Inference in Bayes-Networks and
Markov-Networks




Problems

The propagation algorithm as presented can only deal with trees.

Can be extended to polytrees (i.e. singly connected graphs with
multiple parents per node).

However, it cannot handle networks that contain loops!
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Idea

Main Objectives:

Transform the cyclic directed graph into a secondary structure without cycles.

Find a decomposition of the underlying joint distribution.

Task:

Combine nodes of the original (primary) graph structure.
These groups form the nodes of a secondary structure.

Find a transformation that yields tree structure.
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Idea (2)

Secondary Structure:

We will generate an undirected graph mimicking (some of) the conditional inde-
pendence statements of the cyclic directed graph.

Maximal cliques are identified and form the nodes of the secondary structure.

Specity a so-called potential function for every clique such that the product of all
potentials yields the initial joint distribution.

In order to propagate evidence, create a tree from the clique nodes such that the
following property is satisfied:

If two cliques have some attributes in common, then these attributes have
to be contained in every clique of the path connecting the two cliques.
(called the running intersection property, RIP)

Justification:

Tree: Unique path of evidence propagation.

RIP: Update of an attribute reaches all cliques which contain it.
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Prerequisites

Complete Graph

An undirected Graph G = (V, E) is called complete, if every pair of (distinct) nodes
is connected by an edge.

Induced Subgraph

Let G = (V, F) be an undirected graph and W C V a selection of nodes. Then,
Gw = (W, Eyy) is called the subgraph of G induced by W with Eyy being

Eyw ={(u,v) € E'|u,v e W}

Incomplete graph Subgraph (W, Eyy) Complete (sub)graph
with W ={A, B,C, E}
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Prerequisites (2)

Complete Set, Clique

Let G = (V, E) be an undirected graph. A set W C V is called complete iff it induces
a complete subgraph. It is further called a clique, ift W is maximal, i.e. it is not
possible to add a node to W without violating the completeness condition.

a) W is complete < W induces a complete subgraph

b) W is a clique < W is complete and maximal

s N
A B,

D) ) ¢ - 1a,8.0.D)
- \/ Cy={B,D,E}
¢ D)

C3={E,F}

3 cliques
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Prerequisites (3)

Perfect Ordering

Let G = (V, E) be an undirected graph with n nodes and o = (vy,...,v,) a total
ordering on V. Then, « is called perfect, if the following sets

adj(v;) N {vy, ..

U1} i=1,...,n

are complete, where adj(v;) = {w | (v;,w) € E} returns the adjacent nodes of v;.

a=(A, C, D, F, E, B, H, G)
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« is a perfect ordering

Bayesian Networks

i | adj(v;) adj(v;) N {vy, ..., vi—1}

1| {C} {CyN O = () complete
2 | {A, D, F} {A}n{A, D, F} = {A} complete
31{C,B,E, F} {A,C}N{C,B,E, F} ={C} complete
4 1{G,C,D,E,;H} | {A,C,D}n{G,C,D,E,H} ={C,D} | complete
5({B,D,F,H} | {A,C,D,FYN{B,D,F,HY =1{D,F}| complete
6|{D,FE} {A,C,D,F,E}N{D,E} ={D, E} | complete
7| {F,E} {A,C,D,FE,B}n{F,E} ={F, E} | complete
8| {F} {A,C,D,F,E,BH}N{F} ={F} complete
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Prerequisites (4)

Running Intersection Property

Let G = (V, E) be an undirected graph with p cliques. An ordering of these cliques
has the running intersection property (RIP), if for every j > 1 there exists an i < j

Cj N (Clu---u()j_1> C C;

such that:
n B

Cl C’4
- a 7

C's /
02 C 5
Ga— A

Cs
¢ =(Cq, Cy, C3, Cy, Cs, Cg)
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DD O = W N>,

CoNCq :{C}
C3N (Ch U Cy) Z{D,F}
C4ﬂ(01UC2U03) = {D,E}
C5N(CTUCyUC3UCY) ={E, I}
CeN(CTUCLUC3UCLUCs) ={F}

¢ has running intersection property

Bayesian Networks

CCl
C (Y
C O3
C O3
C C5

Ot W W DO | .
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Prerequisites (5)

If a node ordering « of an undirected graph G = (V, E)) is perfect and the cliques of
G are ordered according to the highest rank (w.r.t. «) of the containing nodes, then
this clique ordering has RIP.

4) B
1 6

5 6

C @) AE
5 /

4 7

a4 H,
S
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Clique Rank

{A,C} | max{a(A), a(C)} =2 =
{C,D,F} | max{a(C),a(D),a(F)} =4 — (9
{D,E,F} | max{a(D),a(F),a(F)} =5 —C4
{B,D,FE} | max{a(B),a(D),a(E)} =6 — Cy4
{F,E,H} | max{a(F),a(F),a(H)} =7 — Cj

{F,G} | max{a(F),a(G)} 8 — (g

How to get a perfect ordering?

Bayesian Networks
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Triangulated Graphs

Triangulated Graph

An undirected graph is called triangulated if every simple loop (i. e. path with identical
start and end node but with any other node occurring at most once) of length greater
3 has a chord.

(D) E

not triangulated triangulated not triangulated no chord for (A, B, E, C)
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Triangulated Graphs (2)

Maximum Cardinality Search

Let G = (V, E) be an undirected graph. An ordering according mazimum cardinality
search (MCS) is obtained by first assigning 1 to an arbitray node. If m numbers
are assigned the node that is connected to most of the nodes already numbered gets
assigned number n + 1.

3 can be assigned to D or F'
6 can be assigned to H or B
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Triangulated Graphs (3)

An undirected graph is triangulated iff the ordering obtained by MCS is perfect.

To check whether a graph is triangulated is efficient to implement. The optimization
problem that is related to the triangulation task is NP-hard. However, there are good
heuristics.

Moral Graph (Repetition)

Let G = (V, E) be a directed acyclic graph. If u,w € W are parents of v € V' connect
u and w with an (arbitrarily oriented) edge. After the removal of all edge directions
the resulting graph G, = (V, E’) is called the moral graph of G.
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Join-Tree Construction (1)

Given directed graph.
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Join-Tree Construction (2)

e Moral graph
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Join-Tree Construction (3)

e Moral graph
e Triangulated graph
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Join-Tree Construction (4)

3
@ © (D)

\
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e Moral graph
e Triangulated graph
e MCS yields perfect ordering
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Join-Tree Construction (5)

1 2
- )
QD \@ D @ ° M?ral graph
e Triangulated graph
3 + e MCS yields perfect ordering

e Clique order has RIP
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Join-Tree Construction (6)

e Moral graph

CFD e Triangulated graph

e MCS yields perfect ordering
e Clique order has RIP
e Form a join-tree

Two cliques can be connected if
they have a non-empty intersec-
tion. The generation of the tree
follows the RIP. In case of a tie,

DB connect cliques with the largest in-

E tersection. (e.g. DBE—FED in-
stead of DBE—C'F D) Break re-
maining ties arbitrarily.
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Example: Expert Knowledge

Qualitative knowledge:

Metastatic cancer is a possible cause of brain tumor, and is also an ex-
planation for increased total serum calcium. In turn, either of these could
explain a patient falling into a coma. Severe headache is also possibly
associated with a brain tumor.

Special case:

The patient has heavy headache.

Query:
Will the patient fall into coma?
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Example: Choice of State Space

Attribute

Possible Values

metastatic cancer
increased total serum calcium
brain tumor

coma

= O QT =~

severe headache

dom(A)
dom(B)
dom(C)
dom(D)

(

dom(FE)

{a1,a0} -1 = existing
{b1,b9} -9 = notexisting
{c1, 02}

{dy,do}

{e1, e}

Exhaustive state space:

() = dom(A) x dom(B) x dom(C') x dom(D) x dom(F)

Marginal and conditional probabilities have to be specified!

Rudolf Kruse, Pascal Held
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Example: Qualitative Knowledge

P = 0.8
(er] e _ headaches common, but more common if tumor present
Ple1| ) =06
P<d1 bl,Cl — 08 )
P(dy | by,c2) =08 o |
P(dy | by, c;) =08 > coma rare but common, if either cause is present
P(

increased calcium uncommon,
’
= (.2 but common consequence of metastases

/
N\

f brain tumor rare, and uncommon consequence of metastases

)
)
)
)
) :
dy | by, c0) =0.05 |
)
)
)
)
) =02 } incidence of metastatic cancer in relevant clinic
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Propagation on Cliques (1)

Example: Metastatic Cancer

Dependencies Moralization / Triangulation MCS, hyper graph

BC BCD cl— cE

Clique tree with separator sets
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Propagation on Cliques (3)

Quantitative knowledge:

(a,b,¢c) | P(a,b,c)
a1, by, cq 0.032
as, by, cq 0.008
an, bg, C9 0.608

Potential representation:

P(A,B,C,D, E,)

Rudolf Kruse, Pascal Held

(b,c,d) | P(b,c,d) (c,e) | Plc e
bi,c1,d; | 0.032 ci,er | 0.064
bo, c1, dq 0.032 co,e1 | 0.552
: : c1,eo | 0.016
ba, co, do 0.608 co,€2 | 0.368
= P(A|D)P(B|APC|APD|BC)PE|C)
P(A,B,C)P(B,C, D), P(C,E)

P(BC)P(C)

Bayesian Networks
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Propagation on Cliques (4)

Propagation:

P(dy) = 0.32, evidence £ =eq, desired: P*(...) = P(- | {e1})

P*(c) = P(c| eq) conditional marginal distribution
P*(b,c,d) = P%(Z?) d>P(c | e;)  multipl. /division with separation prob.
P(b,c,d), P*(b,c) calculate marginal distributions
P*(a,b,c) = Pjgcz[;b,c)c >P(b, c | e1) multipl./division with separation prob.
P*(dy) = P(dy | e;) =0.33
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Propagation on Cliques (5)

%) Class: unnamed1 =l=E3]
FEB|wH BT [Ro|TmlT|eFnE

B8 uearedt |
EI---.‘DF*

..... — 20.00 al
..... ] 80.00 a2

----- 1 32.00 bl
----- /] £&.00 bz

----- L1 5.00 c1
----- I 92,00 2

----- 1 32,00 di
----- /] 668,00 dz

----- /1] 61.60 el
----- /1 38,40 ez

W

Marginal distributions in the HUGIN tool.
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Propagation on Cliques (6)

%) Class: unnamedl @@
& & @ Py
El--- unnamed]

= @0

----- 1 20,78 al

----- /] 79.22 a2

S He S H:
o
b= =0

----- 1 32.47 bl
----- ] £7.53 bz

----- L1 10,39 1
----- [ 89,61 2

----- |1 33.25 di
----- ] 66,75 dz

o @Oe
----- C 1w |
----- — &2

kW

Conditional marginal distributions with evidence F/ = ey
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Factorization

Potential Representation

Let V' = {X,} be a set of random variables X; : Q — dom(X;) and P the joint
distribution over V. Further, let

{(W; | W, CV,1<i<p}

a family of subsets of V' with associated functions

?7DZ' : >< dom(X]) — R
X]‘EWZ'

It is said that P(V') factorizes according ({Wl, N N T K T 7¢p}) if P(V) can

be written as:
p
P(v) =k - ]] vi(w)
1=1

where k£ € R, w; is a realization of W; that meets the values of v.
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Example

V ={A,B,C}, Wiy ={A,B}, Wo={B,C}

dom(A) = {ay, az}
dom(B) = {b1, ba}
dom(C) = {c1, c2}

1

@B ©® Plaho-
Y1 {a1, a0} x {b1,bo} = R
W {b1,bot X {e1, 0} = R

¥1(a,b) =1
Yo(b,c) =5

0

({W1, Wa}, {1)1,19}) is a potential representa-
tion of P.
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Factorization of a Belief Network

Let (V, E, P) be an belief network and {C1, ..., Cp} the cliques of the join tree. For
every node v € V' choose a clique C such that v and all of its parents are contained in
Ci.e. {v} Uc(v) C C. The chosen clique is designated as f(v).

To arrive at a factorization ({C1,...,Cp},{¥1,...,¥p}) of P the factor potentials
are:

Yile))= [  Plolc))

v:f(v)=Cj

Separator Sets and Residual Sets
Let {C1,...,Cp} be aset of cliques w.r.t. V. The sets

S, =C;N(CLuU---UC;_y), 1=1,...,p, S1=10
are called separator sets with their corresponding residual sets
R; = Cj\S;
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Decomposition w.r.t. a Join-Tree

Given a clique ordering {C1, . .., Cp} that satisfies the RIP, we can easily conclude
the following separation statements:

R, 1L (C1U---UC;_1)\S; | S; for ¢ > 1

Hence, we can formulate the following factorization:

p
P(Xy,....Xn) = ]I P(R; | Sy),
1=1
which also gives us a representation in terms of conditional probabilities
(as for directed graphs before).
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Example

Cq @BC’)

9 @C’D)

C3 (CE

Rudolf Kruse, Pascal Held

Sp =0 R, ={A,B,C} ;Eg)} = gl
SQZ{B,C} RQZ{D} f(C);Ci
=10 Rs=iB) 7(D) = C;
f(E) =Cs
W(Cy) = P(A,B,C | 0) = P(A)- P(C'| A) - P(B|A)
9(Cy) = P(D | B,C)
Y3(C3) = P(E | C)

Propagation is accomplished by sending messages across
the cliques in the tree. The emerging potentials are
maintained by each clique.

Bayesian Networks
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Propagation in Join Trees

Main Idea

Incorporate evidence into the clique potentials.

Since we are dealing with a tree structure, ex-
ploit the fact that a clique “separates” all its
neighboring cliques (and their respective sub-
trees) from each other.

Apply a message passing scheme to inform
neighboring cliques about evidence.

Since we do not have edge directions, we will
only need one type of message.

After having updated all cliques’ potentials, we
marginalize (and normalize) to get the proba-
bilities of single attributes.
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Incorporating Evidence

Every clique C; maintains a potential function ;.

If for an attribute £ some evidence e becomes known, we alter
all potential functions of cliques containing E as follows:

0, if a value in ¢; is inconsistent with e

Vi(c) =

Y;(c;), otherwise

All other potential functions are unchanged.

Rudolf Kruse, Pascal Held Bayesian Networks 279



Notation and Nomenclature

C5 Cy In general:
Clique C; has g neighboring cliques By, ..., By.

C;; 1s the set of cliques in the subtree containing C;
after dropping the link to Bj.

X5 1s the set of attributes in the cliques of C;;.
V = X;; U X}j; (complementary sets)
Sij = Sji = C; N Cj (not shown here)
R;; = X;; \ Si;j (not shown here)
Here:
Neighbors of C: {Co,Cy, C3}, C13 = {Cq,Cy, Cy}
X135 = {A,B,C,D,E, G}, Si3={C,G}
V = X13UX31={A,B,C,D,E,F,G,H}
Ris={A,B,D,E} Ry ={F,H}
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Task: Calculate P(s;;):

VA Sii = (Xi5UX50)\ Sy
= (X5 \ Sij) U (X5i\ Sij)
= Rij U Rji

VA S13 = (X13U X31) \ S13
= Ri3 U Rz
VA\A{C,G} = {A,B,D,E} U {F H}
= {A,B,D,E,F,H}

Note: R;; is the set of attributes that are in Cj’s
subtree but not in B;’s. Therefore, R;; and R;; are
always disjoint.
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Task: Calculate P(s;;):

P(s;j) = >, ﬁm@)

U\Sij k=1
m
last slide Z H b
= k(cr)
rig\Urji k=1
|
e (11 )5 1 e
"ij c . €Cyj Tji c,€Cjy

= Mij(sij) - Mji(sij)

M ; 1s the message sent from Cj to neighbor B, and
vice versa.

Bayesian Networks
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Task: Calculate P(¢;):

q

VG = (UXm> \ G

Example:

V\C; = RojURy UR3
{A,D,F,H} = {A}U{D}U{F H}
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Task: Calculate P(¢;):

P(c) = >

v\¢; J
N

\ - g

Vi(c;)

s

Marginalization Decomposition

= ¥i(e;) 3 11 ¥j(e))

v\¢; 17

= ile)) Y. 1] ¥iley)

r1UUrgi i

= ;(c;) (Z 11 W(%))

"l cpeCy;
My;(si5)

q
= H ji(sij)

7

Bayesian Networks
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Example: P(cp):

Plc1) = 91(e1)Mai(s12) My (s14) M31(513)

M;(si;) can be simplified further (without proof):

M;j(sij) = > V()

T'ij CkECZ]
= > vile) [] Myi(spi)
Ci\Sij k#j
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Final Algorithm

Input: Join tree (C, W) over set of variables V' and evidence E = e.
Output: The a-posteriori probability P(x;|e) for every non-evidential X;.
Initialization: Incorporate evidence £/ = e into potential functions.
Iterations:

L. For every clique C; do: For every neighbor B of C; do: It C; has received all
messages from the other neighbors, calculate and send M;;(s;;) to B;.

2. Repeat step 1 until no message is calculated.
3. Calculate the joint probability distribution for every clique:
q
P(ci) oc ilei) [T Mji(sij)
j=1
4. For every X € V calculate the a-posteriori probability:

P(zi|le) = > Plc)
C\Tj

where (. is the smallest clique containing Xj;.
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Example: Putting it together

Goals: Find the marginal distributions
and update them when evidence
H = hq{ becomes known.
Steps:
1. Transform network into join-tree.

2. Specity factor potentials.

3. Propagate ‘“zero” evidence to ob-
tain the marginals before evidence is
present.

4. Update factor potentials w.r.t. the
evidence and do another propagation
run.
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Example: Step 1: Find a Join-Tree

Join-Tree creation:
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Example: Step 1: Find a Join-Tree

Join-Tree creation:

1. Moralize the graph.
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Example: Step 1: Find a Join-Tree

Join-Tree creation:

1. Moralize the graph.
2. Not yet triangulated.
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Example: Step 1: Find a Join-Tree

Join-Tree creation:

1. Moralize the graph.
2. Triangulate the graph.
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Example: Step 1: Find a Join-Tree

Join-Tree creation:

1. Moralize the graph.
2. Triangulate the graph.

3. Identify the maximal cliques.
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Example: Step 1: Find a Join-Tree

Example Bayesian network One of the join trees

Rudolf Kruse, Pascal Held Bayesian Networks 293



Example: Step 2: Specity the Factor Potentials

Decomposition of P(A, B,C, D, E, F,G, H):

5)
P(CL, b, C, d7€7fag7h> — H \PZ(CZ>
1=1

=Uy(b,c,e,g) - Vy(a,b,c)
- Ws(e, f,g) - Wy(b, d)
) \115(g7 fa h)

Where to get the factor potentials from?
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Example: Step 2: Specity the Factor Potentials

As long as the factor potentials multiply together as on the previous slide,
we are free to choose them.

Option 1: A factor potential of clique Cj is the product of all conditional prob-
abilities of all node families properly contained in Cj:

Vi) =1- 1  Pla | )
{X;}UY; € G A
parents(X;)=Y;

The 1 stresses that if no node family satisfies the product condition, we assign a
constant 1 to the potential.

Option 2: Choose potentials from the decomposition formula:
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Example: Step 2: Specity the Factor Potentials

Option 1: Factor potentials according to the conditional distributions of the
node families of the underlying Bayesian network:

Ui(b,c,e,g) = Ple]|b,c)-Pl(g|e,b)
Uy(a,b,c) = P(b|a)-P(c|a)-Pla)
Us(e, f,9) = P(f|¢)

Wy(b,d) = P(d]b)
Us(g, f,h) = P(h|g,f)

(This assignment of factor potentials is used in this example.)

Option 2: Factor potentials chosen from the join-tree decomposition:

V(b c.e,9) = Pbelcg)
Uy(a,b,c) = P(a|b,c)
Us(c, f,9) = Plc] f,9)

Wy(b,d) = P(d|b>
Us(g, fh) = P(h,g, [)
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Example: Closer Look on Option 2: Separation in a Join-Tree

C9 Cy Encoded independence statements:
Given any separator, the variables in the cliques on
one side become independent of the variables in the
BC B cliques on the other side.
512 S14
¢
513 |CG
C3
S35 | FG
Cs
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Example: Closer Look on Option 2: Separation in a Join-Tree

C5 Cy Encoded independence statements:
Given any separator, the variables in the cliques on
one side become independent of the variables in the
B cliques on the other side.
512 S14
Cl Al D E,FG H|B,C
S13 [CG
C3
Sa5 | FG
Cs
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Example: Closer Look on Option 2: Separation in a Join-Tree

C5 Cy Encoded independence statements:
Given any separator, the variables in the cliques on
one side become independent of the variables in the
BC cliques on the other side.

512 S14
(%;Ol Al D E,F,G,H|B,C

DU ACE FG,H|B
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Example: Closer Look on Option 2: Separation in a Join-Tree

C9 Cy Encoded independence statements:

Given any separator, the variables in the cliques on
one side become independent of the variables in the

BC B cliques on the other side.
512 Sy
Cl AlLD,E,F.G,H|B,C
S13 DU ACEFGH|B
ABEDILF H|G,C
@r c:
S35 | FG
oo
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Example: Closer Look on Option 2: Separation in a Join-Tree

2

Rudolf Kruse, Pascal Held

Encoded independence statements:

Given any separator, the variables in the cliques on
one side become independent of the variables in the
cliques on the other side.

AU D,E,F.G,H|B,C

DU AC,E FG H|B
AB,E,DILF,H|G,C

H1 A B,C,D,E|F,G
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Example: Closer Look on Option 2: Decomposition

The four separation statements translate into the following independence statements:

Al D E,F,G,H|B.C < P(A|B,C,D,E,F,G,H) =P(A|B,C)

DU ACEFGH|B =PD|BCEFGH) =PD]|B)
AB,E.DI FH|G,C = P(B,E | G,.C,F,H) — P(B,E|G,C)

H1 A B,C,D.,E|F,G = P(C|FG,H) — P(C | F.G)

According to the chain rule we always have the following relation:

P(A,B,C,D,E,F,G,H) = P(A| B,C,D,E,F,G, H)
(D| B,C,E,F,G, H)-
(B,E | C,F,G, H)-

(C| F,G,H)

(F,G, H)

T U T
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Example: Closer Look on Option 2: Decomposition

The four separation statements translate into the following independence statements:

Al D E,F,G,H|B.C < P(A|B,C,D,E,F,G,H) =P(A|B,C)

DU ACEFGH|B =PD|BCEFGH) =PD]|B)
AB,E.DI FH|G,C = P(B,E | G,.C,F,H) — P(B,E|G,C)

H1 A B,C,D.,E|F,G = P(C|FG,H) — P(C | F.G)

Exploiting the above independencies yields:

P(A,B,C,D,E,F,G,H) = P(A| B,0)-
(D| B)-
(B,E | C,G)-
(O] F,G)-
(F,G,H)

T U T
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Example: Closer Look on Option 2: Decomposition

The four separation statements translate into the following independence statements:

AU D,E,F,G,H|B.C < P(A|B,C,D,E,F,G,H) =P(A|B,C)

DU ACEFGH|B =PD|BCEFGH) =PD]|B)
AB,E.DI FH|G,C = P(B,E | G,.C,F,H) — P(B,E|G,C)

H1 A B,C,D.,E|F,G = P(C|FG,H) — P(C | F.G)

Getting rid of the conditions results in the final decomposition equation:

P(A,B,C,D,E,F,G,H) = P(A|B,C)P(D|B)P(B,E|C,G)P(C|F,G)P(F,G, H)

~ P(A,B,C)P(D,B)P(B,E,C,G)P(C,F,G)P(F,G, H)
B P(B,C)P(B)P(C,G)P(F,G)

_ P(C)P(Co)P(C3)P(Cy) P(C5)
P(S12)P(S14)P(513) P(S35)
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Example: Step 3: Messages to be sent for Propagation

Co Cy

According to the join-tree propagation algo-
% & rithm, the probability distributions of all clique

instantiations ¢; is calculated as follows:

BC B
q
Mk %41 P(c;) o< Wile;) [T Myi(sij)
j=1
M13| cG |M31 Spelt out for our example, we get:
C P(Cl> — P<b ¢, € g) - \Ijl<b7 C,B,g) 'M21(b7 C) M31(Cvg)'M41(b>
3 P(cy) = Pla,b,c) < Vy(a,b,c) - Mya(b,c)
Y Iy P(ez) = Ple, f,g9) < Vs(c, f,g9) - Mis(c,g) - Mss3(f,g)
| FG | & Ples) = Pb.d) o Wib,d) - Muf(b)
P(cs) = P(f,g,h) oc Us(f,g,h) - Mss(f,9)
Cs

The oc-symbol indicates that the right-hand
side may not add up to one. In that case we
just normalize.
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Example: Step 3: Message Computation Order

The structure of the join-tree imposes a partial ordering according to which the
messages need to be computed:

My (D)

Ms3(f,g) =
Ms1(b,c) =
Msi(c, g) =
Mys(c, g) =

MlQbC

Miy(b) = > Wi(b, ¢, e, 9) M2y (b, c) M3y (c, g)

Ms5(f,9) =

Rudolf Kruse, Pascal Held

= Z Wy (b, d)

Z% 59, h

Z\Ifgabc
2@3 £, 9)Ms3(f, g)

Z‘lﬁ (b,c, e, g)Ma1(b, c)My1(D)
b,e

> Wb, c e, g)Mszi(c, g) My (b)
g

c,e,g

2‘1’3

, fr9)Mia(c, g)

My) (Mg
(Msp
M (g

ENERE

Arrows represent is-needed-for re-
lations.  Messages on the same
level can be computed in any or-
der. Messages are computed level-
wise from top to bottom.
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Example: Step 3: Initialization (Potential Layouts)

Co

al

gl

€2

gl

€2

az

al

€2

!

€2

a

€1

91

92

€2

g1

92

€2

€1

91

92

€2

91

92

€l

bo

€1

91

92

Wy
d
by d;
d
by d;
V3
g1
bil
oy
/2 7
bil gl
“ g?
fo s

€2

91

92

€2

€1

91

92

€2

g1

bil

g1

92

92
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Example: Step 3: Initialization (Potential Values)

Co Cy
5 P Wy P
1 ] 0.036 dy [ 04
. b ¢y | 0.084 b dy [ 0.6
1 o1 0144 p |1 [ 0.7
2, 10336 21dy 103
, L] 0.028 Cl
o e [0.012
by cq | 0.252 Uy P
¢y | 0.108 PREELS
1 g | 0.1
|
g1 |09
Uy - IS 03 f2 g5 | 0.9
g1 | 0.1 gr | 04
e [0010 o0
1 o | 910320 €2 91106
, 2 gy 1 0,480 2, 08
1 g1 | 0.330
. “l gy [0.020
2 g, [ 0240 Chs
€2 79, [0.360
. |91 0210
" g 0.09 U5 P
o, L1 [ 0350 By [02
by go | 0.350 ; 91 hy | 0.8
e L1 0.070 I hi |05
. g2 | 0.030 P2 hy (05
2 0 g1 | 0.450 hi| 0.4
g2 | 0.450 £ 9 Thy 106
2 hy | 0.7
92 Ty 103
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Example: Step 3: Initialization (Sending Messages)

bi,c1 b1,c0 bo,c1 bo,co
My = (0.06,0.10,0:40,0.44)
Vs P b1 by
5 L] 0.036 0.4 My = (1, 1)
. L ey [0.084 0.6
I o1 0144 0.7
2 ¢y [0.336 0.3
5 | c1] 0028
. e [0.012
2 | c1 | 0252 P
2 "¢y [ 0.108 01
0.1
0.9
¥ 0.9
ey 9L 0.190 0.4
o g2 | 0.010 0.4
ey 91 0.320 0.6
b g2 | 0.430 0.6
o) |91 [ 0380
. g5 | 0.020
2 g1 | 0.240
€2 79, [0.360
. |91 0210
. 195 170.000
1 g1 | 0.350
by “2 g5 [ 0.350
g1 | 0.070
. 179, [0.030
2 o |91 ] 0450
2 gy [0.450
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Example: Step 3: Initialization (Sending Messages)

U P by by
b, [c1 [ 0086 8;1 My = (1, 1)
¢y | 0.084 .
“ ) e[ 014 0.7 C1,91  C1,92  €2,91 €2,92
2 [, 70,336 03 M3 = (o. 54,0.206, 0.290, 0 50)
b, L[ 0028
o ¢y | 0.012 Ju,91 J1,92 [2,91 [2,92
e [022 P Ms; = (0.14,0.12,0.40,0.33)
co | 0.108 0.1
0.1
0.9
Wy 0.9
e g1 | 0.190 0.4
o g2 | 0.010 0.4
e g1 | 0.320 06
by g | 0.480 0.6
o) 01| 0350
. go | 0.020
2 g1 | 0.240
€2 79, [0.360
Lo [0210
. 195 170.000
1 g1 | 0.350
by “2 g5 [ 0.350
g1 | 0.070
. 179, [0.030
2 g1 | 0.450
2 "g, [ 0.450
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Example: Step 3: Initialization (Sending Messages)

al

gl

0.036

04

€2

0.084

0.6

gl

0.144

0.7

€2

0.336

az

al

0.028

0.3

€2

0.012

!

0.252

€2

0.108

0.1

0.1

0.9

a

€1

91

0.190

0.9

92

0.010

0.4

€2

g1

0.320

0.4

92

0.480

0.6

€2

€1

91

0.380

0.6

92

0.020

€2

91

0.240

92

0.360

€l

bo

€1

91

0.210

92

0.090

€2

91

0.350

92

0.350

€2

€1

91

0.070

92

0.030

€2

g1

0.450

92

0.450
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Moy (066,010 0.40,044)
My = (bf ,bf)

€1,91 C1,92 €2,91 €2,92
Mis = (0.254,0. 06, 0.290, 0 50)

f

(0.

€1,91 €1,92 0291 €2,92
Mglz( 1, 1 1 )
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Example: Step 3: Initialization (Sending Messages)

al

gl

0.036

04

€2

0.084

0.6

gl

0.144

0.7

€2

0.336

az

al

0.028

0.3

€2

0.012

!

0.252

€2

0.108

0.1

0.1

0.9

a

€1

91

0.190

0.9

92

0.010

0.4

€2

g1

0.320

0.4

92

0.480

0.6

€2

€1

91

0.380

0.6

92

0.020

€2

91

0.240

92

0.360

€l

bo

€1

91

0.210

92

0.090

€2

91

0.350

92

0.350

€2

€1

91

0.070

92

0.030

€2
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92
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Example: Step 3: Initialization Complete

O bi,c1 b1,co bo,cp bo,co
2 My, = (0 06,0.10, 0.40, 0. 4)
U P P b1 ba
. ¢ ] 0.036 | 0.0360 0.4 | 0.0640 My = <1> 1)
U 7ey 10.084 | 0.0840 0.6 | 0.0960
“ ., Lc1 | 0144 0,140 0.7 [ 0.5830 CL,g1  C1,92 2,91 €2,92
? 9 [ 0.336 | 0.3360 0.3 | 0.2520 M3 = <O. 54, 0.206, 0.290, 0. 50)
¢ | 0.028 | 0.0280
by
. 5 1 0.012 | 0.0120 Ju.91 f1,.92 f2.91 f2,92
e [0252 [075 P Ma; = (0.14,0.12,0.40,0.33)
¢y | 0.108 | 0.1080 0.1 | 0.0254
0.1 | 0.0206 J1.91 J1,92 2,91 f2,92
0.9 | 0.2290 M53:<1, 1, 1, 1)
U, P 0.9 [ 0.1850
o; |91 019000122 0.4 | 0.1162 1,91 €1,92 €2.91 €2,09
) g2 | 0.010 | 0.0006 0.4 [ 0.0998 M31:< 1,1, 1,1 )
1 o |91 0.320 | 0.0205 0.6 | 0.1742
by go | 0.480 | 0.0307 0.6 | 0.1498 bi,c1 bi,co bo,cy bo,co
o |1 | 0380 | 0.0365 Mlgz( 1 1 1 1 )
. 1 [g5 [70.020 [ 0.0019 ’ ’ ’
[ Tg1 024000230 by by
2
0.360 | 0.0346
9 My = (0.16,0.84)
o 910210700832
. 1 g2 [0.090 | 0.0356
! ¢y | 91| 0-350 [ 0.1386 hy] 02| 0.0283
g2 | 0.350 | 0.1386 9 o T08 101133
bo 2 i -
e L1 0.070 | 0.0311 h . hi | 0.5 [ 0.0602
g2 | 0.030 | 0.0133 2 hy [ 0.5 [ 0.0602
¢ D | Y. Pl A B C D E F G H
0.450 | 0.1998
e g; 0450 101903 g Zl 8é g;ig -1 | 0.6000 | 0.1600 | 0.4600 | 0.6520 | 0.2144 | 0.2620 | 0.5448 | 0.4842
£ h2 s -5 | 0.4000 | 0.8400 | 0.4500 | 0.3480 | 0.7856 | 0.7380 | 0.4552 | 0.5158
1 . .
92 Thy [0.3]0.1004
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Example: Step 4: Evidence H = h| (Altering Potentials)

5 P Wy P
1 1 0.036 p | 41]04
. b1, T0.084 L dy 106
1 o1 0144 p |1 [ 0.7
2, 10336 C 21dy 103
, L] 0.028 1
. e [0.012
2 b, cy | 0.252 Uy P
¢y | 0.108 ;- [o]01
1
go | 0.1
1
g1 |09
Uy r 03 2 T09
g1 | 0.190 g1 | 0.4
e
. L gy 10010 ) o0
e g1 | 0.320 2 I g, | 0.6
b g2 | 0.480 2 gy 06
g1 | 0.380
€1
. g2 | 0.020
2 , [0 0210 C5
g2 | 0.360
o | 91]0210
. I g9 [70.090 U P
! o, |91 0350 hn |02
by g2 | 0.350 ; N T o
¢y |91 | 0070 ! hy | 0.5
& go | 0.030 92 hy | O
ey | 91| 0450 hy | 04
g2 0.450 91 hQ 0
f2 . hy | 0.7
2
ho | O
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Example: Step 4: Evidence H = h; (Sending Messages)

5 P Wy P
1 1 0.036 p | 41]04
. b1, T0.084 L dy 106
1 o1 0144 p |1 [ 0.7
2, 10336 C 21dy 103
, L] 0.028 1
. e [0.012
2 b, cy | 0.252 Uy P
¢y | 0.108 ;- [o]01
1
go | 0.1
1
g1 |09
Uy r 03 2 T09
g1 | 0.190 g1 | 0.4
e
. L gy 10010 ) o0
e g1 | 0.320 2 I g, | 0.6
b g2 | 0.480 2 gy 06
g1 | 0.380
€1
. g2 | 0.020
2 , [0 0210 C5
g2 | 0.360
o | 91]0210
. I g9 [70.090 U P
! o, |91 0350 hn |02
by g2 | 0.350 ; Iy 0
¢y |91 | 0070 ! hy | 0.5
. g2 | 0.030 92 iy 10
ey | 91| 0450 hy | 04
g2 | 0.450 )
f2 . hy | 0.7
2
ho| 0
Rudolf Kruse, Pascal Held Bayesian Networks

15



Example: Step 4: Evidence H = h; (Sending Messages)

Juor J1,92 2,91 f2,92
Mss = (02, 0.5 0.4, 07)
U P bi,c1 b1,c0 bo,c1 bo,co
c1 | 0.036 0.4 Mo = (0.06,0.10,0.40,0.44)
. b ¢y | 0.084 0.6
Yy [ [0.14d 0.7 by by
2 ey [ 0.336 0.3 My = (1, 1)
, L] 0.028
. e [0.012
2 p, Le1[0.252 iz
2 ¢y [0.108 01
0.1
0.9
vy 0.9
e 191 0.190 0.4
o | [a2 000 04
., o1 [0320 06
b g2 | 0.480 0.6
! g1 | 0.380
. L gy 0.020
o, | 91] 0200
g5 | 0.360
op |91] 0210
) go | 0.000
1 g1 | 0.350
; “2 g5 [ 0.350
2 g1 | 0.070
) L "¢, [0.030
2 g1 | 0.450
2 "g, [ 0.450
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Example: Step 4: Evidence H = h; (Sending Messages)

al

gl
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J1,91 J1,92 J2,91 [2,92
Mss = (02, 05,04, 07)
bi,c1 b1,c0 bo,c1 bo,co
My, = (o 6,0.10,0.40, 0 4)
by b
My = <1, 1>
1,91 €1,92 €2,91 €2,92
Mz = (0.38,0.68,0.52,0.62)



Example: Step 4: Evidence H = h; (Sending Messages)

Juor J1,92 2,91 f2,92
Mz = (02,705,°04,°0.7)
Uy P bi,c1 b1,c9 ba,er bo,co
,. [ [0056 04 My, = (o. 6,0.10, 0. 0,0.44)
¢y | 0.084 0.6
“ ) e[ 014 0.7 by by
2 7¢5 10336 0.3 My = <1, 1>
c1 | 0.028
o SR C1,91 C1,92 €2,91 €2,92
a0 P My = (0 38,0.68,0.32, 0.62)
2 ¢y [0.108 01
0.1 bi,er br,co boer boyco
09 M12:<0.527,0. 4,0.512,0. 4)
¥ 0.9
g1 ] 0.190 04 by ba
o L Lo (0010 04 My = (0.075,0.409)
. g1 | 0.320 0.6
by " [9>[ 0450 0.6 C1,91  C1,92  €2,91 €2,92
. [o] 0380 M3 = (0.254,0 (6, 0.290, 0 50)
g | 0.020
“2 g1 | 0.240
e e Juo1 1,92 f2,91 2,92
9 0. M35:(0.14,012,0.40,033)
g1 | 0210
1 "¢, [0.090
“ 91 | 0.350
) “2 g5 [ 0.350
2 g1 | 0.070
179, [0.030
©2 g1 | 0.450
2 "g, [ 0.450
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Example: Step 4: Evidence H = h; Incorporated

ai

gl

0.036

0.0392

€2

0.084

0.0753

gl

0.144

0.1523

€2

0.336

0.3220

az

al

0.028

0.0305

€2

0.012

0.0108

!

0.252

0.2665

€2

0.108

0.1035

P

a

€1

91

0.190

0.0095

92

0.010

0.0009

€2

g1

0.320

0.0161

92

0.480

0.0431

€2

€1

91

0.380

0.0241

92

0.020

0.0025

€2

91

0.240

0.0152

92

0.360

0.0443

€l

bo

€1

91

0.210

0.0653

92

0.090

0.0501

€2

91

0.350

0.1088

92

0.350

0.1947

€2

€1

91

0.070

0.0205

92

0.030

0.0171

€2

g1

0.450

0.1321

g1

0.0585

0

92

0.1243

0

92

0.450

0.2559

Rudolf Kruse,

Pascal Held

p)

91

0.3331

0

92

0.4841

J1.91 11,92 f2,91 f2,92
Mss = (0.2, 05,04, 07)
P br,c1 b1,c9 bacy ba,co
0.4 | 0.0623 Mo = <O. 6,0.10,0.40,0 4)
0.6 | 0.0934
0.7 | 0.5910 by by
0.3 [ 0.2533 My = <1, 1)
C1,g1 C1,92 €2,91 €2,92
P Ms, = ( 330,68, 032, 62)
0.1 | 0.0105
0.1 0.0212 brer br,co baer boco
0901502 My = (0. 7.0.434,0.512, 0. 464)
0.9 | 0.2675
0.4 | 0.0480 by
0.4 | 0.1031 My = <O 075, 0. 409>
0.6 | 0.1440
0.6 | 0.2165 C1,91  C1,92 2,91  €2,92
Mg = (0.254,0.206,0.290,0.250)
f1.91 f1.92 [2,91 [2,92
Ms; = (0.14,0.12,0.40, 0:33)
Pl 4 C D E F G H
- [ 0.5888 | 0.1557 | 0.4884 | 0.6533 | 0.1899 | 0.1828 | 0.3916 | 1.0000
5 [0.4112 | 0.8443 | 0.5116 | 0.3467 | 0.8101 | 0.8172 | 0.6084 | 0.0000

0
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Summary

There are several exact inference methods such as variable elimination, clique tree
propagation or recursive conditioning. These algorithms have complexity that is
exponential with networks tree width. Exact inference is NP-hard.

In very large applications it is necessary to introduce topological structural con-
straints or restrictions on conditional probabilities, i.e. bounded variance algo-
rithms.
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