind->n *drand())] = (int)(ind->n *drand());
while (drand() < prob); /* randomly change random genes */
ind->fitness = 1; /* fitness is no longer known */

} /* ind_mutate() */

void pop_mutate (POP *pop, double prob)
{ /* --- mutate a population */

int i; /* loop variable */
for (i = pop->size -1; --i >= 0;)

ind_mutate(pop->inds[i], prob);
} /* pop_mutate() */ /* mutate individuals */

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 60 / 61

Programs

• the discussed methods on solving the n-queens-problem,
• Backtracking,
• Analytical Solution,
• Evolutionary Algorithms,

can be found on the lecture website as console programs
(C-Programs queens.c und qga.c)

• Call without parameters: List of options of the program
• please note: EA not always finds a solution (Fitness < 0)
• different properties of the methods will be discussed in several

exercise sheets

Prof. R. Kruse, P. Held Evolutionary Algorithms – Introduction 04.04.2010 61 / 61

