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in 1979 diploma in mathematics (minor computer science) at TU Braunschweig

there dissertation in 1980, habilitation in 1984

2 years full-time employee at Fraunhofer Institute

in 1986 offer of professorship for computer science at TU Braunschweig

since 1996 professor at the University of Magdeburg

research: data mining, explorative data analysis, fuzzy systems, neuronal net-
works, evolutionary algorithms, Bayesian networks

mailto:kruse@iws.cs.uni-magdeburg.de

office: G29-008, telephone: 0391 67-58706

consultation: Wednesdays, 11 a.m. – 12 noon



About the working group Computational Intelligence
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teaching:
Intelligent Systems Bachelor (2 V + 2 Ü, 5 CP)

Evolutionary Algorithms Bachelor (2 V + 2 Ü, 5 CP)

Neuronal Networks Bachelor (2 V + 2 Ü, 5 CP)

Fuzzy Systems Master (2 V + 2 Ü, 6 CP)

Bayesian Network Master (2 V + 2 Ü, 6 CP)

Intelligent Data Analysis Master (2 V + 2 Ü, 6 CP)

(pro-)seminars: Classification Algorithms, Clustering Algorithms

research examples:
Analysis and simulation of natural neuronal networks (C. Braune)
Decision theory / heuristics (C. Doell)
Analysis of social networks (P. Held)



About the lecture
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lecture dates: Thursday, 9:15 a.m.–10:45 a.m., G29-K059

information about the course:
http://fuzzy.cs.ovgu.de/wiki/pmwiki.php?n=Lehre.BN1415
◦ weekly lecture slides as PDF

◦ also assignment sheets for the exercise

◦ important announcements and date!



Content of the lecture
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Introduction

Rule-based Systems

Elements of Graph Theory

Decomposition

Probability Foundations

Applied Probability Theory

Probabilistic Causal Networks

Propagation in Belief Networks

Learning Graphical Models

Decision Graphs / Influence Diagrams

Frameworks of Imprecision and Uncertainty



About the exercise
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active participation and explanations of your solutions

tutor will call attention to mistakes and answer questions

pure ‘calculations’ of sample solution is not the purpose

tutor: Pascal Held mailto:pheld@ovgu.de

consultation: Just knock on the door and see if he is there :-)

first assignment due October 20, 2014

Monday, 1:15 p.m.–2:45 p.m., G29-E037



Conditions for Certificate (“Schein”) and Exam
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Certificate will get who. . .
contribute well in exercises every week,

present ≥ 2 solutions to written assignment during exercises.

tick off ≥ 66% of all written assignments,

small colloquium (≈ 10 min.) or written test (if > 20 students).

Exam or marked certificate will get who. . .
meet the certificate conditions

pass the oral exam (≈ 25 minutes) or written exam (if > 20 students).



Books about the course
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http://www.computational-intelligence.eu/

https://www.springer.com/computer/ai/book/978-1-4471-5012-1


Knowledge Based Systems
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Human Expert

A human expert is a specialist for a specific differentiated application field who
creates solutions to customer problems in this respective field and supports them
by applying these solutions.

Requirements

◦ Formulate precise problem scenarios from customer inquiries

◦ Find correct and complete solution

◦ Understandable answers

◦ Explanation of solution

◦ Support the deployment of solution



Knowledge Based Systems (2)
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“Intelligent” System

An intelligent system is a program that models the
knowledge and inference methods of a human expert
of a specific field of application.

Requirements for construction:

◦ Knowledge Representation

◦ Knowledge Acquisition

◦ Knowledge Modification



Qualities of Knowledge
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In most cases our knowledge about the present world is

incomplete/missing (knowledge is not comprehensive)

◦ e. g. “I don’t know the bus departure times for public holidays because I only
take the bus on working days.”

vague/fuzzy/imprecise (knowledge is not exact)

◦ e. g. “The bus departs roughly every full hour.”

uncertain (knowledge is unreliable)

◦ e. g. “The bus departs probably at 12 o’clock.”

We have to decide nonetheless!

Reasoning under Vagueness

Reasoning with Probabilities

. . . and Cost/Benefit



Example
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Objective: Be at the university at 9:15 to attend a lecture.

There are several plans to reach this goal:

◦ P1: Get up at 8:00, leave at 8:55, take the bus at 9:00 . . .

◦ P2: Get up at 7:30, leave at 8:25, take the bus at 8:30 . . .

◦ . . .

All plans are correct, but

◦ they imply different costs and different probabilities
to actually reach that goal.

◦ P2 would be the plan of choice as the lecture is important
and the success rate of P1 is only about 80–95%.

Question: Is a computer capable of solving these
problems involving uncertainty?



Uncertainty and Facts
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Example:

We would like to support a robot’s localization by fixed landmarks.
From the presence of a landmark we may infer the location.

Problem:

Sensors are imprecise!

◦ We cannot conclude definitely a location simply because
there was a landmark detected by the sensors.

◦ The same holds true for undetected landmarks.

◦ Only probabilities are being increased or decreased.



Degrees of Belief
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We (or other agents) are only believing facts or rules to some extent.

One possibility to express this partial belief is by using probability theory.

“The agent believes the sensor information to 0.9” means:
In 9 out of 10 cases the agent trusts in the correctness of the sensor output.

Probabilities gather the “uncertainty” that originates due to ignorance.

Probabilities 6= Vagueness/Fuzziness!

◦ The predicate “large” is fuzzy whereas “This might be Peter’s watch.”
is uncertain.



Rational Decisions under Uncertainty
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Choice of several actions or plans

These may lead to different results with different probabilities.

The actions cause different (possibly subjective) costs.

The results yield different (possibly subjective) benefits.

It would be rational to choose that action that yields the largest total benefit.

Decision Theory = Utility Theory + Probability Theory



Decision-theoretic Agent
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input perception
output action

1: K ← a set of probabilistic beliefs about the state of the world

2: calculate updated probabilities for current state based on available evidence includ-
ing current percept and previous action

3: calculate outcome probabilities for actions, given action descriptions and probabil-
ities of current states

4: select action A with highest expected utility given probabilities of outcomes and
utility information

5: return A

Decision Theory: An agent is rational if and only if it chooses
the action yielding the largest utility averaged
over all possible outcomes of all actions.
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Rule-based Systems



Rule-based Systems
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Modi of usage:

Query: Facts are retrieved from database or user is interrogated

Explanation: System answers questions how a decision was concluded

Example rule base:

1. COLLAT ∧ PYMT ∧ REP ⇒ OK

2. APP ⇒ COLLAT

3. RATING ⇒ REP

4. INC ⇒ PYMT

5. BAL ∧ REP ⇒ OK

Description:
COLLAT satisfactory collateral
PYMT payments undisputed
REP good reputation
APP high appraisal
RATING good rating
INC positive income
BAL excellent balance
OK loan will be approved



Decision Rule Tree
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Corresponding and/or-Tree:

OK

OK OK

BAL REP

REP

RATING

COLLAT PYMT REP

COLLAT PYMT REP

APP INC RATING

rule 5 rule 1

rule 3 rule 2 rule 4 rule 3



Example Queries
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User: Why do you believe that the loan should be approved?

System: Because the collateral for the loan is satisfactory, and
the applicant is able to make the loan payments,
and the applicant has a good financial reputation.

User: Why did you ask me about whether or not the
applicant’s income exceeds his/her expenses?

System: Because I was trying to establish whether or not the
applicant is able to make the loan payments.

User: Why do you believe that the applicant has
a good financial reputation?

System: Because the credit rating service said that the
applicant has a good credit rating.



Rules
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A rule in general is a if-then-construct consisting of a condition and an action.

If condition then conclusion

These two parts may be interpreted differently according to the context:

◦ Inference rules: If premise then conclusion

◦ Hypotheses: If evidence then hypothesis

◦ Productions: If condition then action

Rules are often referred to as productions or production rules.



Rules
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A rule in the ideal case represents a unit of knowledge.

A set of rules together with an execution/evaluation strategy
comprises a program to find solutions to specific problem classes.

Prolog program: rule-based system

Rule-based systems are historically the first types of
AI systems and were for a long time considered prototypical expert systems.

Nowadays, not every expert systems uses rules as its
core inference mechanism.

Rising importance in the field of business process rules.



Rule Evaluation
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Forward chaining

Expansion of knowledge base: as soon as new facts are
inserted the system also calculates the conclusions/consequences.

Data-driven behavior

Premises-oriented reasoning: the chaining is determined by
the left parts of the rules.

Backward chaining

Answering queries

Demand-driven behavior

Conclusion-oriented reasoning: the chaining is determined by
the right parts of the rules.



Components of a Rules-based System
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Data base

Set of structured data objects

Current state of modeled part of world

Rule base

Set of rules

Application of a rule will alter the data base

Rule interpreter

Inference machine

Controls the program flow of the system



Rule Interpretation
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Main scheme forward chaining

◦ Select and apply rules from the set of rules with valid antecedences. This will
lead to a modified data base and the possibility to apply further rules.

Run this cycle as long as possible.

The process terminates, if

◦ there is no rule left with valid antecendence

◦ a solution criterion is satisfied

◦ a stop criterion is satisfied (e. g. maximum number of steps)

Following tasks have to be solved:

◦ Identify those rules with a valid condition
⇒ Instantiation or Matching

◦ Select rules to be executed
⇒ need for conflict resolution
(e. g. via partial or total orderings on the rules)
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Certainty Factors



Mycin (1970)
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Objective: Development of a system that supports
physicians in diagnosing bacterial infections and suggesting antibiotics.

Features: Uncertain knowledge was represented and processed
via uncertainty factors.

Knowledge: 500 (uncertain) decision rules as static knowledge base.

Case-specific knowledge:

◦ static: patients’ data

◦ dynamic: intermediate results (facts)

Strengths:

◦ diagnosis-oriented interrogation

◦ hypotheses generation

◦ finding notification

◦ therapy recommendation

◦ explanation of inference path



Uncertainty Factors
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Uncertainty factor CF ∈ [−1, 1] ≈ degree of belief.

Rules:

CF(A→ B)





= 1 B is certainly true given A

> 0 A supports B

= 0 A has no influence on B

< 0 A provides evidence against B

= −1 B is certainly false given A



A Mycin Rule
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RULE035

PREMISE: ($AND (SAME CNTXT GRAM GRAMNEG)

(SAME CNTXT MORPH ROD)

(SAME CNTXT AIR ANAEROBIC))

ACTION: (CONCL.CNTXT IDENTITY BACTEROIDES TALLY .6)

If 1) the gram stain of the organism is gramneg, and

2) the morphology of the organism is rod, and

3) the aerobicity of the organism is anaerobic

then there is suggestive evidence (0.6) that the

identity of the organism is bacteroides



Example
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A→ B [0.80] A [1.00]
C → D [0.50] C [0.50]

B ∧D → E [0.90] F [0.80]
E ∨ F → G [0.25] H [0.90]

H → G [0.30]

A
1.0

B

C
0.5

D

B ∧D E

E ∨ F

F0.8

G

H0.90.8

0.5

0.9

0.3

0.25



Propagation Rules
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Conjunction: CF(A ∧B) = min{CF(A),CF(B)}
Disjunction: CF(A ∨B) = max{CF(A),CF(B)}
Serial Combination: CF(B, {A}) = CF(A→ B) ·max{0,CF(A)}
Parallel Combination: for n > 1 :

CF(B, {A1, . . . , An}) =
f(CF(B, {A1, . . . , An−1}),CF(B, {An}))

with

f(x, y) =





x + y − xy if x, y > 0

x + y + xy if x, y < 0
x + y

1−min{|x| , |y|} otherwise



Example (cont.)
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A
1.0

B 0.8

C
0.5

D 0.25

B ∧D0.25 E 0.225

E ∨ F0.8

F0.8

G 0.416

H0.90.8

0.5

0.9

0.3

0.25

f(0.3 · 0.9, 0.25 · 0.8) = 0.27 + 0.2− 0.27 · 0.2 = 0.416



Was Mycin a failure?
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It worked in the Mycin case because the rules had tree-like structure.

It can be shown that the rule combination scheme is inconsistent in general.

Example: CF(A) = 0.9, CF(D) =?

A
0.9

B0.9 C 0.9

D

CF(D) = 0.9 + 0.9− 0.9 · 0.9 = 0.99

1 1

1 1

vs.

A
0.9

D

1

CF(D) = 0.9

Certainty factor is increased just because (the same) evidence is transferred over dif-
ferent (parallel) paths!



Was Mycin a failure?
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Mycin was never used for its intended purpose, because

physicians were distrustful and not willing to accept Mycin’s recommendations.

Mycin was too good.

However,

Mycin was a milestone for the development of expert systems.

it gave rise to impulses for expert system development in general.
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Elements of Graph Theory



Simple Graph
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Simple Graph

A simple graph (or just: graph) is a tuple G = (V,E) where

V = {A1, . . . , An}

represents a finite set of vertices (or nodes) and

E ⊆ (V × V ) \ {(A,A) | A ∈ V }

denotes the set of edges.
It is called simple since there are no self-loops and no multiple edges.



Edge Types
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Let G = (V,E) be a graph. An edge e = (A,B) is
called

directed if (A,B) ∈ E ⇒ (B,A) /∈ E
Notation: A→ B

undirected if (A,B) ∈ E ⇒ (B,A) ∈ E
Notation: A−B or B − A

(Un)directed Graph

A graph with only (un)directed edges is called an
(un)directed graph.

Adjacency Set

Let G = (V,E) be a graph. The set of nodes that
is accessible via a given node A ∈ V is called the
adjacency set of A:

adj(A) = {B ∈ V | (A,B) ∈ E}

A B

C D E

F G

A B

C D E

F G

adj(D)



Paths
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Let G = (V,E) be a graph. A series ρ of r pairwise
different nodes

ρ =
〈
Ai1, . . . , Air

〉

is called a path from Ai to Aj if

Ai1 = Ai, Air = Aj

Aik+1
∈ adj(Aik), 1 ≤ k < r

A path with only undirected edges is called an undi-
rected path

ρ = Ai1 − · · · − Air
whereas a path with only directed edges is referred
to as a directed path

ρ = Ai1 → · · · → Air

A B

C D E

F G

If there is a directed path ρ
from node A to node B in a
directed graph G we write

A 
ρ

G B.

If the path ρ is undirected we
denote this with

A!
ρ

G B.



Graph Types
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Loop

Let G = (V,E) be an undirected graph. A path

ρ = X1 − · · · −Xk
with Xk −X1 ∈ E is called a loop.

Cycle

Let G = (V,E) be a directed graph. A path

ρ = X1 → · · · → Xk

with Xk → X1 ∈ E is called a cycle.

Directed Acyclic Graph (DAG)

A directed graph G = (V,E) is called acyclic if
for every path X1 → · · · → Xk in G the condition
Xk → X1 /∈ E is satisfied, i. e. it contains no cycle.

A B

C D E

F G

Cycle

A B

C D E

F G

Loop



Parents, Children and Families

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 40

Let G = (V, E) be a directed graph. For every node
A ∈ V we define the following sets:

Parents:

parentsG(A) = {B ∈ V | B → A ∈ E}

Children:

childrenG(A) = {B ∈ V | A→ B ∈ E}

Family:

familyG(A) = {A} ∪ parentsG(A)

If the respective graph is clear from the context, the
index G is omitted.

A B

C D

E F G

H J K

L M

parents(F ) = {C,D}
children(F ) = {J,K}
family(F ) = {C,D, F}



Ancestors, Descendants, Non-Descendants
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Let G = (V,E) be a DAG. For every node A ∈ V
we define the following sets:

Ancestors:

ancsG(A) = {B ∈ V | ∃ρ : B  ρG A}

Descendants:

descsG(A) = {B ∈ V | ∃ρ : A ρG B}

Non-Descendants:

non-descsG(A) = V \ {A} \ descsG(A)

If the respective graph is clear from the context, the
index G is omitted.

A B

C D

E F G

H J K

L M

ancs(F ) = {A,B,C,D}
descs(F ) = {J,K, L,M}

non-descs(F ) = {A,B,C,D,E,G,H}



Operations on Graphs
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Let G = (V,E) be a DAG.

The Minimal Ancestral Subgraph of G given
a setM ⊆ V of nodes is the smallest subgraph that
contains all ancestors of all nodes in M .

The Moral Graph of G is the undirected graph
that is obtained by

1. connecting nodes that share a common child
with an arbitrarily directed edge and,

2. converting all directed edges into undirected
ones by dropping the arrow heads.

A B

C D

E F G

H J K

L M

Moral graph of ancestral graph
induced by the set {E, F,G}.



u-Separation
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A B

C D

E

F

G

H

J

X Z Y

Let G = (V,E) be an undirected graph and X,Y, Z ⊆ V three disjoint
subsets of nodes. We agree on the following separation criteria:

1. Z u-separates X from Y — written as

X ⊥⊥G Y | Z,

if every possible path from a node in X to a node in Y is blocked.

2. A path is blocked if it contains one (or more) blocking nodes.

3. A node is a blocking node if it lies in Z.



u-Separation
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A B

C D

E

F

G

H

J

X Z Y

E. g. path A − B − E − G − H is blocked by E ∈ Z. It can be easily
verified, that every path from X to Y is blocked by Z. Hence we have:

{A,B,C,D} ⊥⊥G {G,H, J} | {E,F}



u-Separation
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A B

C D

E

F

G

H

J

X Z Y

Another way to check for u-separation: Remove the nodes in Z from the
graph (and all the edges adjacent to these nodes). X and Y are u-separated
by Z if the remaining graph is disconnected with X and Y in separate
subgraphs.

Node
E seperates K and B in the directed graph



Example — Qualitative Aspects
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Lecture theatre in winter: Waiting for Mr. K and Mr. B.
Not clear whether there is ice on the roads.

3 variables:

◦ E road condition: dom(E) = {ice,¬ice}
◦ K K had an accident: dom(K) = {yes, no}
◦ B B had an accident: dom(B) = {yes, no}

Ignorance about these states is modelled via the observer’s belief.

E

K B

✻ ✻ ↓ E influences K and B

(the more ice the more accidents)

↑ Knowledge about accident increases belief in ice



Example
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A priori knowledge Evidence Inferences
E unknown B has accident ⇒ E = ice more likely

⇒ K has accident more likely
E = ¬ice B has accident ⇒ no change in belief about E

⇒ no change in belief about accident of K
E unknown K and B dependent
E known K and B independent

E

K B

Node E seperates K and B in the directed graph.



d-Separation
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Now: Separation criterion for directed graphs.

We use the same principles as for u-separation. Two modifications are necessary:

Directed paths may lead also in reverse to the arrows.

The blocking node condition is more sophisticated.

Blocking Node (in a directed path)

A node A is blocking if its edge directions along the path

are of type 1 and A ∈ Z, or
are of type 2 and neither A nor one of its descendants is in Z.

serial, head-to-tail

serial, head-to-tail

diverging, tail-to-tail

Type 1

converging, head-to-head

Type 2



d-Separation
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Checking path A→ C → E → G

A C

B D

E

F

G

H

J

X Z = {E}

Y

Checking path A→ C → E ← D:

C is serial and not in Z: non-blocking

E is also serial but in Z: blocking

Path is blocked, no other paths between A and G are available

⇒ A⊥⊥G | E



d-Separation
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A C

B D

E

F

G

H

J

X

Z

Y

Checking path A→ C → E ← D:

C is serial and not in Z: non-blocking

E is converging and in Z: non-blocking

⇒ Path is not blocked

A⊥6⊥D | E



d-Separation
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A C

B D

E

F

G

H

J

X

ZY

Checking path A→ C → E ← D:

C is serial and not in Z: non-blocking

E is converging and not in Z but one of its descendants (J) is in Z:
non-blocking

⇒ Path is not blocked

A⊥6⊥D | J



d-Separation
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A C

B D

E

F

G

H

J

X Z = ∅

Y

Checking path A→ C → E ← D:

C is serial and not in Z: non-blocking

E is converging and not in Z, neither is F,G,H or J : blocking

⇒ Path is blocked

A⊥⊥D | ∅



d-Separation
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A C

B D

E

F

G

H

J

X Z = ∅

Y

Checking path A→ C → E → F → H :

C is serial and not in Z: non-blocking

E is serial and not in Z: non-blocking

F is serial and not in Z: non-blocking

⇒ Path is not blocked

A⊥6⊥H | ∅



d-Separation
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A C

B D

E

F

G

H

J

X

Z

Y = {B,H}

Checking path A→ C → E → F → H :

C is serial and not in Z: non-blocking

E is serial and in Z: blocking

F is serial and not in Z: non-blocking

⇒ Path is blocked



d-Separation
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A C

B D

E

F

G

H

J

X

Z

Y = {B,H}

Checking path A→ C → E ← D → B:

C is serial and not in Z: non-blocking

E is converging and in Z: non-blocking

D is serial and in Z: blocking

⇒ Path is blocked

A⊥⊥H,B | D,E
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A C

B D

E

F

G

H

J

X

Z

Y = {B,H}

Steps

Create the minimal ancestral subgraph induced by X ∪ Y ∪ Z.
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A C

B D

E

F H

X

Z

Y = {B,H}

Steps

Create the minimal ancestral subgraph induced by X ∪ Y ∪ Z.
Moralize that subgraph.
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A C

B D

E

F H

X

Z

Y = {B,H}

Steps:

Create the minimal ancestral subgraph induced by X ∪ Y ∪ Z.
Moralize that subgraph.

Check for u-Separation in that undirected graph.

A⊥⊥H,B | D,E
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A B

C

Meal quality

A quality of ingredients

B cook’s skill

C meal quality

If C is not known, A and B are independent.

If C is known, then A and B become (conditionally) dependent given C.

A⊥6⊥B | C



Example (cont.)
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A B

C

D

Meal quality

A quality of ingredients

B cook’s skill

C meal quality

D restaurant success

If nothing is known about the restaurant success or meal quality or both, the
cook’s skills and quality of the ingredients are unrelated, that is, independent.

However, if we observe that the restaurant has no success, we can infer that the
meal quality might be bad.

If we further learn that the ingredients quality is high, we will conclude that the
cook’s skills must be low, thus rendering both variables dependent.

A⊥6⊥B | D



Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 61

Decomposition



Example
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Example World Relation

color shape size
small
medium
small
medium
medium
large
medium
medium
medium
large

• 10 simple geometric objects

• 3 attributes



Example
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Relation

color shape size
small
medium
small
medium
medium
large
medium
medium
medium
large

Geometric Representation



Object Representation
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Universe of Discourse: Ω

ω ∈ Ω represents a single abstract object.

A subset E ⊆ Ω is called an event.

For every event we use the function R to determine whether E is possible or not.

R : 2Ω → {0, 1}

We claim the following properties of R:

1. R(∅) = 0

2. ∀E1, E2 ⊆ Ω : R(E1 ∪ E2) = max{R(E1), R(E2)}

For example:

R(E) =




0 if E = ∅
1 otherwise



Object Representation
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Attributes or Properties of these objects are introduced by functions:
(later referred to as random variables)

A : Ω→ dom(A)

where dom(A) is the domain (i. e., set of all possible values) of A.

A set of attibutes U = {A1, . . . , An} is called an attribute schema.

The preimage of an attribute defines an event:

∀a ∈ dom(A) : A−1(a) = {ω ∈ Ω | A(ω) = a} ⊆ Ω

Abbreviation: A−1(a) = {ω ∈ Ω | A(ω) = a} = {A = a}

We will index the function R to stress on which events it is defined.
RAB will be short for R{A,B}.

RAB :
⋃

a∈dom(A)

⋃

b∈dom(B)

{
{A = a,B = b}

}
→ {0, 1}



Formal Representation
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A = color B = shape C = size
a1 = b1 = c1 = small
a1 = b1 = c2 = medium
a2 = b1 = c1 = small
a2 = b1 = c2 = medium
a2 = b3 = c2 = medium
a2 = b3 = c3 = large
a3 = b2 = c2 = medium
a4 = b2 = c2 = medium
a4 = b3 = c2 = medium
a4 = b3 = c3 = large

RABC(A = a,B = b, C = c)

= RABC({A = a,B = b, C = c})
= RABC({ω ∈ Ω | A(ω) = a∧

B(ω) = b∧
C(ω) = c)}

=





0 if there is no tuple (a, b, c)

1 else

R serves as an indicator function.



Operations on the Relations
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Projection / Marginalization

Let RAB be a relation over two attributes A and B. The projection (or marginaliza-
tion) from schema {A,B} to schema {A} is defined as:

∀a ∈ dom(A) : RA(A = a) = max
∀b∈dom(B)

{RAB(A = a,B = b)}

This principle is easily generalized to sets of attributes.



Object Representation
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Cylindrical Extention

Let RA be a relation over an attribute A. The cylindrical extention RAB from {A}
to {A,B} is defined as:

∀a ∈ dom(A) : ∀b ∈ dom(B) : RAB(A = a,B = b) = RA(A = a)

This principle is easily generalized to sets of attributes.



Object Representation
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Intersection

Let R
(1)
AB and R

(2)
AB be two relations with attribute schema {A,B}. The intersection

RAB of both is defined in the natural way:

∀a ∈ dom(A) : ∀b ∈ dom(B) :

RAB(A = a,B = b) = min{R(1)
AB(A = a,B = b), R

(2)
AB(A = a,B = b)}

This principle is easily generalized to sets of attributes.



Object Representation
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Conditional Relation

Let RAB be a relation over the attribute schema {A,B}. The conditional relation of
A given B is defined as follows:

∀a ∈ dom(A) : ∀b ∈ dom(B) : RA(A = a | B = b) = RAB(A = a,B = b)

This principle is easily generalized to sets of attributes.



Object Representation
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(Unconditional) Independence

Let RAB be a relation over the attribute schema {A,B}. We call A and B relationally
independent (w. r. t. RAB) if the following condition holds:

∀a ∈ dom(A) : ∀b ∈ dom(B) : RAB(A = a,B = b) = min{RA(A = a), RB(B = b)}

This principle is easily generalized to sets of attributes.



Object Representation
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(Unconditional) Independence

Intuition: Fixing one (possible) value of A does not
restrict the (possible) values of B and vice versa.

Conditioning on any possible value of B always re-
sults in the same relation RA.

Alternative independence expression:

∀b ∈ dom(B) : RB(B = b) = 1 :

RA(A = a | B = b) = RA(A = a)



Decomposition
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Obviously, the original two-dimensional relation can be reconstructed from the
two one-dimensional ones, if we have (unconditional) independence.

The definition for (unconditional) independence already told us how to do so:

RAB(A = a,B = b) = min{RA(A = a), RB(B = b)}

Storing RA and RB is sufficient to represent the information of RAB.

Question: The (unconditional) independence is a rather strong restriction. Are
there other types of independence that allow for a decomposition as well?



Conditional Relational Independence
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Clearly, A and C are unconditionally dependent, i. e.
the relation RAC cannot be reconstructed from RA
and RC .



Conditional Relational Independence
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However, given all possible values of B, all respective
conditional relations RAC show the independence of
A and C.

RAC(a, c | b) = min{RA(a | b), RC(c | b)}
With the definition of a conditional relation, the de-
composition description for RABC reads:

RABC(a, b, c) = min{RAB(a, b), RBC(b, c)}



Conditional Relational Independence

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 76

Again, we reconstruct the initial relation from
the cylindrical extentions of the two relations
formed by the attributes A,B and B,C.

It is possible since A and C are (relationally)
independent given B.
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Probability Foundations



Reminder: Probability Theory
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Goal: Make statements and/or predictions about
results of physical processes.

Even processes that seem to be simple at first sight
may reveal considerable difficulties when trying to predict.

Describing real-world physical processes always calls
for a simplifying mathematical model.

Although everybody will have some intuitive notion about
probability, we have to formally define the underlying
mathematical structure.

Randomness or chance enters as the incapability of precisely
modelling a process or the inability of measuring the initial conditions.

◦ Example: Predicting the trajectory of a billard ball over more than 9 banks
requires more detailed measurement of the initial conditions (ball location,
applied momentum etc.) than physically possible according to Heisenberg’s
uncertainty principle.



Formal Approach on the Model Side
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We conduct an experiment that has a set Ω of possible outcomes.
E. g.:

◦ Rolling a die (Ω = {1, 2, 3, 4, 5, 6})
◦ Arrivals of phone calls (Ω = N0)

◦ Bread roll weights (Ω = R+)

Such an outcome is called an elementary event.

All possible elementary events are called the frame of discernment Ω
(or sometimes universe of discourse).

The set representation stresses the following facts:

◦ All possible outcomes are covered by the elements of Ω.
(collectively exhaustive).

◦ Every possible outcome is represented by exactly one element of Ω.
(mutual disjoint).



Events
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Often, we are interested in higher-level events
(e. g. casting an odd number, arrival of at least 5 phone calls or
purchasing a bread roll heavier than 80 grams)

Any subset A ⊆ Ω is called an event which occurs, if the outcome ω0 ∈ Ω of
the random experiment lies in A:

Event A ⊆ Ω occurs ⇔
∨

ω∈A
(ω = ω0) = true ⇔ ω0 ∈ A

Since events are sets, we can define for two events A and B:

◦ A ∪B occurs if A or B occurs; A ∩B occurs if A and B occurs.

◦ A occurs if A does not occur (i. e., if Ω\A occurs).

◦ A and B are mutually exclusive, iff A ∩B = ∅.



Event Algebra
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A family of sets E = {E1, . . . , En} is called an event algebra,
if the following conditions hold:

◦ The certain event Ω lies in E .
◦ If E ∈ E , then E = Ω\E ∈ E .
◦ If E1 and E2 lie in E , then E1 ∪ E2 ∈ E and E1 ∩ E2 ∈ E .

If Ω is uncountable, we require the additional property:

For a series of events Ei ∈ E , i ∈ N, the events
∞⋃

i=1

Ei and
∞⋂

i=1

Ei are also in E .
E is then called a σ-algebra.

Side remarks:

Smallest event algebra: E = {∅,Ω}
Largest event algebra (for finite or countable Ω): E = 2Ω = {A ⊆ Ω | true}



Probability Function
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Given an event algebra E , we would like to assign every event E ∈ E its
probability with a probability function P : E → [0, 1].

We require P to satisfy the so-called Kolmogorov Axioms:

◦ ∀E ∈ E : 0 ≤ P (E) ≤ 1

◦ P (Ω) = 1

◦ For pairwise disjoint events E1, E2, . . . ∈ E holds:

P (
∞⋃

i=1

Ei) =
∞∑

i=1

P (Ei)

From these axioms one can conclude the following (incomplete) list of properties:

◦ ∀E ∈ E : P (E) = 1− P (E)

◦ P (∅) = 0

◦ If E1, E2 ∈ E are mutually exclusive, then P (E1 ∪ E2) = P (E1) + P (E2).



Elementary Probabilities and Densities

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 83

Question 1: How to calculate P ?

Question 2: Are there “default” event algebras?

Idea for question 1: We have to find a way of distributing (thus the
notion distribution) the unit mass of probability over all elements ω ∈ Ω.

◦ If Ω is finite or countable a probability mass function p is used:

p : Ω→ [0, 1] and
∑

ω∈Ω
p(ω) = 1

◦ If Ω is uncountable (i. e., continuous) a probability density
function f is used:

f : Ω→ R and
∫

Ω
f(ω) dω = 1



“Default” Event Algebras
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Idea for question 2 (“default” event algebras) we have to distinguish
again between the cardinalities of Ω:

◦ Ω finite or countable: E = 2Ω

◦ Ω uncountable, e. g. Ω = R: E = B(R)

B(R) is the Borel Algebra, i. e., the smallest σ-algebra
that contains all closed intervals [a, b] ⊂ R with a < b.

B(R) also contains all open intervals and single-item sets.

It is sufficient to note here, that all intervals are contained

{[a, b] , ]a, b] , ]a, b[ , [a, b[ ⊂ R | a < b} ⊂ B(R)
because the event of a bread roll having a weight between
80 g and 90 g is represented by the interval [80, 90].



Example: Rolling a Die
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Ω = {1, 2, 3, 4, 5, 6} X = id

p1(ω) =
1
6 F1(x) = P (X ≤ x)

1 2 3 4 5 6

1

6

ω

p1(ω)

1 2 3 4 5 6

1

0.5

x

F1(x)

∑

ω∈Ω
p1(ω) =

6∑

i=1

p1(ωi)

=
6∑

i=1

1

6
= 1

P (X ≤ x) =
∑

x′≤x
P (X = x′)

P (a < X ≤ b) = F1(b)− F1(a)

P (X = x) = P ({X = x}) = P (X−1(x)) = P ({ω ∈ Ω | X(ω) = x})
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Applied Probability Theory



Why (Kolmogorov) Axioms?
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If P models an objectively observable probability, these axioms
are obviously reasonable.

However, why should an agent obey formal axioms when modeling
degrees of (subjective) belief?

Objective vs. subjective probabilities

Axioms constrain the set of beliefs an agent can abide.

Finetti (1931) gave one of the most plausible arguments why
subjective beliefs should respect axioms:

“When using contradictory beliefs, the agent will eventually fail.”



Unconditional Probabilities
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P (A) designates the unconditioned or a priori probability
that A ⊆ Ω occurs if no other additional information is present.

For example:

P (cavity) = 0.1

Note: Here, cavity is a proposition.

A formally different way to state the same would be via
a binary random variable Cavity:

P (Cavity = true) = 0.1

A priori probabilities are derived from statistical surveys or general rules.



Unconditional Probabilities
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In general a random variable can assume more than two values:

P ( Weather = sunny ) = 0.7

P ( Weather = rainy ) = 0.2

P ( Weather = cloudy) = 0.02

P ( Weather = snowy ) = 0.08

P (Headache = true ) = 0.1

P (X) designates the vector of probabilities for the
(ordered) domain of the random variable X :

P (Weather) = 〈0.7, 0.2, 0.02, 0.08〉
P (Headache) = 〈0.1, 0.9〉

Both vectors define the respective probability distributions
of the two random variables.



Conditional Probabilities

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 90

New evidence can alter the probability of an event.

Example: The probability for cavity increases if information
about a toothache arises.

With additional information present, the a priori knowledge
must not be used!

P (A | B) designates the conditional or a posteriori probability
of A given the sole observation (evidence) B.

P (cavity | toothache) = 0.8

For random variables X and Y P (X | Y ) represents the
set of conditional distributions for each possible value of Y .



Conditional Probabilities
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P (Weather | Headache) consists of the following table:

h =̂ Headache = true ¬h =̂ Headache = false

Weather = sunny P (W = sunny | h) P (W = sunny | ¬h)
Weather = rainy P (W = rainy | h) P (W = rainy | ¬h)
Weather = cloudy P (W = cloudy | h) P (W = cloudy | ¬h)
Weather = snowy P (W = snowy | h) P (W = snowy | ¬h)

Note that we are dealing with two distributions now!
Therefore each column sums up to unity!

Formal definition:

P (A | B) =
P (A ∧B)

P (B)
if P (B) > 0



Conditional Probabilities
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P (A | B) =
P (A ∧B)

P (B)

Product Rule: P (A ∧B) = P (A | B) · P (B)

Also: P (A ∧B) = P (B | A) · P (A)

A and B are independent iff

P (A | B) = P (A) and P (B | A) = P (B)

Equivalently, iff the following equation holds true:

P (A ∧B) = P (A) · P (B)



Interpretation of Conditional Probabilities
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Caution! Common misinterpretation:

“P (A | B) = 0.8 means, that P (A) = 0.8, given B holds.”

This statement is wrong due to (at least) two facts:

P (A) is always the a-priori probability,
never the probability of A given that B holds!

P (A | B) = 0.8 is only applicable as long as no other evidence except B is present.
If C becomes known, P (A | B ∧ C) has to be determined.

In general we have:

P (A | B ∧ C) 6= P (A | B)

E. g. C → A might apply.



Joint Probabilities
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Let X1, . . . , Xn be random variables over the same framce of descernment Ω and
event algebra E . Then ~X = (X1, . . . , Xn) is called a random vector with

~X(ω) = (X1(ω), . . . , Xn(ω))

Shorthand notation:

P ( ~X = (x1, . . . , xn)) = P (X1 = x1, . . . , Xn = xn) = P (x1, . . . , xn)

Definition:

P (X1 = x1, . . . , Xn = xn) = P
({

ω ∈ Ω |
n∧

i=1

Xi(ω) = xi
})

= P
( n⋂

i=1

{Xi = xi}
)



Joint Probabilities
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Example: P (Headache,Weather) is the joint probability distribution of both
random variables and consists of the following table:

h =̂ Headache = true ¬h =̂ Headache = false

Weather = sunny P (W = sunny ∧ h) P (W = sunny ∧ ¬h)

Weather = rainy P (W = rainy ∧ h) P (W = rainy ∧ ¬h)

Weather = cloudy P (W = cloudy ∧ h) P (W = cloudy ∧ ¬h)

Weather = snowy P (W = snowy ∧ h) P (W = snowy ∧ ¬h)

All table cells sum up to unity.



Calculating with Joint Probabilities
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All desired probabilities can be computed from a joint probability distribution.

toothache ¬toothache
cavity 0.04 0.06

¬cavity 0.01 0.89

Example: P (cavity ∨ toothache) = P ( cavity ∧ toothache)

+ P (¬cavity ∧ toothache)

+ P ( cavity ∧ ¬toothache) = 0.11

Marginalizations: P(cavity) = P ( cavity ∧ toothache)

+ P ( cavity ∧ ¬toothache) = 0.10

Conditioning:

P (cavity | toothache) =
P (cavity ∧ toothache)

P (toothache)
=

0.04

0.04 + 0.01
= 0.80



Problems
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Easiness of computing all desired probabilities comes at an unaffordable price:

Given n random variables with k possible values each, the joint probability
distribution contains kn entries which is infeasible in practical applications.

Hard to handle.

Hard to estimate.

Therefore:

1. Is there a more dense representation of joint probability distributions?

2. Is there a more efficient way of processing this representation?

The answer is no for the general case, however, certain dependencies and inde-
pendencies can be exploited to reduce the number of parameters to a practical
size.



Stochastic Independence
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Two events A and B are stochastically independent iff

P (A ∧B) = P (A) · P (B)

⇔
P (A | B) = P (A) = P (A | B)

Two random variables X and Y are stochastically independent iff

∀x ∈ dom(X) : ∀y ∈ dom(Y ) : P (X = x, Y = y) = P (X = x) · P (Y = y)

⇔
∀x ∈ dom(X) : ∀y ∈ dom(Y ) : P (X = x | Y = y) = P (X = x)

Shorthand notation: P (X, Y ) = P (X) · P (Y ).

Note the formal difference between P (A) ∈ [0, 1] and P (X) ∈ [0, 1]|dom(X)|.



Conditional Independence
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Let X , Y and Z be three random variables. We call X and Y conditionally
independent given Z, iff the following condition holds:

∀x ∈ dom(X) : ∀y ∈ dom(Y ) : ∀z ∈ dom(Z) :

P (X = x, Y = y | Z = z) = P (X = x | Z = z) · P (Y = y | Z = z)

Shorthand notation: X ⊥⊥P Y | Z

Let X = {A1, . . . , Ak}, Y = {B1, . . . , Bl} and Z = {C1, . . . , Cm} be three
disjoint sets of random variables. We call X and Y conditionally independent
given Z, iff

P (X,Y | Z) = P (X | Z) · P (Y | Z)⇔ P (X | Y ,Z) = P (X | Z)

Shorthand notation: X ⊥⊥P Y | Z



Conditional Independence
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The complete condition for X ⊥⊥P Y | Z would read as follows:

∀a1 ∈ dom(A1) : · · · ∀ak ∈ dom(Ak) :

∀b1 ∈ dom(B1) : · · · ∀bl ∈ dom(Bl) :

∀c1 ∈ dom(C1) : · · · ∀cm ∈ dom(Cm) :

P (A1 = a1, . . . , Ak = ak, B1 = b1, . . . , Bl = bl | C1 = c1, . . . , Cm = cm)

= P (A1 = a1, . . . , Ak = ak | C1 = c1, . . . , Cm = cm)

· P (B1 = b1, . . . , Bl = bl | C1 = c1, . . . , Cm = cm)

Remarks:

1. If Z = ∅ we get (unconditional) independence.
2. We do not use curly braces ({}) for the sets if the context is clear. Likewise,

we use X instead of X to denote sets.



Conditional Independence — Example 1

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 101

✻

✲

Y

X

t t

t

t

t

t

t

tt

t
t

t

t

t

tt

t

t

t

t

t

t

t

t

t t

t

t

t

t

t

t

tt

t

t

t

t

t
t

t

t

t

t

t

t t

t

t
t

t

t

t
t

t

t

t

t

t

t

t

t

t

t

t tt

t

t

t

t

t
t

t

t

t

t

t

t

t
t

t
t

t

t

t

t

t

t

t

t
t t

t

t
t

t

t

t

t

t

t t

t

t
t

t

tt

t

t

t

t

t

t
tt

t

t

t

t
t

t

t
t

t

t

t

t

t

t

t
t

t

t

t

t tt
t

t
t

t t

t

t

t t

t

t tt

t

t

t

t

t

t

t

t

t

t

t

t

t

tt

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t
t

t

tt

t

t

t

t
t

t

t

tt

t

t
t

Group 1

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

tt

t

t

t
t t

tt

t

t
t

t

t

t

t

t

t

t

t
t

t

t

t

t

t

t

tt

t

t

t

t

t

t

t

t

t

t

t
t

t
t

t

tt
t

tt t t

t
t
t

t

t

t

t

t

t

tt
t

t

t

t
t

t

tt

t
t

t

t

t

t

t

t

t
t

t

t

t

t

t
t

t

t

t

t

t

t t
t

t

t
t

tt

tt

t

t
tt

t

t t

t

t

t

t

tt

t t
t

t

t

t

t t

t

t

t

tt

t

t
t

t

t

t

t

t

t

t

t

t

t

t
t

t

t
t

t

t

t

t

t
t

t
tt

t

t

t

t

t

t

t

t

t

t
t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

Group 2

(Weak) Dependence in the entire dataset: X and Y dependent.
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No Dependence in Group 1: X and Y conditionally independent given Group 1.



Conditional Independence — Example 1

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 103

✻

✲

Y

X

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

tt

t

t

t
t t

tt

t

t
t

t

t

t

t

t

t

t

t
t

t

t

t

t

t

t

tt

t

t

t

t

t

t

t

t

t

t

t
t

t
t

t

tt
t

tt t t

t
t
t

t

t

t

t

t

t

tt
t

t

t

t
t

t

tt

t
t

t

t

t

t

t

t

t
t

t

t

t

t

t
t

t

t

t

t

t

t t
t

t

t
t

tt

tt

t

t
tt

t

t t

t

t

t

t

tt

t t
t

t

t

t

t t

t

t

t

tt

t

t
t

t

t

t

t

t

t

t

t

t

t

t
t

t

t
t

t

t

t

t

t
t

t
tt

t

t

t

t

t

t

t

t

t

t
t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

Group 2

No Dependence in Group 2: X and Y conditionally independent given Group 2.
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• dom(G) = {mal, fem} Geschlecht (gender)
• dom(S) = {sm, sm} Raucher (smoker)
• dom(M) = {mar,mar} Verheiratet (married)
• dom(P ) = {preg, preg} Schwanger (pregnant)

pGSMP
G = mal G = fem

S = sm S = sm S = sm S = sm

M = mar
P = preg 0 0 0.01 0.05

P = preg 0.04 0.16 0.02 0.12

M = mar
P = preg 0 0 0.01 0.01

P = preg 0.10 0.20 0.07 0.21
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P (G= fem) = P (G=mal) = 0.5 P (P=preg) = 0.08

P (S= sm) = 0.25 P (M=mar) = 0.4

Gender and Smoker are not independent:

P (G= fem | S= sm) = 0.44 6= 0.5 = P (G= fem)

Gender and Marriage are marginally independent but
conditionally dependent given Pregnancy:

P (fem,mar | preg) ≈ 0.152 6= 0.169 ≈ P (fem | preg) · P (mar | preg)



Bayes Theorem
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Product Rule (for events A and B):

P (A ∩B) = P (A | B)P (B) and P (A ∩B) = P (B | A)P (A)

Equating the right-hand sides:

P (A | B) =
P (B | A)P (A)

P (B)

For random variables X and Y :

∀x∀y : P (Y =y | X=x) =
P (X=x | Y =y)P (Y =y)

P (X=x)

Generalization concerning background knowledge/evidence E:

P (Y | X,E) =
P (X | Y,E)P (Y | E)

P (X | E)



Bayes Theorem — Application
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P (toothache | cavity) = 0.4

P (cavity) = 0.1 P (cavity | toothache) = 0.4 · 0.1
0.05

= 0.8

P (toothache) = 0.05

Why not estimate P (cavity | toothache) right from the start?

Causal knowledge like P (toothache | cavity) is more robust than diagnostic
knowledge P (cavity | toothache).

The causality P (toothache | cavity) is independent of the a priori
probabilities P (toothache) and P (cavity).

If P (cavity) rose in a caries epidemic, the causality P (toothache | cavity) would
remain constant whereas both P (cavity | toothache) and P (toothache) would
increase according to P (cavity).

A physician, after having estimated P (cavity | toothache), would not know a rule
for updating.



Relative Probabilities
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Assumption:
We would like to consider the probability of the diagnosis GumDisease as well.

P (toothache | gumdisease) = 0.7

P (gumdisease) = 0.02

Which diagnosis is more probable?

If we are interested in relative probabilities only (which may be sufficient for some
decisions), P (toothache) needs not to be estimated:

P (C | T )
P (G | T ) =

P (T | C)P (C)
P (T )

· P (T )

P (T | G)P (G)

=
P (T | C)P (C)
P (T | G)P (G) =

0.4 · 0.1
0.7 · 0.02

= 28.57



Normalization
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If we are interested in the absolute probability of P (C | T ) but do not know P (T ),
we may conduct a complete case analysis (according C) and exploit the fact that
P (C | T ) + P (¬C | T ) = 1.

P (C | T ) =
P (T | C)P (C)

P (T )

P (¬C | T ) =
P (T | ¬C)P (¬C)

P (T )

1 = P (C | T ) + P (¬C | T ) =
P (T | C)P (C)

P (T )
+

P (T | ¬C)P (¬C)
P (T )

P (T ) = P (T | C)P (C) + P (T | ¬C)P (¬C)



Normalization
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Plugging into the equation for P (C | T ) yields:

P (C | T ) = P (T | C)P (C)
P (T | C)P (C) + P (T | ¬C)P (¬C)

For general random variables, the equation reads:

P (Y =y | X=x) =
P (X=x | Y =y)P (Y =y)

∑

∀y′∈dom(Y )

P (X=x | Y =y′)P (Y =y′)

Note the “loop variable” y′. Do not confuse with y.



Multiple Evidences
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The patient complains about a toothache. From this first evidence the dentist
infers:

P (cavity | toothache) = 0.8

The dentist palpates the tooth with a metal probe which catches into a fracture:

P (cavity | fracture) = 0.95

Both conclusions might be inferred via Bayes rule. But what does the combined
evidence yield? Using Bayes rule further, the dentist might want to determine:

P (cavity | toothache ∧ fracture) =
P (toothache ∧ fracture | cavity) · P (cavity)

P (toothache ∧ fracture)



Multiple Evidences
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Problem:
He needs P (toothache∧catch | cavity), i. e. diagnostics knowledge for all combinations
of symptoms in general. Better incorporate evidences step-by-step:

P (Y | X,E) =
P (X | Y,E)P (Y | E)

P (X | E)

Abbreviations:

C — cavity

T — toothache

F — fracture

C

T F

Objective:
Computing P (C | T, F ) with just causal statements of the form P ( · | C) and under
exploitation of independence relations among the variables.



Multiple Evidences
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A priori: P (C)

Evidence toothache: P (C | T ) = P (C)
P (T | C)
P (T )

Evidence fracture: P (C | T, F ) = P (C | T ) P (F | C, T )
P (F | T )

T ⊥⊥ F | C ⇔ P (F | C, T ) = P (F | C)

P (C | T, F ) = P (C)
P (T | C)
P (T )

P (F | C)
P (F | T )

Seems that we still have to cope with symptom inter-dependencies?!



Multiple Evidences
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Compound equation from last slide:

P (C | T, F ) = P (C)
P (T | C) P (F | C)
P (T ) P (F | T )

= P (C)
P (T | C) P (F | C)

P (F, T )

P (F, T ) is a normalizing constant and can be computed
if P (F | ¬C) and P (T | ¬C) are known:

P (F, T ) = P (F, T | C)︸ ︷︷ ︸
P (F |C)P (T |C)

P (C) + P (F, T | ¬C)︸ ︷︷ ︸
P (F |¬C)P (T |¬C)

P (¬C)

Therefore, we finally arrive at the following solution...



Multiple Evidences

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 115

P (C | F, T ) =
P (C) P (T | C) P (F | C)

P (F | C) P (T | C) P (C) + P (F | ¬C) P (T | ¬C) P (¬C)

Note that we only use causal probabilities P ( · | C) together with the a priori
(marginal) probabilities P (C) and P (¬C).



Multiple Evidences — Summary
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Multiple evidences can be treated by reduction on

a priori probabilities

(causal) conditional probabilities for the evidence

under assumption of conditional independence

General rule:

P (Z | X,Y ) = α P (Z) P (X | Z) P (Y | Z)

for X and Y conditionally independent given Z and with normalizing constant α.
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Marylin Vos Savant in her riddle column in the New York Times:

You are a candidate in a game show and have to choose between three doors. Behind
one of them is a Porsche, whereas behind the other two there are goats. After you chose
a door, the host Monty Hall (who knows what is behind each door) opens another (not
your chosen one) door with a goat. Now you have the choice between keeping your
chosen door or choose the remaining one.

Which decision yields the best chance of winning the Porsche?



Monty Hall Puzzle
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G You win the Porsche.

R You revise your decision.

A Behind your initially chosen door is (and remains) the Porsche.

P (G | R) = P (G,A | R) + P (G,A | R)
= P (G | A,R)P (A | R) + P (G | A,R)P (A | R)
= 0 · P (A | R) + 1 · P (A | R)

= P (A | R) = P (A) =
2

3

P (G | R) = P (G,A | R) + P (G,A | R)
= P (G | A,R)P (A | R) + P (G | A,R)P (A | R)
= 1 · P (A | R) + 0 · P (A | R)

= P (A | R) = P (A) =
1

3
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Example: C = Patient takes medication, E = patient recovers

E ¬E ∑
Recovery rate

C 20 20 40 50%
¬C 16 24 40 40%∑

36 44 80

Men E ¬E ∑
Rec.rate Women E ¬E ∑

Rec.rate
C 18 12 30 60% C 2 8 10 20%
¬C 7 3 10 70% ¬C 9 21 30 30%

25 15 40 11 29 40

P (E | C) > P (E | ¬C)
but P (E | C,M) < P (E | ¬C,M)

P (E | C,W ) < P (E | ¬C,W )
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Probabilistic reasoning is difficult and may be problematic:

◦ P (A ∧B) is not determined simply by P (A) and P (B):
P (A) = P (B) = 0.5 ⇒ P (A ∧B) ∈ [0, 0.5]

◦ P (C | A) = x, P (C | B) = y ⇒ P (C | A ∧B) ∈ [0, 1]
Probabilistic logic is not truth functional !

Central problem: How does additional information affect the current knowledge?
I. e., if P (B | A) is known, what can be said about P (B | A ∧ C)?

High complexity: n propositions → 2n full conjunctives

Hard to specify these probabilities.



Summary
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Uncertainty is inevitable in complex and dynamic scenarios
that force agents to cope with ignorance.

Probabilities express the agent’s inability to vote for a
definitive decision. They model the degree of belief.

If an agent violates the axioms of probability, it may exhibit
irrational behavior in certain circumstances.

The Bayes rule is used to derive unknown probabilities from
present knowledge and new evidence.

Multiple evidences can be effectively included into computations
exploiting conditional independencies.
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Probabilistic Graphical Models
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In a wide variety of application fields two main problems need to be addressed over
and over:

1. How can (expert) knowledge of complex domains be efficiently rep-
resented?

2. How can inferences be carried out within these representations?

3. How can such representations be (automatically) extracted from
collected data?

We will deal with all three questions during the lecture.
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Available information

“Engine type e1 can only be combined with transmission t2 or t5.”

“Transmission t5 requires crankshaft c2.”

“Convertibles have the same set of radio options as SUVs.”

Possible questions/inferences:

“Can a station wagon with engine e4 be equipped with tire set y6?”

“Supplier S8 failed to deliver on time. What production line
has to be modified and how?”

“Are there any peculiarities within the set of cars that suffered
an aircondition failure?”



Example 2: Medical reasoning
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Available information:

“Malaria is much less likely than flu.”

“Flu causes cough and fever.”

“Nausea can indicate malaria as well as flu.”

“Nausea never indicated pneunomia before.”

Possible questions/inferences

“The patient has fever. How likely is he to have malaria?”

“How much more likely does flu become if we can exclude malaria?”



Common Problems
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Both scenarios share some severe problems:

Large Data Space
It is intractable to store all value combinations, i. e. all car part combinations or
inter-disease dependencies.

(Example: VW Bora has 10200 theoretical value combinations∗)

Sparse Data Space
Even if we could handle such a space, it would be extremely sparse, i. e. it would
be impossible to find good estimates for all the combinations.

(Example: with 100 diseases and 200 symptoms, there would be about 1062 dif-
ferent scenarios for which we had to estimate the probability.∗)

∗ The number of particles in the observable universe is estimated to be between 1078 and 1085.
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Given: A large (high-dimensional) distribution δ representing the
domain knowledge.

Desired: A set of smaller (lower-dimensional) distributions {δ1, . . . , δs}
(maybe overlapping) from which the original δ could be
reconstructed with no (or as few as possible) errors.

With such a decomposition we can draw any conclusions from {δ1, . . . , δs} that
could be inferred from δ — without, however, actually reconstructing it.



Example: Car Manufacturing
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Let us consider a car configuration is described by three attributes:

◦ Engine E, dom(E) = {e1, e2, e3}
◦ Breaks B, dom(B) = {b1, b2, b3}
◦ Tires T , dom(T ) = {t1, t2, t3, t4}

Therefore the set of all (theoretically) possible car configurations is:

Ω = dom(E)× dom(B)× dom(T )

Since not all combinations are technically possible (or wanted by marketing) a set
of rules is used to cancel out invalid combinations.



Example: Car Manufacturing
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Possible car configurations
Every cube designates a valid
value combination.

10 car configurations in our model.

Different colors are intended to
distinguish the cubes only.



Example
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2-D projections
Is it possible to reconstruct δ from
the δi?



Example: Reconstruction of δ with δBE and δET
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Example: Reconstruction of δ with δBE and δET

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 132



Example: Reconstruction of δ with δBE and δET
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Causal Dependence vs. Reasoning
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Rule: A entails B with certainty x: A
x→ B

Deduction (→):
A and A

x→ B, therefore B more likely as effect (causality)

Abduction (←):
B and A

x→ B, therefore A more likely as cause (no causality)

For this reason, the notion “dependency model” is to be preferred to “causal network”.
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Is it possible to exploit local constraints (wherever they may come from — both struc-
tural and expert knowledge-based) in a way that allows for a decomposition of the large
(intractable) distribution P (X1, . . . , Xn) into several sub-structures {C1, . . . , Cm}
such that:

The collective size of those sub-structures is much smaller than that of the original
distribution P .

The original distribution P is recomposable (with no or at least as few as possible
errors) from these sub-structures in the following way:

P (X1, . . . , Xn) =
m∏

i=1

Ψi(ci)

where ci is an instantiation of Ci and Ψi(ci) ∈ R
+ a factor potential.



The Big Picture / Lecture Roadmap
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Probabilistic Causal Networks
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Probabilistic causal networks are directed acyclic graphs (DAGs) where the nodes rep-
resent propositions or variables and the directed edges model a direct causal dependence
between the connected nodes. The strength of dependence is defined by conditional
probabilities.

X1

X2 X3

X4 X5

X6

In general (according chain rule):

P (X1, . . . , X6) = P (X6 | X5, . . . , X1)·
P (X5 | X4, . . . , X1)·
P (X4 | X3, X2, X1)·
P (X3 | X2, X1)·
P (X2 | X1)·
P (X1)



Probabilistic Causal Networks
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Probabilistic causal networks are directed acyclic graphs (DAGs) where the nodes rep-
resent propositions or variables and the directed edges model a direct causal dependence
between the connected nodes. The strength of dependence is defined by conditional
probabilities.

X1

X2 X3

X4 X5

X6

According graph (independence structure):

P (X1, . . . , X6) = P (X6 | X5)·
P (X5 | X2, X3)·
P (X4 | X2)·
P (X3 | X1)·
P (X2 | X1)·
P (X1)



Formal Framework
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Nomenclature for the next slides:

X1, . . . , Xn Variables
(properties, attributes, random variables, propositions)

Ω1, . . . ,Ωn respective finite domains
(also designated with dom(Xi))

Ω =
n×
i=1

Ωi Universe of Discourse (tuples that characterize objects
described by X1, . . . , Xn)

Ωi = {x(1)i , . . . , x
(ni)
i } n = 1, . . . , n, ni ∈ N



Formal Framework
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The product space (Ω, 2Ω, P ) is unique iff P ({(x1, . . . , xn)}) is specified
for all xi ∈ {x(1)i , . . . , x

(ni)
i }, i = 1, . . . , n.

When the distribution P (X1, . . . , Xn) is given in tabular form, then
∏n
i=1 |Ωi|

entries are necessary.

For variables with |Ωi| ≥ 2 at least 2n entries.

The application of DAGs allows for the representation of existing (in)dependencies.



Constructing a DAG
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input P (X1, . . . , Xn)
output a unique DAG G

1: Set the nodes of G to {X1, . . . , Xn}.
2: Choose a total ordering on the set of variables
(e. g. X1 ≺ X2 ≺ · · · ≺ Xn)

3: For Xi find the smallest (uniquely determinable) set Si ⊆ {X1, . . . , Xn} sucht
that P (Xi | Si) = P (Xi | X1 . . . , Xi−1).

4: Connect all nodes in Si with Xi and store P (Xi | Si) as quantization of the
dependencies for that node Xi (given its parents).

5: return G



Belief Network
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A Belief Network (V,E, P ) consists of a set V = {X1, . . . , Xn} of random
variables and a set E of directed edges between the variables.

Each variable has a finite set of mutual exclusive and collectively exhaustive states.

The variables in combination with the edges form a directed, acyclich graph.

Each variable with parent nodes B1, . . . , Bm is assigned a
potential table P (A | B1, . . . , Bm).

Note, that the connections between the nodes not necessarily express a causal
relationship.

For every belief network, the following equation holds:

P (V ) =
∏

v∈V :P (c(v))>0

P (v | c(v))

with c(v) being the parent nodes of v.
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Let a1, a2, a3 be three blood groups and b1, b2, b3 three indications of a blood
group test.

Variables: A (blood group) B (indication)

Domains: ΩA = {a1, a2, a3} ΩB = {b1, b2, b3}
It is conjectured that there is a causal relationship between the variables.

P ({(ai, bj)}) b1 b2 b3
∑

a1 0.64 0.08 0.08 0.8
a2 0.01 0.08 0.01 0.1
a3 0.01 0.01 0.08 0.1∑

0.66 0.17 0.17 1

A B

P (A,B) = P (B | A) · P (A)
We are dealing with a belief net-
work.
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Expert Knowledge

Metastatic cancer is a possible cause of brain cancer, and an explanation for elevated
levels of calcium in the blood. Both phenomena together can explain that a patient
falls into a coma. Severe headaches are possibly associated with a brain tumor.

Special Case

The patient has severe headaches.

Question

Will the patient is go into a coma?
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Choice of universe of discourse

Variable Domain
A metastatic cancer {a1, a2}
B increased serum calcium {b1, b2}
C brain tumor {c1, c2}
D coma {d1, d2}
E headache {e1, e2}

(·1 — present,·2 — absent)

Ω = {a1, a2} × · · · × {e1, e2}
|Ω| = 32

Analysis of dependencies
A

B C

D E
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Choice of probability parameters

P (a, b, c, d, e)
abbr.
= P (A = a,B = b, C = c,D = d,E = e)

= P (e | c)P (d | b, c)P (c | a)P (b | a)P (a)✻

Shorthand notation

11 values to store instead of 31

Consult experts, textbooks, case studies, surveys, etc.

Calculation of conditional probabilities

Calculation of marginal probabilities
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Knowledge acquisition (Where do the numbers come from?)
→ learning strategies

Computational complexities
→ exploit independencies

Problem:

When does the independency of X and Y given Z hold in (V,E, P )?

How can we determine P (X, Y | Z) = P (X | Z)P (Y | Z) solely using the graph
structure?
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A B

C

Meal quality

A quality of ingredients

B cook’s skill

C meal quality

If C is not known, A and B are independent.

If C is known, then A and B become (conditionally) dependent given C.

A⊥6⊥B | C
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A B

C

D

Meal quality

A quality of ingredients

B cook’s skill

C meal quality

D restaurant success

If nothing is known about the restaurant success or meal quality or both, the
cook’s skills and quality of the ingredients are unrelated, that is, independent.

However, if we observe that the restaurant has no success, we can infer that the
meal quality might be bad.

If we further learn that the ingredients quality is high, we will conclude that the
cook’s skills must be low, thus rendering both variables dependent.

A⊥6⊥B | D
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Diverging Connection

A B

C

Diagnosis

A body temperature

B cough

C disease

If C is unknown, knowledge about A ist relevant for B and vice versa, i. e. A and
B are marginally dependent.

However, if C is observed, A and B become conditionally independent given C.

A influences B via C. If C is known it in a way blocks the information from
flowing from A to B, thus rendering A and B (conditionally) independent.
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Serial Connection

A B

C

Accidents

A rain

B accident risk

C road conditions

Analog scenario to case 2

A influences C and C influences B. Thus, A influences B.
If C is known, it blocks the path between A and B.
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A B

C

Converging Connection: Marginal Independence

Decomposition according to graph:

P (A,B,C) = P (C | A,B) · P (A) · P (B)

Embedded Independence:

P (A,B,C) =
P (A,B,C)

P (A,B)
· P (A) · P (B) with P (A,B) 6= 0

P (A,B) = P (A) · P (B)

⇒ A⊥⊥B | ∅
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A B

C

Diverging Connection: Conditional Independence

Decomposition according to graph:

P (A,B,C) = P (A | C) · P (B | C) · P (C)

Embedded Independence:

P (A,B | C) = P (A | C) · P (B | C)

⇒ A⊥⊥B | C

Alternative derivation:

P (A,B,C) = P (A | C) · P (B,C)

P (A | B,C) = P (A | C)

⇒ A⊥⊥B | C
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A B

C

Serial Connection: Conditional Independence

Decomposition according to graph:

P (A,B,C) = P (B | C) · P (C | A) · P (A)

Embedded Independence:

P (A,B,C) = P (B | C) · P (C,A)

P (B | C,A) = P (B | C)

⇒ A⊥⊥B | C
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Trivial Cases:

Marginal Independence:

A B P (A,B) = P (A) · P (B)

Marginal Dependence:

A B P (A,B) = P (B | A) · P (A)
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Question: Are X2 and X3 independent given X1?

X1

X2 X3

X4 X5

X6

evidence X1 = x1
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Let G = (V,E) a DAG and X, Y, Z ∈ V three nodes.

a) A set S ⊆ V \{X, Y } d-separates X and Y , if S blocks all
paths between X and Y . (paths may also route in opposite edge direction)

b) A path π is d-separated by S if at least one pair of consecutive edges along π is
blocked. There are the following blocking conditions:

1. X ← Y → Z tail-to-tail

2.
X ← Y ← Z

head-to-tail
X → Y → Z

3. X → Y ← Z head-to-head

c) Two edges that meet tail-to-tail or head-to-tail in node Y are blocked if Y ∈ S.

d) Two edges meeting head-to-head in Y are blocked if neither Y nor its successors
are in S.
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If S ⊆ V \{X, Y } d-separates X and Y in a Belief network (V,E, P ) then X and Y
are conditionally independent given S:

P (X, Y | S) = P (X | S) · P (Y | S)

Application to the previous example:

X1

X2 X3

X4 X5

X6

Paths: π1 = 〈X2−X1−X3〉, π2 = 〈X2−X5−X3〉
π3 = 〈X2−X4−X1−X3〉, S = {X1}

π1 X2←X1→X3 tail-to-tail
X1 ∈ S ⇒ π1 is blocked by S

π2 X2→X5←X3 head-to-head
X5, X6 /∈ S ⇒ π2 is blocked by S

π3 X4←X1→X3 tail-to-tail
X2→X4←X1 head-to-head
both connections are blocked ⇒ π3 is blocked
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Answer: X2 and X3 are d-separated via {X1}. Therefore X2 and X3 become
conditionally independent given X1.

S = {X1, X4} ⇒ X2 and X3 are d-separated by S

S = {X1, X6} ⇒ X2 and X3 are not d-separated by S



Another Example
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A B C

D E F G

H I J

K L

M

Are A and L conditionally independent given {B,M}?
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Question: Is it possible to use a formal scheme to infer new
conditional independence (CI) statements from
a set of initial CIs?

Repetition

Let (Ω, E , P ) be a probability space and W,X, Y, Z disjoint subsets of variables. If X
and Y are conditionally independent given Z we write:

X ⊥⊥P Y | Z

Often, the following (equivalent) notation is used:

IP (X | Z | Y ) or IP (X, Y | Z)

If the underlying space is known the index P is omitted.
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Let (Ω, E , P ) be a probability space andW, X, Y and Z four disjoint subsets of random
variables (over Ω). Then the propositions

a) Symmetry: (X ⊥⊥P Y | Z) ⇒ (Y ⊥⊥P X | Z)

b) Decomposition: (W ∪X ⊥⊥P Y | Z) ⇒ (W ⊥⊥P Y | Z) ∧ (X ⊥⊥P Y | Z)

c) Weak Union: (W ∪X ⊥⊥P Y | Z) ⇒ (X ⊥⊥P Y | Z ∪W )

d) Contraction: (X ⊥⊥P Y | Z ∪W ) ∧ (W ⊥⊥P Y | Z) ⇒ (W ∪X ⊥⊥P Y | Z)
are called the Semi-Graphoid Axioms. The above propositions and

e) Intersection: (W ⊥⊥P Y | Z∪X)∧(X ⊥⊥P Y | Z∪W ) ⇒ (W∪X ⊥⊥P Y | Z)
are called the Graphoid Axioms.
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Y

Z

W X

Y

Z

W X

Y

Z

W X

⇒ ∧

Drawings adapted from [Castillo et al. 1997].
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Y

Z

W X

Y

Z

W X

Y

Z

W X

⇒ ∧

Learning irrelevant information W cannot render ir-
relevant information X relevant.

Drawings adapted from [Castillo et al. 1997].
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Y

Z

W X

Y

Z

W X

Y

Z

W X

∧ ⇒

If X is irrelevant (to Y) after having learnt some
irrelevant information W, then X must have been
irrelevant before.

Drawings adapted from [Castillo et al. 1997].
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Y

Z

W X

Y

Z

W X

Y

Z

W X

∧ ⇒

Unless W affects Y when X is known or X affects
Y when W is known, neither X nor W nor their
combination can affect Y .

Drawings adapted from [Castillo et al. 1997].
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Proposition: B⊥⊥C | A

Proof: D⊥⊥A,C | ∅ ∧ B⊥⊥C | A,D
w. union
=⇒ D⊥⊥C | A ∧ B⊥⊥C | A,D

symm.⇐⇒ C ⊥⊥D | A ∧ C ⊥⊥B | A,D
contr.
=⇒ C ⊥⊥B,D | A

decomp.
=⇒ C ⊥⊥B | A

symm.⇐⇒ B⊥⊥C | A

D

A

E

B

C
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Definition: Let (· ⊥⊥δ · | ·) be a three-place relation representing the set of conditional
independence statements that hold in a given distribution δ over a set U of attributes.
An undirected graph G = (U,E) over U is called a conditional dependence
graph or a dependence map w. r. t. δ, iff for all disjoint subsets X, Y, Z ⊆ U of
attributes

X ⊥⊥δ Y | Z ⇒ 〈X | Z | Y 〉G,

i. e., if G captures by u-separation all (conditional) independences that hold in δ and
thus represents only valid (conditional) dependences. Similarly, G is called a con-
ditional independence graph or an independence map w. r. t. δ, iff for all
disjoint subsets X,Y, Z ⊆ U of attributes

〈X | Z | Y 〉G ⇒ X ⊥⊥δ Y | Z,

i. e., if G captures by u-separation only (conditional) independences that are valid in δ.
G is said to be a perfect map of the conditional (in)dependences in δ, if it is both a
dependence map and an independence map.
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Definition: An undirected graph G = (U,E) over a set U of attributes is said to
have (w.r.t. a distribution δ) the

pairwise Markov property,

iff in δ any pair of attributes which are nonadjacent in the graph are conditionally
independent given all remaining attributes, i.e., iff

∀A,B ∈ U,A 6= B : (A,B) /∈ E ⇒ A⊥⊥δB | U − {A,B},
local Markov property,

iff in δ any attribute is conditionally independent of all remaining attributes given its
neighbors, i.e., iff

∀A ∈ U : A⊥⊥δ U − closure(A) | boundary(A),
global Markov property,

iff in δ any two sets of attributes which are u-separated by a third are conditionally
independent given the attributes in the third set, i.e., iff

∀X,Y, Z ⊆ U : 〈X | Z | Y 〉G ⇒ X ⊥⊥δ Y | Z.
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Definition: A directed acyclic graph ~G = (U, ~E) over a set U of attributes is said to
have (w.r.t. a distribution δ) the

pairwise Markov property,

iff in δ any attribute is conditionally independent of any non-descendant not among
its parents given all remaining non-descendants, i.e., iff

∀A,B ∈ U : B ∈ non-descs(A)− parents(A) ⇒ A⊥⊥δB | non-descs(A)− {B},
local Markov property,

iff in δ any attribute is conditionally independent of all remaining non-descendants
given its parents, i.e., iff

∀A ∈ U : A⊥⊥δ non-descs(A)− parents(A) | parents(A),
global Markov property,

iff in δ any two sets of attributes which are d-separated by a third are conditionally
independent given the attributes in the third set, i.e., iff

∀X,Y, Z ⊆ U : 〈X | Z | Y 〉 ~G ⇒ X ⊥⊥δ Y | Z.
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Propagation in Belief Networks
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Given: Belief network (V,E, P ) with tree structure and P (V ) > 0.
Set W ⊆ V of instantiated variables where
a priori knowledge W 6= ∅ is allowed

Desired: P (B | W ) for all B ∈ V

Notation: W−B subset of those variables of W that belong
to the subtree of (V,E) that has root B

W+
B = W\W−B

s(B) set of direct successors of B

ΩB domain of B

b∗ value that B is instantiated with
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H

G A

F K

J C M N

B

LW+
B = {F,K} W−B = {L,M}

s(B) = {C,M,N}

W = {F,K, L,M}



Decomposition in the Tree
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P (B = b | W ) = P (b |W−B ∪W
+
B ) with B 6∈ W

=
P (W−B ∪W+

B ∪ {b})
P (W−B ∪W+

B )

=
P (W−B ∪W+

B | b)P (b)
P (W−B ∪W+

B )

=
P (W−B | b)P (W+

B | b)P (b)
P (W−B ∪W+

B )

= βB,W P (W−B | b)︸ ︷︷ ︸
Evidence from “below”

P (b | W+
B )︸ ︷︷ ︸

Evidence from “above”



π- and λ-Values
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Since we ignore the constant βB,W for the derivations below, the following designations
are used instead of P (·):

π-values and λ-values

Let B ∈ V be a variable and b ∈ ΩB a value of its domain. We define the π- and
λ-values as follows:

λ(b) =





P (W−B | b) if B 6∈ W
1 if B ∈ W ∧ b∗ = b

0 if B ∈ W ∧ b∗ 6= b

π(b) = P (b | W+
B )



π- and λ-Values
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λ(b) =
∏

C∈s(B)

P (W−C | b) if B ∈ W

λ(b) = 1 if B leaf in (V,E)

π(b) = P (b) if B root in (V,E)

P (b | W ) = αB,W · λ(b) · π(b)
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λ-message

Let B ∈ V be an attribute and C ∈ s(B) its direct children with the respective
domains dom(B) = {B1, . . . , bi, . . . , bk} and dom(C) = {c1, . . . , cj, . . . , cm}.

λC→B(bi)
Def
=

m∑

j=1

P (cj | bi) · λ(cj), i = 1, . . . , k

The vector

~λC→B
Def
=

(
λC→B(bi)

)k

i=1

is called λ-message from C to B.



λ-Message
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Let B ∈ V an attribute an b ∈ dom(B) a value of its domain.
Then

λ(b) =





ρB,W ·
∏

C∈s(B)

λC(b) if B /∈W

1 if B ∈W ∧ b = b∗

0 if B ∈W ∧ b 6= b∗

with ρB,W being a positive constant.
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π-message

Let B ∈ V be a non-root node in (V,E) and A ∈ V its parent
with domain dom(A) = {a1, . . . , aj, . . . , am}.

j = 1, . . . , m :

πA→B(aj)
Def
=





π(aj) ·
∏

C∈s(A)\{B}
λC(aj) if A /∈ W

1 if A ∈ W ∧ a = a∗

0 if A ∈ W ∧ a 6= a∗

The vector

~πA→B
Def
=

(
πA→B(aj)

)m

j=1

is called π-message from A to B.
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Let B ∈ V be a non-root node in (V,E) and A the parent node of B.
Further let b ∈ dom(B) be a value of B’s domain.

π(b) = µB,W ·
∑

a∈dom(A)

P (b | a) · πA→B(a)

Let A /∈W a non-instantiated attribute and P (V ) > 0.

πA→B(aj) = π(aj) ·
∏

C∈s(A)\{B}
λC→A(aj)

= τB,W ·
P (aj | W )

λB→A(aj)
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Belief Tree:

A

B D

C

π λ P
a1
a2

π λ P
d1
d2

π λ P
b1
b2

π λ P
c1
c2

πA→D

λD→A

πA→B

λB→A

λC→B

πB→C

Parameters:

P (a1) = 0.1 P (b1 | a1) = 0.7

P (b1 | a2) = 0.2

P (d1 | a1) = 0.8 P (c1 | b1) = 0.4

P (d1 | a2) = 0.4 P (c1 | b2) = 0.001

Desired:
∀X ∈ {A,B,C,D} : P (X | ∅) = ?



Propagation in Belief Trees (2)
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Belief Tree:

A

B D

C

π λ P
a1 1
a2 1

π λ P
d1 1
d2 1

π λ P
b1 1
b2 1

π λ P
c1 1
c2 1

(
a1
1 ,

a2
1 )

(
a1
1 ,

a2
1 )

(
b1
1 ,
b2
1 )

Initialization Phase:

Set all λ-messages and
λ-values to 1.



Propagation in Belief Trees (3)
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Belief Tree:

A

B D

C

π λ P
a1 0.1 1 0.1
a2 0.9 1 0.9

π λ P
d1 1
d2 1

π λ P
b1 1
b2 1

π λ P
c1 1
c2 1

(
a1
1 ,

a2
1 )

(
a1
1 ,

a2
1 )

(
b1
1 ,
b2
1 )

Initialization Phase:

Set all λ-messages and
λ-values to 1.
π(a1) = P (a1) and
π(a2) = P (a2)



Propagation in Belief Trees (4)
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Belief Tree:

A

B D

C

π λ P
a1 0.1 1 0.1
a2 0.9 1 0.9

π λ P
d1 1
d2 1

π λ P
b1 1
b2 1

π λ P
c1 1
c2 1

(
a1
0.1,

a2
0.9)

(
a1
1 ,

a2
1 )

(
a1
0.1,

a2
0.9)

(
a1
1 ,

a2
1 )

(
b1
1 ,
b2
1 )

Initialization Phase:

Set all λ-messages and
λ-values to 1.
π(a1) = P (a1) and
π(a2) = P (a2).
A sends π-messages to
B and D.



Propagation in Belief Trees (5)
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Belief Tree:

A

B D

C

π λ P
a1 0.1 1 0.1
a2 0.9 1 0.9

π λ P
d1 0.44 1 0.44
d2 0.56 1 0.56

π λ P
b1 0.25 1 0.25
b2 0.75 1 0.75

π λ P
c1 1
c2 1

(
a1
0.1,

a2
0.9)

(
a1
1 ,

a2
1 )

(
a1
0.1,

a2
0.9)

(
a1
1 ,

a2
1 )

(
b1
1 ,
b2
1 )

Initialization Phase:

Set all λ-messages and
λ-values to 1.
π(a1) = P (a1) and
π(a2) = P (a2).
A sends π-messages to
B and D.
B and D update their
π-values.



Propagation in Belief Trees (6)
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Belief Tree:

A

B D

C

π λ P
a1 0.1 1 0.1
a2 0.9 1 0.9

π λ P
d1 0.44 1 0.44
d2 0.56 1 0.56

π λ P
b1 0.25 1 0.25
b2 0.75 1 0.75

π λ P
c1 1
c2 1

(
a1
0.1,

a2
0.9)

(
a1
1 ,

a2
1 )

(
a1
0.1,

a2
0.9)

(
a1
1 ,

a2
1 )

(
b1
0.25,

b2
0.75)

(
b1
1 ,
b2
1 )

Initialization Phase:

Set all λ-messages and
λ-values to 1.
π(a1) = P (a1) and
π(a2) = P (a2).
A sends π-messages to
B and D.
B and D update their
π-values.
B sends π-message to C.



Propagation in Belief Trees (7)
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Belief Tree:

A

B D

C

π λ P
a1 0.1 1 0.1
a2 0.9 1 0.9

π λ P
d1 0.44 1 0.44
d2 0.56 1 0.56

π λ P
b1 0.25 1 0.25
b2 0.75 1 0.75

π λ P
c1 0.10075 1 0.10075
c2 0.89925 1 0.89925

(
a1
0.1,

a2
0.9)

(
a1
1 ,

a2
1 )

(
a1
0.1,

a2
0.9)

(
a1
1 ,

a2
1 )

(
b1
0.25,

b2
0.75)

(
b1
1 ,
b2
1 )

Initialization Phase:

Set all λ-messages and
λ-values to 1.
π(a1) = P (a1) and
π(a2) = P (a2).
A sends π-messages to
B and D.
B and D update their
π-values.
B sends π-message to C.
C updates it π-value.



Propagation in Belief Trees (8)
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Belief Tree:

A

B D

C

π λ P
a1 0.1 1 0.1
a2 0.9 1 0.9

π λ P
d1 0.44 1 0.44
d2 0.56 1 0.56

π λ P
b1 0.25 1 0.25
b2 0.75 1 0.75

π λ P
c1 0.10075 1 0.10075
c2 0.89925 1 0.89925

(
a1
0.1,

a2
0.9)

(
a1
1 ,

a2
1 )

(
a1
0.1,

a2
0.9)

(
a1
1 ,

a2
1 )

(
b1
0.25,

b2
0.75)

(
b1
1 ,
b2
1 )

Initialization Phase:

Set all λ-messages and
λ-values to 1.
π(a1) = P (a1) and
π(a2) = P (a2).
A sends π-messages to
B and D.
B and D update their
π-values.
B sends π-message to C.
C updates it π-value.
Initialization finished.



Larger Network (1): Parameters
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A

B C

D E F G

H I

P (A) ∅
a1 0.4
a2 0.6

P (B | A) a1 a2
b1 0.2 0.3
b2 0.8 0.7

P (C | A) a1 a2
c1 0.1 0.25
c2 0.9 0.75

P (D | B) b1 b2
d1 0.5 0.35
d2 0.5 0.65

P (E | B) b1 b2
e1 0.15 0.45
e2 0.85 0.55

P (F | C) c1 c2
f1 0.3 0.6
f2 0.7 0.4

P (G | C) c1 c2
g1 0.25 0.1
g2 0.75 0.9

P (H | F ) f1 f2
h1 0.65 0.2
h2 0.35 0.8

P (I | F ) f1 f2
i1 0.25 0.5
i2 0.75 0.5



Larger Network (2): After Initialization
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A

B C

D E F G

H I

A π λ P
a1 0.4 1 0.4
a2 0.6 1 0.6

B π λ P
b1 0.26 1 0.26
b2 0.74 1 0.74

C π λ P
c1 0.19 1 0.19
c2 0.81 1 0.81

D π λ P
d1 0.389 1 0.389
d2 0.611 1 0.611

E π λ P
e1 0.372 1 0.327
e2 0.628 1 0.628

F π λ P
f1 0.543 1 0.543
f2 0.457 1 0.457

G π λ P
g1 0.1285 1 0.1285
g2 0.8715 1 0.8715

H π λ P
h1 0.4444 1 0.4444
h2 0.5556 1 0.5556

I π λ P
i1 0.3643 1 0.3643
i2 0.6357 1 0.6357



Larger Network (3): Set Evidence e1, g1, h1
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A

B C

D E F G

H I

A π λ P
a1 0.4 1 0.4
a2 0.6 1 0.6

B π λ P
b1 0.26 1 0.26
b2 0.74 1 0.74

C π λ P
c1 0.19 1 0.19
c2 0.81 1 0.81

D π λ P
d1 0.389 1 0.389
d2 0.611 1 0.611

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 0.543 1 0.543
f2 0.457 1 0.457

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3643 1 0.3643
i2 0.6357 1 0.6357



Larger Network (4): Propagate Evidence
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A

B C

D E F G

H I

(
b1
1.0,

b2
1.0)

(
b1
0.15,

b2
0.45)

(
c1
1.0,

c2
1.0)

(
c1
0.25,

c2
0.1)

(
f1
0.65,

f2
0.2)

(
f1
1.0,

f2
1.0)

A π λ P
a1 0.4 1 0.4
a2 0.6 1 0.6

B π λ P
b1 0.26 1 0.26
b2 0.74 1 0.74

C π λ P
c1 0.19 1 0.19
c2 0.81 1 0.81

D π λ P
d1 0.389 1 0.389
d2 0.611 1 0.611

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 0.543 1 0.543
f2 0.457 1 0.457

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3643 1 0.3643
i2 0.6357 1 0.6357



Larger Network (5): Propagate Evidence, cont.
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A

B C

D E F G

H I

(
b1
1.0,

b2
1.0)

(
b1
0.15,

b2
0.45)

(
c1
1.0,

c2
1.0)

(
c1
0.25,

c2
0.1)

(
f1
0.65,

f2
0.2)

(
f1
1.0,

f2
1.0)

A π λ P
a1 0.4 1 0.4
a2 0.6 1 0.6

B π λ P
b1 0.26 0.15 0.1048
b2 0.74 0.45 0.8952

C π λ P
c1 0.19 0.25 0.3696
c2 0.81 0.1 0.6304

D π λ P
d1 0.389 1 0.389
d2 0.611 1 0.611

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 0.543 0.65 0.7943
f2 0.457 0.2 0.2057

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3643 1 0.3643
i2 0.6357 1 0.6357



Larger Network (6): Propagate Evidence, cont.
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A

B C

D E F G

H I

(
a1
0.39,

a2
0.36)

(
b1

0.1048,
b2

0.8952)

(
c1

0.335,
c2
0.47)

(
f1

0.7943,
f2

0.2057)

A π λ P
a1 0.4 1 0.4
a2 0.6 1 0.6

B π λ P
b1 0.26 0.15 0.1048
b2 0.74 0.45 0.8952

C π λ P
c1 0.19 0.25 0.3696
c2 0.81 0.1 0.6304

D π λ P
d1 0.389 1 0.389
d2 0.611 1 0.611

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 0.543 0.65 0.7943
f2 0.457 0.2 0.2057

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3643 1 0.3643
i2 0.6357 1 0.6357



Larger Network (7): Propagate Evidence, cont.
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A

B C

D E F G

H I

(
a1
0.39,

a2
0.36)

(
b1

0.1048,
b2

0.8952)

(
c1

0.335,
c2
0.47)

(
f1

0.7943,
f2

0.2057)

A π λ P
a1 0.4 0.39 0.4194
a2 0.6 0.36 0.5806

B π λ P
b1 0.26 0.15 0.1048
b2 0.74 0.45 0.8952

C π λ P
c1 0.19 0.0838 0.2948
c2 0.81 0.047 0.7052

D π λ P
d1 0.3657 1 0.3657
d2 0.6343 1 0.6343

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 0.543 0.65 0.7943
f2 0.457 0.2 0.2057

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3014 1 0.3014
i2 0.6986 1 0.6986



Larger Network (8): Propagate Evidence, cont.
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A

B C

D E F G

H I

(
a1

0.0507,
a2

0.0562)

(
c1

0.3696,
c2

0.6304)

A π λ P
a1 0.4 0.39 0.4194
a2 0.6 0.36 0.5806

B π λ P
b1 0.26 0.15 0.1048
b2 0.74 0.45 0.8952

C π λ P
c1 0.19 0.0838 0.2948
c2 0.81 0.047 0.7052

D π λ P
d1 0.3657 1 0.3657
d2 0.6343 1 0.6343

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 0.543 0.65 0.7943
f2 0.457 0.2 0.2057

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3014 1 0.3014
i2 0.6986 1 0.6986



Larger Network (9): Propagate Evidence, cont.
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A

B C

D E F G

H I

(
a1

0.0507,
a2

0.0562)

(
c1

0.3696,
c2

0.6304)

A π λ P
a1 0.4 0.0198 0.3945
a2 0.6 0.0202 0.6055

B π λ P
b1 0.26 0.15 0.1048
b2 0.74 0.45 0.8952

C π λ P
c1 0.19 0.0838 0.2948
c2 0.81 0.047 0.7052

D π λ P
d1 0.3657 1 0.3657
d2 0.6343 1 0.6343

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 0.4891 0.65 0.7568
f2 0.5109 0.2 0.2432

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3014 1 0.3014
i2 0.6986 1 0.6986



Larger Network (10): Propagate Evidence, cont.
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A

B C

D E F G

H I

(
a1

1.0115,
a2

1.6819) (
a1

0.4194,
a2

0.5806)

(
f1

0.7568,
f2

0.2432)

A π λ P
a1 0.4 0.0198 0.3945
a2 0.6 0.0202 0.6055

B π λ P
b1 0.26 0.15 0.1048
b2 0.74 0.45 0.8952

C π λ P
c1 0.19 0.0838 0.2948
c2 0.81 0.047 0.7052

D π λ P
d1 0.3657 1 0.3657
d2 0.6343 1 0.6343

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 0.4891 0.65 0.7568
f2 0.5109 0.2 0.2432

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3014 1 0.3014
i2 0.6986 1 0.6986



Larger Network (11): Propagate Evidence, cont.
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A

B C

D E F G

H I

(
a1

1.0115,
a2

1.6819) (
a1

0.4194,
a2

0.5806)

(
f1

0.7568,
f2

0.2432)

A π λ P
a1 0.4 0.0198 0.3945
a2 0.6 0.0202 0.6055

B π λ P
b1 0.7077 0.15 0.1061
b2 1.9865 0.45 0.8939

C π λ P
c1 0.1871 0.0838 0.2910
c2 0.8129 0.047 0.7090

D π λ P
d1 0.3657 1 0.3657
d2 0.6343 1 0.6343

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 0.4891 0.65 0.7568
f2 0.5109 0.2 0.2432

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3108 1 0.3108
i2 0.6892 1 0.6892



Larger Network (12): Propagate Evidence, cont.
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A

B C

D E F G

H I

(
b1

0.1048,
b2

0.8952) (
c1

0.8687,
c2

1.5085)

A π λ P
a1 0.4 0.0198 0.3945
a2 0.6 0.0202 0.6055

B π λ P
b1 0.7077 0.15 0.1061
b2 1.9865 0.45 0.8939

C π λ P
c1 0.1871 0.0838 0.2910
c2 0.8129 0.047 0.7090

D π λ P
d1 0.3657 1 0.3657
d2 0.6343 1 0.6343

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 0.4891 0.65 0.7568
f2 0.5109 0.2 0.2432

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3108 1 0.3108
i2 0.6892 1 0.6892



Larger Network (13): Propagate Evidence, cont.
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A

B C

D E F G

H I

(
b1

0.1048,
b2

0.8952) (
c1

0.8687,
c2

1.5085)

A π λ P
a1 0.4 0.0198 0.3945
a2 0.6 0.0202 0.6055

B π λ P
b1 0.7077 0.15 0.1061
b2 1.9865 0.45 0.8939

C π λ P
c1 0.1871 0.0838 0.2910
c2 0.8129 0.047 0.7090

D π λ P
d1 0.3659 1 0.3659
d2 0.6341 1 0.6341

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 1.1657 0.65 0.7577
f2 1.2115 0.2 0.2423

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3108 1 0.3108
i2 0.6892 1 0.6892



Larger Network (14): Propagate Evidence, cont.
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A

B C

D E F G

H I

(
f1

0.7577,
f2

0.2423)

A π λ P
a1 0.4 0.0198 0.3945
a2 0.6 0.0202 0.6055

B π λ P
b1 0.7077 0.15 0.1061
b2 1.9865 0.45 0.8939

C π λ P
c1 0.1871 0.0838 0.2910
c2 0.8129 0.047 0.7090

D π λ P
d1 0.3659 1 0.3659
d2 0.6341 1 0.6341

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 1.1657 0.65 0.7577
f2 1.2115 0.2 0.2423

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3108 1 0.3108
i2 0.6892 1 0.6892



Larger Network (15): Finished
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A

B C

D E F G

H I

(
f1

0.7577,
f2

0.2423)

A π λ P
a1 0.4 0.0198 0.3945
a2 0.6 0.0202 0.6055

B π λ P
b1 0.7077 0.15 0.1061
b2 1.9865 0.45 0.8939

C π λ P
c1 0.1871 0.0838 0.2910
c2 0.8129 0.047 0.7090

D π λ P
d1 0.3659 1 0.3659
d2 0.6341 1 0.6341

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 1.1657 0.65 0.7577
f2 1.2115 0.2 0.2423

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3106 1 0.3106
i2 0.6894 1 0.6894

————————————————————
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Propagation in Clique Trees



Problems
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The propagation algorithm as presented can only deal with trees.

Can be extended to polytrees (i. e. singly connected graphs with
multiple parents per node).

However, it cannot handle networks that contain loops!



Idea
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Main Objectives:

Transform the cyclic directed graph into a secondary structure without cycles.

Find a decomposition of the underlying joint distribution.

Task:

Combine nodes of the original (primary) graph structure.

These groups form the nodes of a secondary structure.

Find a transformation that yields tree structure.



Idea (2)
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Secondary Structure:

We will generate an undirected graph mimicking (some of) the conditional inde-
pendence statements of the cyclic directed graph.

Maximal cliques are identified and form the nodes of the secondary structure.

Specify a so-called potential function for every clique such that the product of all
potentials yields the initial joint distribution.

In order to propagate evidence, create a tree from the clique nodes such that the
following property is satisfied:

If two cliques have some attributes in common, then these attributes have
to be contained in every clique of the path connecting the two cliques.
(called the running intersection property, RIP)

Justification:

Tree: Unique path of evidence propagation.

RIP: Update of an attribute reaches all cliques which contain it.



Prerequisites

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 208

Complete Graph

An undirected Graph G = (V,E) is called complete, if every pair of (distinct) nodes
is connected by an edge.

Induced Subgraph

Let G = (V,E) be an undirected graph and W ⊆ V a selection of nodes. Then,
GW = (W,EW ) is called the subgraph of G induced by W with EW being

EW = {(u, v) ∈ E | u, v ∈ W}.

A B

C D

E

Incomplete graph

A B

C

E

Subgraph (W,EW )
with W = {A,B,C,E}

A B

C D

Complete (sub)graph



Prerequisites (2)
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Complete Set, Clique

Let G = (V,E) be an undirected graph. A setW ⊆ V is called complete iff it induces
a complete subgraph. It is further called a clique, iff W is maximal, i. e. it is not
possible to add a node to W without violating the completeness condition.

a) W is complete ⇔ W induces a complete subgraph

b) W is a clique ⇔ W is complete and maximal

A B

C D

E F

3 cliques

C3 = {E,F}
C2 = {B,D,E}
C1 = {A,B,C,D}



Prerequisites (3)
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Perfect Ordering

Let G = (V,E) be an undirected graph with n nodes and α = 〈v1, . . . , vn〉 a total
ordering on V . Then, α is called perfect, if the following sets

adj(vi) ∩ {v1, . . . , vi−1} i = 1, . . . , n

are complete, where adj(vi) = {w | (vi, w) ∈ E} returns the adjacent nodes of vi.
A B

C D E

G F H

1 6

2 3 5

48 7

α = 〈A, C, D, F, E, B, H, G〉

i adj(vi) adj(vi) ∩ {v1, . . . , vi−1}
1 {C} {C} ∩ ∅ = ∅ complete
2 {A,D,F} {A} ∩ {A,D,F} = {A} complete
3 {C,B,E, F} {A,C} ∩ {C,B,E, F} = {C} complete
4 {G,C,D,E,H} {A,C,D} ∩ {G,C,D,E,H} = {C,D} complete
5 {B,D,F,H} {A,C,D, F} ∩ {B,D, F,H} = {D,F} complete
6 {D,E} {A,C,D, F,E} ∩ {D,E} = {D,E} complete
7 {F,E} {A,C,D, F,E,B} ∩ {F,E} = {F,E} complete
8 {F} {A,C,D, F,E,B,H} ∩ {F} = {F} complete

α is a perfect ordering



Prerequisites (4)
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Running Intersection Property

Let G = (V, E) be an undirected graph with p cliques. An ordering of these cliques
has the running intersection property (RIP), if for every j > 1 there exists an i < j
such that:

Cj ∩
(
C1 ∪ · · · ∪ Cj−1

)
⊆ Ci

ξ = 〈C1, C2, C3, C4, C5, C6〉

j i
2 C2 ∩ C1 = {C} ⊆ C1 1
3 C3 ∩ (C1 ∪ C2) = {D,F} ⊆ C2 2
4 C4 ∩ (C1 ∪ C2 ∪ C3) = {D,E} ⊆ C3 3
5 C5 ∩ (C1 ∪ C2 ∪ C3 ∪ C4) = {E,F} ⊆ C3 3
6 C6 ∩ (C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5) = {F} ⊆ C5 5

ξ has running intersection property



Prerequisites (5)
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If a node ordering α of an undirected graph G = (V,E) is perfect and the cliques of
G are ordered according to the highest rank (w. r. t. α) of the containing nodes, then
this clique ordering has RIP.

Clique Rank
{A,C} max{α(A), α(C)} = 2 → C1
{C,D, F} max{α(C), α(D), α(F )} = 4 → C2
{D,E, F} max{α(D), α(E), α(F )} = 5 → C3
{B,D,E} max{α(B), α(D), α(E)} = 6 → C4
{F,E,H} max{α(F ), α(E), α(H)} = 7 → C5
{F,G} max{α(F ), α(G)} = 8 → C6

How to get a perfect ordering?



Triangulated Graphs
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Triangulated Graph

An undirected graph is called triangulated if every simple loop (i. e. path with identical
start and end node but with any other node occurring at most once) of length greater
3 has a chord.

A

B C

D

not triangulated

A

B C

D

triangulated

A

B C

E

D

not triangulated

A

B C

E

D

no chord for 〈A,B,E,C〉
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Maximum Cardinality Search

Let G = (V,E) be an undirected graph. An ordering according maximum cardinality
search (MCS) is obtained by first assigning 1 to an arbitray node. If n numbers
are assigned the node that is connected to most of the nodes already numbered gets
assigned number n + 1.

A B

C D E

G F H

1 6

2 3 5

48 7

3 can be assigned to D or F

6 can be assigned to H or B
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An undirected graph is triangulated iff the ordering obtained by MCS is perfect.

To check whether a graph is triangulated is efficient to implement. The optimization
problem that is related to the triangulation task is NP-hard. However, there are good
heuristics.

Moral Graph (Repetition)

Let G = (V, E) be a directed acyclic graph. If u,w ∈ W are parents of v ∈ V connect
u and w with an (arbitrarily oriented) edge. After the removal of all edge directions
the resulting graph Gm = (V,E′) is called the moral graph of G.
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A BC D

EF

G H

Given directed graph.



Join-Tree Construction (2)
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A BC D

EF

G H

• Moral graph
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A BC D

EF

G H

• Moral graph

• Triangulated graph
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A BC D

EF

G H

1 62 3

54

8 7

• Moral graph

• Triangulated graph

• MCS yields perfect ordering



Join-Tree Construction (5)
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• Moral graph

• Triangulated graph

• MCS yields perfect ordering

• Clique order has RIP



Join-Tree Construction (6)
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• Moral graph

• Triangulated graph

• MCS yields perfect ordering

• Clique order has RIP
• Form a join-tree

Two cliques can be connected if
they have a non-empty intersec-
tion. The generation of the tree
follows the RIP. In case of a tie,
connect cliques with the largest in-
tersection. (e. g. DBE—FED in-
stead of DBE—CFD) Break re-
maining ties arbitrarily.
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Qualitative knowledge:

Metastatic cancer is a possible cause of brain tumor, and is also an ex-
planation for increased total serum calcium. In turn, either of these could
explain a patient falling into a coma. Severe headache is also possibly
associated with a brain tumor.

Special case:

The patient has heavy headache.

Query:

Will the patient fall into coma?



Example: Choice of State Space
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Attribute Possible Values

A metastatic cancer dom(A) = {a1, a2} ·1 = existing

B increased total serum calcium dom(B) = {b1, b2} ·2 = notexisting

C brain tumor dom(C) = {c1, c2}
D coma dom(D) = {d1, d2}
E severe headache dom(E) = {e1, e2}

Exhaustive state space:

Ω = dom(A)× dom(B)× dom(C)× dom(D)× dom(E)

Marginal and conditional probabilities have to be specified!



Example: Qualitative Knowledge
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P (e1 | c1) = 0.8
}
headaches common, but more common if tumor present

P (e1 | c2) = 0.6

P (d1 | b1, c1) = 0.8




coma rare but common, if either cause is present
P (d1 | b1, c2) = 0.8
P (d1 | b2, c1) = 0.8
P (d1 | b2, c2) = 0.05

P (b1 | a1) = 0.8
}

increased calcium uncommon,
but common consequence of metastasesP (b1 | a2) = 0.2

P (c1 | a1) = 0.2
}
brain tumor rare, and uncommon consequence of metastases

P (c1 | a2) = 0.05

P (a1) = 0.2 } incidence of metastatic cancer in relevant clinic
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A

B C

D E

Example: Metastatic Cancer

Dependencies

A

B C

D E

Moralization/Triangulation MCS, hyper graph

Clique tree with separator sets
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Quantitative knowledge:

(a, b, c) P (a, b, c)
a1, b1, c1 0.032
a2, b1, c1 0.008

... ...
a2, b2, c2 0.608

(b, c, d) P (b, c, d)
b1, c1, d1 0.032
b2, c1, d1 0.032

... ...
b2, c2, d2 0.608

(c, e) P (c, e)
c1, e1 0.064
c2, e1 0.552
c1, e2 0.016
c2, e2 0.368

Potential representation:

P (A,B,C,D,E, ) = P (A | ∅)P (B | A)P (C | A)P (D | BC)P (E | C)

=
P (A,B,C)P (B,C,D), P (C,E)

P (BC)P (C)
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Propagation:

P (d1) = 0.32, evidence E = e1, desired: P ∗(. . .) = P (· | {e1})

P ∗(c) = P (c | e1) conditional marginal distribution

P ∗(b, c, d) =
P (b, c, d)

P (c)
P (c | e1) multipl./division with separation prob.

P (b, c, d), P ∗(b, c) calculate marginal distributions

P ∗(a, b, c) =
P (a, b, c)

P (b, c)
P (b, c | e1) multipl./division with separation prob.

P ∗(d1) = P (d1 | e1) = 0.33



Propagation on Cliques (5)
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Marginal distributions in the HUGIN tool.



Propagation on Cliques (6)
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Conditional marginal distributions with evidence E = e1
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Potential Representation

Let V = {Xj} be a set of random variables Xj : Ω → dom(Xj) and P the joint
distribution over V . Further, let

{Wi |Wi ⊆ V, 1 ≤ i ≤ p}

a family of subsets of V with associated functions

ψi : ×
Xj∈Wi

dom(Xj)→ R

It is said that P (V ) factorizes according
(
{W1, . . . ,Wp}, {ψ1, . . . , ψp}

)
if P (V ) can

be written as:

P (v) = k ·
p∏

i=1

ψi(wi)

where k ∈ R, wi is a realization of Wi that meets the values of v.



Example
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V = {A,B,C}, W1 = {A,B}, W2 = {B,C}
dom(A) = {a1, a2}
dom(B) = {b1, b2}
dom(C) = {c1, c2}
P (a, b, c) = 1

8

ψ1 : {a1, a2} × {b1, b2} → R

ψ2 : {b1, b2} × {c1, c2} → R

ψ1(a, b) =
1
4

ψ2(b, c) =
1
2

({W1,W2}, {ψ1, ψ2}) is a potential representa-
tion of P .
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Let (V, E, P ) be an belief network and {C1, . . . , Cp} the cliques of the join tree. For
every node v ∈ V choose a clique C such that v and all of its parents are contained in
C, i. e. {v} ∪ c(v) ⊆ C. The chosen clique is designated as f(v).

To arrive at a factorization ({C1, . . . , Cp}, {ψ1, . . . , ψp}) of P the factor potentials
are:

ψi(ci) =
∏

v:f(v)=Ci

P (v | c(v))

Separator Sets and Residual Sets

Let {C1, . . . , Cp} be a set of cliques w. r. t. V . The sets

Si = Ci ∩ (C1 ∪ · · · ∪ Ci−1), i = 1, . . . , p, S1 = ∅

are called separator sets with their corresponding residual sets

Ri = Ci\Si



Decomposition w. r. t. a Join-Tree
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Given a clique ordering {C1, . . . , Cp} that satisfies the RIP, we can easily conclude
the following separation statements:

Ri⊥⊥ (C1 ∪ · · · ∪ Ci−1)\Si | Si for i > 1

Hence, we can formulate the following factorization:

P (X1, . . . , Xn) =
p∏

i=1

P (Ri | Si),

which also gives us a representation in terms of conditional probabilities
(as for directed graphs before).
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S1 = ∅ R1 = {A,B,C}
S2 = {B,C} R2 = {D}
S3 = {C} R3 = {E}

f(A) = C1
f(B) = C1
f(C) = C1
f(D) = C2
f(E) = C3

ABC

BCD

CE

C1

C2

C3

S1

S2

S3

ψ1(C1) = P (A,B,C | ∅) = P (A) · P (C | A) · P (B|A)
ψ2(C2) = P (D | B,C)
ψ3(C3) = P (E | C)

Propagation is accomplished by sending messages across
the cliques in the tree. The emerging potentials are
maintained by each clique.
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Main Idea

Incorporate evidence into the clique potentials.

Since we are dealing with a tree structure, ex-
ploit the fact that a clique “separates” all its
neighboring cliques (and their respective sub-
trees) from each other.

Apply a message passing scheme to inform
neighboring cliques about evidence.

Since we do not have edge directions, we will
only need one type of message.

After having updated all cliques’ potentials, we
marginalize (and normalize) to get the proba-
bilities of single attributes.



Incorporating Evidence
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Every clique Ci maintains a potential function ψi.

If for an attribute E some evidence e becomes known, we alter
all potential functions of cliques containing E as follows:

ψ∗i (ci) =




0, if a value in ci is inconsistent with e

ψi(ci), otherwise

All other potential functions are unchanged.



Notation and Nomenclature
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BC
EG

ABC BD

CFG

GFH

C1

C2 C4

C3

C5

C13

C31

In general:

Clique Ci has q neighboring cliques B1, . . . , Bq.

Cij is the set of cliques in the subtree containing Ci
after dropping the link to Bj .

Xij is the set of attributes in the cliques of Cij.
V = Xij ∪Xji (complementary sets)

Sij = Sji = Ci ∩ Cj (not shown here)

Rij = Xij \ Sij (not shown here)

Here:

Neighbors of C1: {C2, C4, C3}, C13 = {C1, C2, C4}
X13 = {A,B,C,D,E,G}, S13 = {C,G}
V = X13 ∪X31 = {A,B,C,D,E, F,G,H}
R13 = {A,B,D,E}, R31 = {F,H}
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BC
EG

ABC BD

CFG

GFH

C1

C2 C4

C3

C5

C13

C31

Task: Calculate P (sij):

V \ Sij = (Xij ∪Xji) \ Sij
= (Xij \ Sij) ∪ (Xji \ Sij)
= Rij ∪ Rji

V \ S13 = (X13 ∪X31) \ S13
= R13 ∪ R31

V \ {C,G} = {A,B,D,E} ∪ {F,H}
= {A,B,D,E, F,H}

Note: Rij is the set of attributes that are in Ci’s
subtree but not in Bj’s. Therefore, Rij and Rji are
always disjoint.
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BC
EG

ABC BD

CFG

GFH

C1

C2 C4

C3

C5

✻

M31
❄
M13

C13

C31

Task: Calculate P (sij):

P (sij) =
∑

v\sij

m∏

k=1

ψk(ck)

last slide
=

∑

rij∪rji

m∏

k=1

ψk(ck)

sum rule
=



∑

rij

∏

ck∈Cij
ψk(ck)


·


∑

rji

∏

ck∈Cji
ψk(ck)




= Mij(sij) ·Mji(sij)

Mij is the message sent from Ci to neighbor Bj and
vice versa.
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BC
EG

ABC BD

CFG

GFH

C1

C2 C4

C3

C5

Task: Calculate P (ci):

V \ Ci =




q⋃

k=1

Xki


 \ Ci

=
q⋃

k=1

(
Xki \ Ci

)

=
q⋃

k=1

Rki

Example:

V \ C1 = R21 ∪R41 ∪ R31

{A,D,F,H} = {A} ∪ {D} ∪ {F,H}
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BC
EG

ABC BD

CFG

GFH

C1

C2 C4

C3

C5

Task: Calculate P (ci):

P (ci) =
∑

v\ci︸︷︷︸
Marginalization

m∏

j=1

ψj(cj)

︸ ︷︷ ︸
Decomposition

= ψi(ci)
∑

v\ci

∏

i 6=j
ψj(cj)

= ψi(ci)
∑

r1i∪···∪rqi

∏

i 6=j
ψj(cj)

= ψi(ci)



∑

r1i

∏

ck∈C1i
ψk(ck)

︸ ︷︷ ︸
M1i(sij)


 · · ·



∑

rqi

∏

ck∈Cqi
ψk(ck)

︸ ︷︷ ︸
Mqi(sij)




= ψi(ci)
q∏

j=1

Mji(sij)
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BC
EG

ABC BD

CFG

GFH

C1

C2 C4

C3

C5

Example: P (c1):

P (c1) = ψ1(c1)M21(s12)M41(s14)M31(s13)

Mij(sij) can be simplified further (without proof):

Mij(sij) =
∑

rij

∏

ck∈Cij
ψk(ck)

=
∑

ci\sij
ψi(ci)

∏

k 6=j
Mki(ski)
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Input: Join tree (C,Ψ) over set of variables V and evidence E = e.

Output: The a-posteriori probability P (xi |e) for every non-evidentialXi.
Initialization: Incorporate evidence E = e into potential functions.

Iterations:

1. For every clique Ci do: For every neighbor Bj of Ci do: If Ci has received all
messages from the other neighbors, calculate and send Mij(sij) to Bj.

2. Repeat step 1 until no message is calculated.

3. Calculate the joint probability distribution for every clique:

P (ci) ∝ ψi(ci)
q∏

j=1

Mji(sij)

4. For every X ∈ V calculate the a-posteriori probability:

P (xi | e) =
∑

ck\xi
P (ck)

where Ck is the smallest clique containing Xi.
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A

B C

D E F

G H

Goals: Find the marginal distributions
and update them when evidence
H = h1 becomes known.

Steps:

1. Transform network into join-tree.

2. Specify factor potentials.

3. Propagate “zero” evidence to ob-
tain the marginals before evidence is
present.

4. Update factor potentials w. r. t. the
evidence and do another propagation
run.



Example: Step 1: Find a Join-Tree
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A

B C

D E F

G H

Join-Tree creation:
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A

B C

D E F

G H

Join-Tree creation:

1. Moralize the graph.
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A

B C

D

E

F

G H

Join-Tree creation:

1. Moralize the graph.

2. Not yet triangulated.



Example: Step 1: Find a Join-Tree

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 248

A

B C

D

E

F

G H

Join-Tree creation:

1. Moralize the graph.

2. Triangulate the graph.
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A

B C

D

E

F

G H

Join-Tree creation:

1. Moralize the graph.

2. Triangulate the graph.

3. Identify the maximal cliques.
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A

B C

D

E

F

G H

BC
EG

ABC BD

CFG

GFH

⇒

Example Bayesian network One of the join trees
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BC
EG

ABC BD

CFG

GFH

C1

C2 C4

C3

C5

Decomposition of P (A,B,C,D,E, F,G,H):

P (a, b, c, d, e, f, g, h) =
5∏

i=1

Ψi(ci)

= Ψ1(b, c, e, g) · Ψ2(a, b, c)

· Ψ3(c, f, g) · Ψ4(b, d)

· Ψ5(g, f, h)

Where to get the factor potentials from?
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As long as the factor potentials multiply together as on the previous slide,
we are free to choose them.

Option 1: A factor potential of clique Ci is the product of all conditional prob-
abilities of all node families properly contained in Ci:

Ψi(ci) = 1 ·
∏

{Xi}∪Yi ⊆ Ci ∧
parents(Xi)=Yi

P (xi | yi)

The 1 stresses that if no node family satisfies the product condition, we assign a
constant 1 to the potential.

Option 2: Choose potentials from the decomposition formula:

P (
n⋃

i=1

Ci) =

n∏

i=1

P (Ci)

m∏

j=1

P (Sj)
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Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 253

Option 1: Factor potentials according to the conditional distributions of the
node families of the underlying Bayesian network:

Ψ1(b, c, e, g) = P (e | b, c) · P (g | e, b)
Ψ2(a, b, c) = P (b | a) · P (c | a) · P (a)
Ψ3(c, f, g) = P (f | c)
Ψ4(b, d) = P (d | b)

Ψ5(g, f, h) = P (h | g, f)
(This assignment of factor potentials is used in this example.)

Option 2: Factor potentials chosen from the join-tree decomposition:

Ψ1(b, c, e, g) = P (b, e | c, g)
Ψ2(a, b, c) = P (a | b, c)
Ψ3(c, f, g) = P (c | f, g)
Ψ4(b, d) = P (d | b)

Ψ5(g, f, h) = P (h, g, f)
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BC
EG

ABC BD

CFG

GFH

C1

C2 C4

C3

C5

BC B

CG

FG

S12 S14

S13

S35

Encoded independence statements:

Given any separator, the variables in the cliques on
one side become independent of the variables in the
cliques on the other side.
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BC
EG

ABC BD

CFG

GFH

C1

C2 C4

C3

C5

BC B

CG

FG

S12 S14

S13

S35

Encoded independence statements:

Given any separator, the variables in the cliques on
one side become independent of the variables in the
cliques on the other side.

A⊥⊥D,E, F,G,H | B,C
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BC
EG

ABC BD

CFG

GFH

C1

C2 C4

C3

C5

BC B

CG

FG

S12 S14

S13

S35

Encoded independence statements:

Given any separator, the variables in the cliques on
one side become independent of the variables in the
cliques on the other side.

A⊥⊥D,E, F,G,H | B,C
D⊥⊥A,C,E, F,G,H | B



Example: Closer Look on Option 2: Separation in a Join-Tree

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 257

BC
EG

ABC BD

CFG

GFH

C1

C2 C4

C3

C5

BC B

CG

FG

S12 S14

S13

S35

Encoded independence statements:

Given any separator, the variables in the cliques on
one side become independent of the variables in the
cliques on the other side.

A⊥⊥D,E, F,G,H | B,C
D⊥⊥A,C,E, F,G,H | B

A,B,E,D⊥⊥ F,H | G,C
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BC
EG

ABC BD

CFG

GFH

C1

C2 C4

C3

C5

BC B

CG

FG

S12 S14

S13

S35

Encoded independence statements:

Given any separator, the variables in the cliques on
one side become independent of the variables in the
cliques on the other side.

A⊥⊥D,E, F,G,H | B,C
D⊥⊥A,C,E, F,G,H | B

A,B,E,D⊥⊥ F,H | G,C
H ⊥⊥A,B,C,D,E | F,G
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The four separation statements translate into the following independence statements:

A⊥⊥D,E, F,G,H | B,C ⇔ P (A | B,C,D,E, F,G,H) = P (A | B,C)
D⊥⊥A,C,E, F,G,H | B ⇒ P (D | B,C,E, F,G,H) = P (D | B)

A,B,E,D⊥⊥ F,H | G,C ⇒ P (B,E | G,C, F,H) = P (B,E | G,C)
H ⊥⊥A,B,C,D,E | F,G ⇒ P (C | F,G,H) = P (C | F,G)

According to the chain rule we always have the following relation:

P (A,B,C,D,E, F,G,H) = P (A | B,C,D,E, F,G,H)·
P (D | B,C,E, F,G,H)·
P (B,E | C,F,G,H)·
P (C | F,G,H)·
P (F,G,H)
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The four separation statements translate into the following independence statements:

A⊥⊥D,E, F,G,H | B,C ⇔ P (A | B,C,D,E, F,G,H) = P (A | B,C)
D⊥⊥A,C,E, F,G,H | B ⇒ P (D | B,C,E, F,G,H) = P (D | B)

A,B,E,D⊥⊥ F,H | G,C ⇒ P (B,E | G,C, F,H) = P (B,E | G,C)
H ⊥⊥A,B,C,D,E | F,G ⇒ P (C | F,G,H) = P (C | F,G)

Exploiting the above independencies yields:

P (A,B,C,D,E, F,G,H) = P (A | B,C)·
P (D | B)·
P (B,E | C,G)·
P (C | F,G)·
P (F,G,H)
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The four separation statements translate into the following independence statements:

A⊥⊥D,E, F,G,H | B,C ⇔ P (A | B,C,D,E, F,G,H) = P (A | B,C)
D⊥⊥A,C,E, F,G,H | B ⇒ P (D | B,C,E, F,G,H) = P (D | B)

A,B,E,D⊥⊥ F,H | G,C ⇒ P (B,E | G,C, F,H) = P (B,E | G,C)
H ⊥⊥A,B,C,D,E | F,G ⇒ P (C | F,G,H) = P (C | F,G)

Getting rid of the conditions results in the final decomposition equation:

P (A,B,C,D,E, F,G,H) = P (A |B,C)P (D |B)P (B,E |C,G)P (C |F,G)P (F,G,H)

=
P (A,B,C)P (D,B)P (B,E,C,G)P (C,F,G)P (F,G,H)

P (B,C)P (B)P (C,G)P (F,G)

=
P (C1)P (C2)P (C3)P (C4)P (C5)

P (S12)P (S14)P (S13)P (S35)



Example: Step 3: Messages to be sent for Propagation

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 262

BC
EG

ABC BD

CFG

GFH

C2 C4

C3

C5

BC B

CG

FG

M12

M21

M14

M41

M13 M31

M35 M53

According to the join-tree propagation algo-
rithm, the probability distributions of all clique
instantiations ci is calculated as follows:

P (ci) ∝ Ψi(ci)
q∏

j=1

Mji(sij)

Spelt out for our example, we get:

P (c1) = P (b, c, e, g) = Ψ1(b, c, e, g) ·M21(b, c) ·M31(c, g) ·M41(b)

P (c2) = P (a, b, c) ∝ Ψ2(a, b, c) ·M12(b, c)

P (c3) = P (c, f, g) ∝ Ψ3(c, f, g) ·M13(c, g) ·M53(f, g)

P (c4) = P (b, d) ∝ Ψ4(b, d) ·M14(b)

P (c5) = P (f, g, h) ∝ Ψ5(f, g, h) ·M35(f, g)

The ∝-symbol indicates that the right-hand
side may not add up to one. In that case we
just normalize.
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The structure of the join-tree imposes a partial ordering according to which the
messages need to be computed:

M41(b) =
∑

d

Ψ4(b, d)

M53(f, g) =
∑

h

Ψ5(f, g, h)

M21(b, c) =
∑

a
Ψ2(a, b, c)

M31(c, g) =
∑

f

Ψ3(c, f, g)M53(f, g)

M13(c, g) =
∑

b,e

Ψ1(b, c, e, g)M21(b, c)M41(b)

M12(b, c) =
∑

e,g
Ψ2(b, c, e, g)M31(c, g)M41(b)

M14(b) =
∑

c,e,g
Ψ1(b, c, e, g)M21(b, c)M31(c, g)

M35(f, g) =
∑

c
Ψ3(c, f, g)M13(c, g)

M41 M53 M21

M31 M13

M12 M14 M35

Arrows represent is-needed-for re-
lations. Messages on the same
level can be computed in any or-
der. Messages are computed level-
wise from top to bottom.
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Ψ1 P

b1

c1

e1
g1
g2

e2
g1
g2

c2

e1
g1
g2

e2
g1
g2

b2

c1

e1
g1
g2

e2
g1
g2

c2

e1
g1
g2

e2
g1
g2

Ψ2 P

a1

b1
c1
c2

b2
c1
c2

a2

b1
c1
c2

b2
c1
c2

Ψ5 P

f1

g1
h1
h2

g2
h1
h2

f2

g1
h1
h2

g2
h1
h2

Ψ3 P

c1

f1
g1
g2

f2
g1
g2

c2

f1
g1
g2

f2
g1
g2

Ψ4 P

b1
d1
d2

b2
d1
d2

BC
EG

ABC BD

CFG

GFH

C1

C2 C4

C3

C5
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Ψ1 P

b1

c1

e1
g1 0.190
g2 0.010

e2
g1 0.320
g2 0.480

c2

e1
g1 0.380
g2 0.020

e2
g1 0.240
g2 0.360

b2

c1

e1
g1 0.210
g2 0.090

e2
g1 0.350
g2 0.350

c2

e1
g1 0.070
g2 0.030

e2
g1 0.450
g2 0.450

Ψ2 P

a1

b1
c1 0.036
c2 0.084

b2
c1 0.144
c2 0.336

a2

b1
c1 0.028
c2 0.012

b2
c1 0.252
c2 0.108

Ψ5 P

f1

g1
h1 0.2
h2 0.8

g2
h1 0.5
h2 0.5

f2

g1
h1 0.4
h2 0.6

g2
h1 0.7
h2 0.3

Ψ3 P

c1

f1
g1 0.1
g2 0.1

f2
g1 0.9
g2 0.9

c2

f1
g1 0.4
g2 0.4

f2
g1 0.6
g2 0.6

Ψ4 P

b1
d1 0.4
d2 0.6

b2
d1 0.7
d2 0.3

BC
EG

ABC BD

CFG

GFH

C1

C2 C4

C3

C5
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Ψ1 P

b1

c1

e1
g1 0.190
g2 0.010

e2
g1 0.320
g2 0.480

c2

e1
g1 0.380
g2 0.020

e2
g1 0.240
g2 0.360

b2

c1

e1
g1 0.210
g2 0.090

e2
g1 0.350
g2 0.350

c2

e1
g1 0.070
g2 0.030

e2
g1 0.450
g2 0.450

Ψ2 P

a1

b1
c1 0.036
c2 0.084

b2
c1 0.144
c2 0.336

a2

b1
c1 0.028
c2 0.012

b2
c1 0.252
c2 0.108

Ψ5 P

f1

g1
h1 0.2
h2 0.8

g2
h1 0.5
h2 0.5

f2

g1
h1 0.4
h2 0.6

g2
h1 0.7
h2 0.3

Ψ3 P

c1

f1
g1 0.1
g2 0.1

f2
g1 0.9
g2 0.9

c2

f1
g1 0.4
g2 0.4

f2
g1 0.6
g2 0.6

Ψ4 P

b1
d1 0.4
d2 0.6

b2
d1 0.7
d2 0.3

M21 =
(b1,c1
0.06,

b1,c2
0.10,

b2,c1
0.40,

b2,c2
0.44

)

M41 =
(b1
1 ,
b2
1
)

BC
EG

ABC BD

CFG

GFH

C1

C2 C4

C3

C5
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Ψ1 P

b1

c1

e1
g1 0.190
g2 0.010

e2
g1 0.320
g2 0.480

c2

e1
g1 0.380
g2 0.020

e2
g1 0.240
g2 0.360

b2

c1

e1
g1 0.210
g2 0.090

e2
g1 0.350
g2 0.350

c2

e1
g1 0.070
g2 0.030

e2
g1 0.450
g2 0.450

Ψ2 P

a1

b1
c1 0.036
c2 0.084

b2
c1 0.144
c2 0.336

a2

b1
c1 0.028
c2 0.012

b2
c1 0.252
c2 0.108

Ψ5 P

f1

g1
h1 0.2
h2 0.8

g2
h1 0.5
h2 0.5

f2

g1
h1 0.4
h2 0.6

g2
h1 0.7
h2 0.3

Ψ3 P

c1

f1
g1 0.1
g2 0.1

f2
g1 0.9
g2 0.9

c2

f1
g1 0.4
g2 0.4

f2
g1 0.6
g2 0.6

Ψ4 P

b1
d1 0.4
d2 0.6

b2
d1 0.7
d2 0.3

M21 =
(b1,c1
0.06,

b1,c2
0.10,

b2,c1
0.40,

b2,c2
0.44

)

M41 =
(b1
1 ,
b2
1
)

M13 =
( c1,g1
0.254,

c1,g2
0.206,

c2,g1
0.290,

c2,g2
0.250

)

M35 =
(f1,g1
0.14,

f1,g2
0.12,

f2,g1
0.40,

f2,g2
0.33

)

BC
EG

ABC BD

CFG

GFH

C1

C2 C4

C3

C5
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Ψ1 P

b1

c1

e1
g1 0.190
g2 0.010

e2
g1 0.320
g2 0.480

c2

e1
g1 0.380
g2 0.020

e2
g1 0.240
g2 0.360

b2

c1

e1
g1 0.210
g2 0.090

e2
g1 0.350
g2 0.350

c2

e1
g1 0.070
g2 0.030

e2
g1 0.450
g2 0.450

Ψ2 P

a1

b1
c1 0.036
c2 0.084

b2
c1 0.144
c2 0.336

a2

b1
c1 0.028
c2 0.012

b2
c1 0.252
c2 0.108

Ψ5 P

f1

g1
h1 0.2
h2 0.8

g2
h1 0.5
h2 0.5

f2

g1
h1 0.4
h2 0.6

g2
h1 0.7
h2 0.3

Ψ3 P

c1

f1
g1 0.1
g2 0.1

f2
g1 0.9
g2 0.9

c2

f1
g1 0.4
g2 0.4

f2
g1 0.6
g2 0.6

Ψ4 P

b1
d1 0.4
d2 0.6

b2
d1 0.7
d2 0.3

M21 =
(b1,c1
0.06,

b1,c2
0.10,

b2,c1
0.40,

b2,c2
0.44

)

M41 =
(b1
1 ,
b2
1
)

M13 =
( c1,g1
0.254,

c1,g2
0.206,

c2,g1
0.290,

c2,g2
0.250

)

M35 =
(f1,g1
0.14,

f1,g2
0.12,

f2,g1
0.40,

f2,g2
0.33

)

M53 =
(f1,g1

1 ,
f1,g2
1 ,

f2,g1
1 ,

f2,g2
1
)

M31 =
(c1,g1

1 ,
c1,g2
1 ,

c2,g1
1 ,

c2,g2
1
)

BC
EG

ABC BD

CFG

GFH

C1

C2 C4

C3

C5
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Ψ1 P

b1

c1

e1
g1 0.190
g2 0.010

e2
g1 0.320
g2 0.480

c2

e1
g1 0.380
g2 0.020

e2
g1 0.240
g2 0.360

b2

c1

e1
g1 0.210
g2 0.090

e2
g1 0.350
g2 0.350

c2

e1
g1 0.070
g2 0.030

e2
g1 0.450
g2 0.450

Ψ2 P

a1

b1
c1 0.036
c2 0.084

b2
c1 0.144
c2 0.336

a2

b1
c1 0.028
c2 0.012

b2
c1 0.252
c2 0.108

Ψ5 P

f1

g1
h1 0.2
h2 0.8

g2
h1 0.5
h2 0.5

f2

g1
h1 0.4
h2 0.6

g2
h1 0.7
h2 0.3

Ψ3 P

c1

f1
g1 0.1
g2 0.1

f2
g1 0.9
g2 0.9

c2

f1
g1 0.4
g2 0.4

f2
g1 0.6
g2 0.6

Ψ4 P

b1
d1 0.4
d2 0.6

b2
d1 0.7
d2 0.3

M21 =
(b1,c1
0.06,

b1,c2
0.10,

b2,c1
0.40,

b2,c2
0.44

)

M41 =
(b1
1 ,
b2
1
)

M13 =
( c1,g1
0.254,

c1,g2
0.206,

c2,g1
0.290,

c2,g2
0.250

)

M35 =
(f1,g1
0.14,

f1,g2
0.12,

f2,g1
0.40,

f2,g2
0.33

)

M53 =
(f1,g1

1 ,
f1,g2
1 ,

f2,g1
1 ,

f2,g2
1
)

M31 =
(c1,g1

1 ,
c1,g2
1 ,

c2,g1
1 ,

c2,g2
1
)

M12 =
(b1,c1

1 ,
b1,c2
1 ,

b2,c1
1 ,

b2,c2
1
)

M14 =
( b1
0.16,

b2
0.84

)

BC
EG

ABC BD

CFG

GFH

C1

C2 C4

C3

C5
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Ψ1 P

b1

c1

e1
g1 0.190 0.0122
g2 0.010 0.0006

e2
g1 0.320 0.0205
g2 0.480 0.0307

c2

e1
g1 0.380 0.0365
g2 0.020 0.0019

e2
g1 0.240 0.0230
g2 0.360 0.0346

b2

c1

e1
g1 0.210 0.0832
g2 0.090 0.0356

e2
g1 0.350 0.1386
g2 0.350 0.1386

c2

e1
g1 0.070 0.0311
g2 0.030 0.0133

e2
g1 0.450 0.1998
g2 0.450 0.1998

Ψ2 P

a1

b1
c1 0.036 0.0360
c2 0.084 0.0840

b2
c1 0.144 0.1440
c2 0.336 0.3360

a2

b1
c1 0.028 0.0280
c2 0.012 0.0120

b2
c1 0.252 0.2520
c2 0.108 0.1080

Ψ5 P

f1

g1
h1 0.2 0.0283
h2 0.8 0.1133

g2
h1 0.5 0.0602
h2 0.5 0.0602

f2

g1
h1 0.4 0.1613
h2 0.6 0.2419

g2
h1 0.7 0.2344
h2 0.3 0.1004

Ψ3 P

c1

f1
g1 0.1 0.0254
g2 0.1 0.0206

f2
g1 0.9 0.2290
g2 0.9 0.1850

c2

f1
g1 0.4 0.1162
g2 0.4 0.0998

f2
g1 0.6 0.1742
g2 0.6 0.1498

Ψ4 P

b1
d1 0.4 0.0640
d2 0.6 0.0960

b2
d1 0.7 0.5880
d2 0.3 0.2520

M21 =
(b1,c1
0.06,

b1,c2
0.10,

b2,c1
0.40,

b2,c2
0.44

)

M41 =
(b1
1 ,
b2
1
)

M13 =
( c1,g1
0.254,

c1,g2
0.206,

c2,g1
0.290,

c2,g2
0.250

)

M35 =
(f1,g1
0.14,

f1,g2
0.12,

f2,g1
0.40,

f2,g2
0.33

)

M53 =
(f1,g1

1 ,
f1,g2
1 ,

f2,g1
1 ,

f2,g2
1
)

M31 =
(c1,g1

1 ,
c1,g2
1 ,

c2,g1
1 ,

c2,g2
1
)

M12 =
(b1,c1

1 ,
b1,c2
1 ,

b2,c1
1 ,

b2,c2
1
)

M14 =
( b1
0.16,

b2
0.84

)

P A B C D E F G H
·1 0.6000 0.1600 0.4600 0.6520 0.2144 0.2620 0.5448 0.4842
·2 0.4000 0.8400 0.4500 0.3480 0.7856 0.7380 0.4552 0.5158

BC
EG

ABC BD

CFG

GFH

C1

C2 C4

C3

C5
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Ψ1 P

b1

c1

e1
g1 0.190
g2 0.010

e2
g1 0.320
g2 0.480

c2

e1
g1 0.380
g2 0.020

e2
g1 0.240
g2 0.360

b2

c1

e1
g1 0.210
g2 0.090

e2
g1 0.350
g2 0.350

c2

e1
g1 0.070
g2 0.030

e2
g1 0.450
g2 0.450

Ψ2 P

a1

b1
c1 0.036
c2 0.084

b2
c1 0.144
c2 0.336

a2

b1
c1 0.028
c2 0.012

b2
c1 0.252
c2 0.108

Ψ5 P

f1

g1
h1 0.2
h2 0

g2
h1 0.5
h2 0

f2

g1
h1 0.4
h2 0

g2
h1 0.7
h2 0

Ψ3 P

c1

f1
g1 0.1
g2 0.1

f2
g1 0.9
g2 0.9

c2

f1
g1 0.4
g2 0.4

f2
g1 0.6
g2 0.6

Ψ4 P

b1
d1 0.4
d2 0.6

b2
d1 0.7
d2 0.3

BC
EG

ABC BD

CFG

GFH

C1

C2 C4

C3

C5
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Ψ1 P

b1

c1

e1
g1 0.190
g2 0.010

e2
g1 0.320
g2 0.480

c2

e1
g1 0.380
g2 0.020

e2
g1 0.240
g2 0.360

b2

c1

e1
g1 0.210
g2 0.090

e2
g1 0.350
g2 0.350

c2

e1
g1 0.070
g2 0.030

e2
g1 0.450
g2 0.450

Ψ2 P

a1

b1
c1 0.036
c2 0.084

b2
c1 0.144
c2 0.336

a2

b1
c1 0.028
c2 0.012

b2
c1 0.252
c2 0.108

Ψ5 P

f1

g1
h1 0.2
h2 0

g2
h1 0.5
h2 0

f2

g1
h1 0.4
h2 0

g2
h1 0.7
h2 0

Ψ3 P

c1

f1
g1 0.1
g2 0.1

f2
g1 0.9
g2 0.9

c2

f1
g1 0.4
g2 0.4

f2
g1 0.6
g2 0.6

Ψ4 P

b1
d1 0.4
d2 0.6

b2
d1 0.7
d2 0.3

M53 =
(f1,g1
0.2 ,

f1,g2
0.5 ,

f2,g1
0.4 ,

f2,g2
0.7

)

BC
EG

ABC BD

CFG

GFH

C1

C2 C4

C3

C5
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Ψ1 P

b1

c1

e1
g1 0.190
g2 0.010

e2
g1 0.320
g2 0.480

c2

e1
g1 0.380
g2 0.020

e2
g1 0.240
g2 0.360

b2

c1

e1
g1 0.210
g2 0.090

e2
g1 0.350
g2 0.350

c2

e1
g1 0.070
g2 0.030

e2
g1 0.450
g2 0.450

Ψ2 P

a1

b1
c1 0.036
c2 0.084

b2
c1 0.144
c2 0.336

a2

b1
c1 0.028
c2 0.012

b2
c1 0.252
c2 0.108

Ψ5 P

f1

g1
h1 0.2
h2 0

g2
h1 0.5
h2 0

f2

g1
h1 0.4
h2 0

g2
h1 0.7
h2 0

Ψ3 P

c1

f1
g1 0.1
g2 0.1

f2
g1 0.9
g2 0.9

c2

f1
g1 0.4
g2 0.4

f2
g1 0.6
g2 0.6

Ψ4 P

b1
d1 0.4
d2 0.6

b2
d1 0.7
d2 0.3

M53 =
(f1,g1
0.2 ,

f1,g2
0.5 ,

f2,g1
0.4 ,

f2,g2
0.7

)

M21 =
(b1,c1
0.06,

b1,c2
0.10,

b2,c1
0.40,

b2,c2
0.44

)

M41 =
(b1
1 ,
b2
1
)BC

EG

ABC BD

CFG

GFH

C1

C2 C4

C3

C5
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Ψ1 P

b1

c1

e1
g1 0.190
g2 0.010

e2
g1 0.320
g2 0.480

c2

e1
g1 0.380
g2 0.020

e2
g1 0.240
g2 0.360

b2

c1

e1
g1 0.210
g2 0.090

e2
g1 0.350
g2 0.350

c2

e1
g1 0.070
g2 0.030

e2
g1 0.450
g2 0.450

Ψ2 P

a1

b1
c1 0.036
c2 0.084

b2
c1 0.144
c2 0.336

a2

b1
c1 0.028
c2 0.012

b2
c1 0.252
c2 0.108

Ψ5 P

f1

g1
h1 0.2
h2 0

g2
h1 0.5
h2 0

f2

g1
h1 0.4
h2 0

g2
h1 0.7
h2 0

Ψ3 P

c1

f1
g1 0.1
g2 0.1

f2
g1 0.9
g2 0.9

c2

f1
g1 0.4
g2 0.4

f2
g1 0.6
g2 0.6

Ψ4 P

b1
d1 0.4
d2 0.6

b2
d1 0.7
d2 0.3

M53 =
(f1,g1
0.2 ,

f1,g2
0.5 ,

f2,g1
0.4 ,

f2,g2
0.7

)

M21 =
(b1,c1
0.06,

b1,c2
0.10,

b2,c1
0.40,

b2,c2
0.44

)

M41 =
(b1
1 ,
b2
1
)

M31 =
(c1,g1
0.38,

c1,g2
0.68,

c2,g1
0.32,

c2,g2
0.62

)

BC
EG

ABC BD

CFG

GFH

C1

C2 C4

C3

C5
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Ψ1 P

b1

c1

e1
g1 0.190
g2 0.010

e2
g1 0.320
g2 0.480

c2

e1
g1 0.380
g2 0.020

e2
g1 0.240
g2 0.360

b2

c1

e1
g1 0.210
g2 0.090

e2
g1 0.350
g2 0.350

c2

e1
g1 0.070
g2 0.030

e2
g1 0.450
g2 0.450

Ψ2 P

a1

b1
c1 0.036
c2 0.084

b2
c1 0.144
c2 0.336

a2

b1
c1 0.028
c2 0.012

b2
c1 0.252
c2 0.108

Ψ5 P

f1

g1
h1 0.2
h2 0

g2
h1 0.5
h2 0

f2

g1
h1 0.4
h2 0

g2
h1 0.7
h2 0

Ψ3 P

c1

f1
g1 0.1
g2 0.1

f2
g1 0.9
g2 0.9

c2

f1
g1 0.4
g2 0.4

f2
g1 0.6
g2 0.6

Ψ4 P

b1
d1 0.4
d2 0.6

b2
d1 0.7
d2 0.3

M53 =
(f1,g1
0.2 ,

f1,g2
0.5 ,

f2,g1
0.4 ,

f2,g2
0.7

)

M21 =
(b1,c1
0.06,

b1,c2
0.10,

b2,c1
0.40,

b2,c2
0.44

)

M41 =
(b1
1 ,
b2
1
)

M31 =
(c1,g1
0.38,

c1,g2
0.68,

c2,g1
0.32,

c2,g2
0.62

)

M12 =
( b1,c1
0.527,

b1,c2
0.434,

b2,c1
0.512,

b2,c2
0.464

)

M14 =
( b1
0.075,

b2
0.409

)

M13 =
( c1,g1
0.254,

c1,g2
0.206,

c2,g1
0.290,

c2,g2
0.250

)

M35 =
(f1,g1
0.14,

f1,g2
0.12,

f2,g1
0.40,

f2,g2
0.33

)

BC
EG

ABC BD

CFG

GFH

C1

C2 C4

C3

C5
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Ψ1 P

b1

c1

e1
g1 0.190 0.0095
g2 0.010 0.0009

e2
g1 0.320 0.0161
g2 0.480 0.0431

c2

e1
g1 0.380 0.0241
g2 0.020 0.0025

e2
g1 0.240 0.0152
g2 0.360 0.0443

b2

c1

e1
g1 0.210 0.0653
g2 0.090 0.0501

e2
g1 0.350 0.1088
g2 0.350 0.1947

c2

e1
g1 0.070 0.0205
g2 0.030 0.0171

e2
g1 0.450 0.1321
g2 0.450 0.2559

Ψ2 P

a1

b1
c1 0.036 0.0392
c2 0.084 0.0753

b2
c1 0.144 0.1523
c2 0.336 0.3220

a2

b1
c1 0.028 0.0305
c2 0.012 0.0108

b2
c1 0.252 0.2665
c2 0.108 0.1035

Ψ5 P

f1

g1
h1 0.2 0.0585
h2 0 0

g2
h1 0.5 0.1243
h2 0 0

f2

g1
h1 0.4 0.3331
h2 0 0

g2
h1 0.7 0.4841
h2 0 0

Ψ3 P

c1

f1
g1 0.1 0.0105
g2 0.1 0.0212

f2
g1 0.9 0.1892
g2 0.9 0.2675

c2

f1
g1 0.4 0.0480
g2 0.4 0.1031

f2
g1 0.6 0.1440
g2 0.6 0.2165

Ψ4 P

b1
d1 0.4 0.0623
d2 0.6 0.0934

b2
d1 0.7 0.5910
d2 0.3 0.2533

M53 =
(f1,g1
0.2 ,

f1,g2
0.5 ,

f2,g1
0.4 ,

f2,g2
0.7

)

M21 =
(b1,c1
0.06,

b1,c2
0.10,

b2,c1
0.40,

b2,c2
0.44

)

M41 =
(b1
1 ,
b2
1
)

M31 =
(c1,g1
0.38,

c1,g2
0.68,

c2,g1
0.32,

c2,g2
0.62

)

M12 =
( b1,c1
0.527,

b1,c2
0.434,

b2,c1
0.512,

b2,c2
0.464

)

M14 =
( b1
0.075,

b2
0.409

)

M13 =
( c1,g1
0.254,

c1,g2
0.206,

c2,g1
0.290,

c2,g2
0.250

)

M35 =
(f1,g1
0.14,

f1,g2
0.12,

f2,g1
0.40,

f2,g2
0.33

)

P A B C D E F G H
·1 0.5888 0.1557 0.4884 0.6533 0.1899 0.1828 0.3916 1.0000
·2 0.4112 0.8443 0.5116 0.3467 0.8101 0.8172 0.6084 0.0000

BC
EG

ABC BD

CFG

GFH

C1

C2 C4

C3

C5
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Manual creation of a reasoning system based on a graphical model:

causal model of given domain

conditional independence graph

decomposition of the distribution

evidence propagation scheme

heuristics!

formally provable

formally provable

Problem: strong assumptions about the statistical effects of causal relations.

Nevertheless this approach often yields usable graphical models.
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Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 278

Assumptions about parents:
risk about misstatement

Genotype mother (dam) Genotype father (sire)

Genotype child:
6 possible values

4 lysis values
measured by photometer

Reliability of databases

Inheritance rules

Blood group determination
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Danish Jersey Cattle Blood Type Determination

1 2

3 4 5 6

7 8 9 10

11 12

13

14 15 16 17

18 19 20 21

21 attributes: 11 – offspring ph.gr. 1
1 – dam correct? 12 – offspring ph.gr. 2
2 – sire correct? 13 – offspring genotype
3 – stated dam ph.gr. 1 14 – factor 40
4 – stated dam ph.gr. 2 15 – factor 41
5 – stated sire ph.gr. 1 16 – factor 42
6 – stated sire ph.gr. 2 17 – factor 43
7 – true dam ph.gr. 1 18 – lysis 40
8 – true dam ph.gr. 2 19 – lysis 41
9 – true sire ph.gr. 1 20 – lysis 42
10 – true sire ph.gr. 2 21 – lysis 43

The grey nodes correspond to observable attributes.

This graph was specified by human domain experts,
based on knowledge about (causal) dependences of the variables.
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Full 21-dimensional domain has 26 · 310 · 6 · 84 = 92 876 046 336 possible states.

Bayesian network requires only 306 conditional probabilities.

Example of a conditional probability table (attributes 2, 9, and 5):

sire true sire stated sire phenogroup 1
correct phenogroup 1 F1 V1 V2

yes F1 1 0 0
yes V1 0 1 0
yes V2 0 0 1
no F1 0.58 0.10 0.32
no V1 0.58 0.10 0.32
no V2 0.58 0.10 0.32

The probabilities are acquired from human domain experts
or estimated from historical data.
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1 2

3 4 5 6

7 8 9 10

11 12

13

14 15 16 17

18 19 20 21

moral graph

(already triangulated)

3 1
7

1 4
8

5 2
9

2 6
10

1
7 8

2
9 10

7 8
11

9 10
12

11 12
13

13 13 13 13
14 15 16 17

14
18

15
19

16
20

17
21

join tree
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Marginal distributions before setting evidence:



Example 1: Genotype Determination of Danish Jersey Cattle
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Conditional distributions given evidence in the input variables:



Example 2: Item Planning at Volkswagen
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Strategy of the VW Group

Marketing strategy Vehicle specification by
clients

Bestsellers defined by
manufacturer

Complexity Huge number of variants Small number of vari-
ants

Vehicle specification

Equipment fastback 2,8 l, 150 kW Type Alpha 4 leather . . .
Group car body type engine radio doors seat cover . . .



Example 2: Model “Golf”
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Approx. 200 equipment groups

2 to 50 items per group

Therefore more than 2200 possible vehicle specifications

Choice of valid specifications is constrained by a rule system
(10000 technical rules, plus marketing and production rules)

Example of technical rules:

If Engine=e1 then Transmission=t3

If Engine=e4 and Heating=h2 then Generator ∈ {g3, g4, g5}



Problem Representation
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Complexity of the Planning Problem
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Equipment table

Engine Transmission Heating Generator · · ·
1 e1 t3 h1 g1 · · ·
2 e2 t4 h3 g5 · · ·

· · · · · · · · · · · · · · ·
100000 e7 t1 h3 g2 · · ·

Installation rates

Engine Transmission Heating Generator · · · Rate
e1 t1 h1 g1 · · · 0.0000012
· · · · · · · · · · · · · · · · · ·

Result is a 200-dimensional, finite probability space

P (Engine = e1,Transmission = t3) = ?

P (Heating = h1 | Generator = g3) = ? Problem of complexity!



Solution: Decomposition into Subspaces
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Engine Heating

Transmission Aircondition
Bayesian Network

P (E,H, T,A) = P (A | E,H, T ) · P (T | E,H) · P (E | H) · P (H)

here
= P (A | E,H) · P (T | E) · P (E) · P (H)

Hypergraph Decomposition



Clique Tree of the VW Bora
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Typical Planning Operation: Focusing
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Application:

◦ Compute item demand
Calculation of installation rates of equipment combinations

◦ Simulation
Analyze customer requirements (e. g. of persons having ordered a navigation
system for a VW Polo)

Input: Equipment combinations

Operation: Compute

◦ the conditional network distribution and

◦ the probabilities of the specified
equipment combinations.



Implementation and Deployment
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Project leader: Intelligent System Consulting (Gebhardt)

Client server system

Server on 6–8 maschines

Quadcore platform

Terabyte hard drive

Java, Linux, Oracle

WebSphere application server

Software used daily worldwide

20 developers

5000 Bayesian networks are currently used
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Learning Graphical Models
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Learning Graphical Models from Data:

Learning the Parameters



Learning Naive Bayes Classifier
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Given: A database of samples from domain of interest.
The graph underlying a graphical model for the domain.

Desired: Good values for the numeric parameters of the model.

Example: Naive Bayes Classifiers
A naive Bayes classifier is a Bayesian network with star-like structure.

The class attribute is the only unconditional attribute.

All other attributes are conditioned on the class only

C

A1

A2

A3

A4

· · ·

An

The structure of a naive Bayes classifier is fixed once
the attributes have been selected. The only remain-
ing task is to estimate the parameters of the needed
probability distributions.



Probabilistic Classification
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A classifier is an algorithm that assigns a class from a predefined set to a case or
object, based on the values of descriptive attributes.

An optimal classifier maximizes the probability of a correct class assignment.

◦ Let C be a class attribute with dom(C) = {c1, . . . , cnC},
which occur with probabilities pi, 1 ≤ i ≤ nC .

◦ Let qi be the probability with which a classifier assigns class ci.
(qi ∈ {0, 1} for a deterministic classifier)

◦ The probability of a correct assignment is

P (correct assignment) =
nC∑

i=1

piqi.

◦ Therefore the best choice for the qi is

qi =

{
1, if pi = max

nC
k=1 pk,

0, otherwise.



Probabilistic Classification
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Consequence: An optimal classifier should assign the most probable class.

This argument does not change if we take descriptive attributes into account.

◦ Let U = {A1, . . . , Am} be a set of descriptive attributes
with domains dom(Ak), 1 ≤ k ≤ m.

◦ Let A1 = a1, . . . , Am = am be an instantiation of the descriptive attributes.

◦ An optimal classifier should assign the class ci for which

P (C = ci | A1 = a1, . . . , Am = am) =

max
nC
j=1 P (C = cj | A1 = a1, . . . , Am = am)

Problem: We cannot store a class (or the class probabilities) for every
possible instantiation A1 = a1, . . . , Am = am of the descriptive attributes.
(The table size grows exponentially with the number of attributes.)

Therefore: Simplifying assumptions are necessary.



Bayes’ Rule and Bayes’ Classifiers
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Bayes’ rule is a formula that can be used to “invert” conditional probabilities:
Let X and Y be events, P (X) > 0. Then

P (Y | X) =
P (X | Y ) · P (Y )

P (X)
.

Bayes’ rule follows directly from the definition of conditional probability:

P (Y | X) =
P (X ∩ Y )

P (X)
and P (X | Y ) =

P (X ∩ Y )

P (Y )
.

Bayes’ classifiers: Compute the class probabilities as

P (C = ci | A1 = a1, . . . , Am = am) =

P (A1 = a1, . . . , Am = am | C = ci) · P (C = ci)

P (A1 = a1, . . . , Am = am)
.

Looks unreasonable at first sight: Even more probabilities to store.



Naive Bayes Classifiers
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Naive Assumption:
The descriptive attributes are conditionally independent given the class.

Bayes’ Rule:

P (C = ci | ω) =
P (A1 = a1, . . . , Am = am | C = ci) · P (C = ci)

P (A1 = a1, . . . , Am = am) ← p0
abbrev. for the

normalizing constant

Chain Rule of Probability:

P (C = ci | ω) =
P (C = ci)

p0
·
m∏

k=1

P (Ak = ak | A1 = a1, . . . , Ak−1 = ak−1, C = ci)

Conditional Independence Assumption:

P (C = ci | ω) =
P (C = ci)

p0
·
m∏

k=1

P (Ak = ak | C = ci)



Naive Bayes Classifiers (continued)

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 299

Consequence: Manageable amount of data to store.
Store distributions P (C = ci) and ∀1 ≤ k ≤ m : P (Ak = ak | C = ci).

Classification: Compute for all classes ci

P (C = ci|A1 = a1, . . . , Am = am) · p0 = P (C = ci) ·
n∏

j=1

P (Aj = aj|C = ci)

and predict the class ci for which this value is largest.

Relation to Bayesian Networks:

C

A1

A2

A3

A4

· · ·

An

Decomposition formula:

P (C = ci, A1 = a1, . . . , An = an)

= P (C = ci) ·
n∏

j=1

P (Aj = aj|C = ci)



Naive Bayes Classifiers: Parameter Estimation

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 300

Estimation of Probabilities:

Nominal/Symbolic Attributes

P̂ (Ak = ak | C = ci) =
#(Ak = ak, C = ci) + γ

#(C = ci) + nAkγ

γ is called Laplace correction: Assume for every class ci some number of
hypothetical samples for every value of Ak to prevent the estimate to be 0 if
#(Ak = ak, C = ci) = 0.

γ = 0: Maximum likelihood estimation.

Common choices: γ = 1 or γ = 1
2.

Laplace correction helps to avoid problems with attribute values that do not occur
with some class in the given data.

It also introduces a bias towards a uniform distribution.



Naive Bayes Classifiers: Parameter Estimation
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Estimation of Probabilities:

Metric/Numeric Attributes: Assume a normal distribution.

P (Ak = ak | C = ci) =
1√

2πσk(ci)
exp

(
−(ak − µk(ci))

2

2σ2k(ci)

)

Estimate of mean value

µ̂k(ci) =
1

#(C = ci)

#(C=ci)∑

j=1

ak(j)

Estimate of variance

σ̂2k(ci) =
1

ξ

#(C=ci)∑

j=1

(ak(j)− µ̂k(ci))2

ξ = #(C = ci) : Maximum likelihood estimation
ξ = #(C = ci)− 1: Unbiased estimation



Naive Bayes Classifiers: Simple Example 1

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 302

No Sex Age Blood pr. Drug

1 male 20 normal A
2 female 73 normal B
3 female 37 high A
4 male 33 low B
5 female 48 high A
6 male 29 normal A
7 female 52 normal B
8 male 42 low B
9 male 61 normal B
10 female 30 normal A
11 female 26 low B
12 male 54 high A

P (Drug) A B

0.5 0.5

P (Sex | Drug) A B

male 0.5 0.5
female 0.5 0.5

P (Age | Drug) A B

µ 36.3 47.8

σ2 161.9 311.0

P (Blood Pr. | Drug) A B

low 0 0.5
normal 0.5 0.5
high 0.5 0

A simple database and estimated (conditional) probability distributions.



Naive Bayes Classifiers: Simple Example 1
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P (Drug A | male, 61, normal)

= c1 · P (Drug A) · P (male | Drug A) · P (61 | Drug A) · P (normal | Drug A)

≈ c1 · 0.5 · 0.5 · 0.004787 · 0.5 = c1 · 5.984 · 10−4 = 0.219

P (Drug B | male, 61, normal)

= c1 · P (Drug B) · P (male | Drug B) · P (61 | Drug B) · P (normal | Drug B)

≈ c1 · 0.5 · 0.5 · 0.017120 · 0.5 = c1 · 2.140 · 10−3 = 0.781

P (Drug A | female, 30, normal)

= c2 · P (Drug A) · P (female | Drug A) · P (30 | Drug A) · P (normal | Drug A)

≈ c2 · 0.5 · 0.5 · 0.027703 · 0.5 = c2 · 3.471 · 10−3 = 0.671

P (Drug B | female, 30, normal)

= c2 · P (Drug B) · P (female | Drug B) · P (30 | Drug B) · P (normal | Drug B)

≈ c2 · 0.5 · 0.5 · 0.013567 · 0.5 = c2 · 1.696 · 10−3 = 0.329



Naive Bayes Classifiers: Simple Example 2
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100 data points, 2 classes

Small squares: mean values

Inner ellipses:
one standard deviation

Outer ellipses:
two standard deviations

Classes overlap:
classification is not perfect

Naive Bayes Classifier



Naive Bayes Classifiers: Simple Example 3
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20 data points, 2 classes

Small squares: mean values

Inner ellipses:
one standard deviation

Outer ellipses:
two standard deviations

Attributes are not conditionally
independent given the class

Naive Bayes Classifier



Naive Bayes Classifiers: Iris Data
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150 data points, 3 classes

Iris setosa (red)
Iris versicolor (green)
Iris virginica (blue)

Shown: 2 out of 4 attributes

sepal length
sepal width
petal length (horizontal)
petal width (vertical)

6 misclassifications
on the training data
(with all 4 attributes) Naive Bayes Classifier



Learning the parameters of a Graphical Model
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V = {G,M, F}
dom(G) = {g, g}
dom(M) = {m,m}
dom(F) = {f, f}

The potential tables’ layout is determined by the graph structure.

The parameters (i. e. the table entries) can be easily estimated from
the database, e. g.:

P̂ (f | g,m) = #(F = f,G = g,M = m)

#(G = g,M = m)



Likelihood of a Database
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Flu G g g g g g g g g

Malaria M m m m m m m m m

Fever F f f f f f f f f

# 34 6 2 8 16 24 0 10

Database D with 100 en-
tries for 3 attributes.

P (D | ~G) =
100∏

h=1

P (ch | ~G)

=

Case 1︷ ︸︸ ︷
P (g,m, f) · · · · ·

Case 10︷ ︸︸ ︷
P (g,m, f)︸ ︷︷ ︸

10 times

· · ·
Case 51︷ ︸︸ ︷

P (g,m, f) · · · · ·
Case 58︷ ︸︸ ︷

P (g,m, f)︸ ︷︷ ︸
8 times

· · ·
Case 67︷ ︸︸ ︷

P (g,m, f) · · · · ·
Case 100︷ ︸︸ ︷
P (g,m, f)︸ ︷︷ ︸

34 times

=

‖︷ ︸︸ ︷
P (g,m, f)10︸ ︷︷ ︸

‖
· · ·

‖︷ ︸︸ ︷
P (g,m, f)8︸ ︷︷ ︸

‖
· · ·

‖︷ ︸︸ ︷
P (g,m, f)34︸ ︷︷ ︸

‖

=
︷ ︸︸ ︷
P (f | g,m)10P (g)10P (m)10 · · ·

︷ ︸︸ ︷
P (f | g,m)8P (g)8P (m)8 · · ·

︷ ︸︸ ︷
P (f | g,m)34P (g)34P (m)34
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P (D | ~G) =
100∏

h=1

P (ch | ~G)

= P (f | g,m)10P (f | g,m)0P (f | g,m)24P (f | g,m)16

· P (f | g,m)8P (f | g,m)2P (f | g,m)6P (f | g,m)34

· P (g)50P (g)50P (m)20P (m)80

The last equation shows the principle of reordering the factors:

First, we sort by attributes (here: F, G then M).

Within the same attributes, factors are grouped by the parent attributes’ values
combinations (here: for F: (g,m), (g,m), (g,m) and (g,m)).

Finally, it is sorted by attribute values (here: for F: first f, then f).
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General likelihood of a database D given a DAG ~G:

P (D | ~G) =
n∏

i=1

qi∏

j=1

ri∏

k=1

θ
αijk
ijk

General potential table:

P (Ai = aik | parents(Ai) = Qij) = θijk

ri∑

k=1

θijk = 1
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Learning Graphical Models from Data:

Learning the Structure



Learning the Structure of Graphical Models from Data
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(A) Test whether a distribution is decomposable w. r. t. a given graph.

This is the most direct approach. It is not bound to a graphical representation,
but can also be carried out w.r.t. other representations of the set of subspaces to
be used to compute the (candidate) decomposition of the given distribution.

(B) Find a suitable graph by measuring the strength of dependences.

This is a heuristic, but often highly successful approach, which is based on the
frequently valid assumption that in a conditional independence graph an attribute
is more strongly dependent on adjacent attributes than on attributes that are not
directly connected to them.

(C) Find an independence map by conditional independence tests.

This approach exploits the theorems that connect conditional independence graphs
and graphs that represent decompositions. It has the advantage that a single
conditional independence test, if it fails, can exclude several candidate graphs.
However, wrong test results can thus have severe consequences.
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All learning algorithms for graphical models consist of

an evaluation measure or scoring function
and a (heuristic) search method, e. g.

◦ conditional independence search

◦ greedy search (spanning tree or K2 algorithm)

◦ guided random search (simulated annealing, genetic algorithms)

An exhaustive search over all graphs is too expensive:

◦ 2(
n
2) possible undirected graphs for n attributes.

◦ f(n) =
n∑

i=1

(−1)i+1
(
n
i

)
2i(n−i)f(n− i) possible directed acyclic graphs.

8 possible undirected graphs with 3 nodes
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Relational Networks

Hartley Information Gain

Conditional Hartley Information Gain

Probabilistic Networks

χ2-Measure

Mutual Information / Cross Entropy / Information Gain

(Symmetric) Information Gain Ratio

(Symmetric/Modified) Gini Index

Bayesian Measures (K2 metric, BDeu metric)

Measures based on the Minimum Description Length Principle

Other measures that are known from Decision Tree Induction
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(A) Test whether a distribution is decomposable w. r. t. a given graph.

This is the most direct approach. It is not bound to a graphical representation,
but can also be carried out w.r.t. other representations of the set of subspaces to
be used to compute the (candidate) decomposition of the given distribution.

(B) Find a suitable graph by measuring the strength of dependences.

This is a heuristic, but often highly successful approach, which is based on the
frequently valid assumption that in a conditional independence graph an attribute
is more strongly dependent on adjacent attributes than on attributes that are not
directly connected to them.

(C) Find an independence map by conditional independence tests.

This approach exploits the theorems that connect conditional independence graphs
and graphs that represent decompositions. It has the advantage that a single
conditional independence test, if it fails, can exclude several candidate graphs.
However, wrong test results can thus have severe consequences.
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In order to evaluate a graph structure, we need a measure that compares the actual
relation to the relation represented by the graph.

For arbitrary R, E1, and E2 it is

R(E1 ∩ E2) ≤ min{R(E1), R(E2)}.
This relation entails that for any familyM of subsets of U it is always:

∀a1 ∈ dom(A1) : . . . ∀an ∈ dom(An) :

rU


 ∧

Ai∈U
Ai = ai


 ≤ min

M∈M



rM


 ∧

Ai∈M
Ai = ai





.

Therefore: Measure the quality of a familyM as:

∑

a1∈dom(A1)

· · ·
∑

an∈dom(An)


 min
M∈M



rM


 ∧

Ai∈M
Ai = ai





−rU


 ∧

Ai∈U
Ai = ai






Intuitively: Count the number of additional tuples.
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1.

shape
✎
✍

☞
✌

color
✎
✍

☞
✌

size
✎
✍

☞
✌

large
medium

small

2.

shape
✎
✍

☞
✌

color
✎
✍

☞
✌

size
✎
✍

☞
✌

�
�

large
medium

small

3.

shape
✎
✍

☞
✌

color
✎
✍

☞
✌

size
✎
✍

☞
✌

large
medium

small

4.

shape
✎
✍

☞
✌

color
✎
✍

☞
✌

size
✎
✍

☞
✌

❅
❅

large
medium

small

5.

shape
✎
✍

☞
✌

color
✎
✍

☞
✌

size
✎
✍

☞
✌

�
�

large
medium

small

6.

shape
✎
✍

☞
✌

color
✎
✍

☞
✌

size
✎
✍

☞
✌

�
�

❅
❅

large
medium

small

7.

shape
✎
✍

☞
✌

color
✎
✍

☞
✌

size
✎
✍

☞
✌

❅
❅

large
medium

small

8.

shape
✎
✍

☞
✌

color
✎
✍

☞
✌

size
✎
✍

☞
✌

�
�

❅
❅

large
medium

small
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Definition: Let P1 and P2 be two strictly positive probability distributions on the
same set E of events. Then

IKLdiv(P1, P2) =
∑

F∈E
P1(F ) log2

P1(F )

P2(F )

is called the Kullback-Leibler information divergence of P1 and P2.

The Kullback-Leibler information divergence is non-negative.

It is zero if and only if P1 ≡ P2.

Therefore it is plausible that this measure can be used to assess the quality of the
approximation of a given multi-dimensional distribution P1 by the distribution P2
that is represented by a given graph:

The smaller the value of this measure, the better the approximation.



Direct Test for Decomposability: Probabilistic

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 319

1.

shape
✎
✍

☞
✌

color
✎
✍

☞
✌

size
✎
✍

☞
✌

0.640

−5041

2.

shape
✎
✍

☞
✌

color
✎
✍

☞
✌

size
✎
✍

☞
✌

�
�

0.211

−4612

3.

shape
✎
✍

☞
✌

color
✎
✍

☞
✌

size
✎
✍

☞
✌

0.429

−4830

4.

shape
✎
✍

☞
✌

color
✎
✍

☞
✌

size
✎
✍

☞
✌

❅
❅

0.590

−4991

5.

shape
✎
✍

☞
✌

color
✎
✍

☞
✌

size
✎
✍

☞
✌

�
�

0

−4401

6.

shape
✎
✍

☞
✌

color
✎
✍

☞
✌

size
✎
✍

☞
✌

�
�

❅
❅

0.161

−4563

7.

shape
✎
✍

☞
✌

color
✎
✍

☞
✌

size
✎
✍

☞
✌

❅
❅

0.379

−4780

8.

shape
✎
✍

☞
✌

color
✎
✍

☞
✌

size
✎
✍

☞
✌

�
�

❅
❅

0

−4401

Upper numbers: The Kullback-Leibler information divergence of the original
distribution and its approximation.

Lower numbers: The binary logarithms of the probability of an example database
(log-likelihood of data).
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Let X be a random variable with domain dom(X) = {x1, . . . , xn}. Then,

H(Shannon)(X) = −
n∑

i=1

P (xi) log2P (xi)

is called the Shannon entropy of (the probability distribution of) X ,
where 0 · log2 0 = 0 is assumed.

Intuitively: Expected number of yes/no questions that have to be asked
in order to determine the obtaining value of X.

◦ Suppose there is an oracle, which knows the obtaining value,
but responds only if the question can be answered with “yes” or “no”.

◦ A better question scheme than asking for one alternative after the other can easily
be found: Divide the set into two subsets of about equal size.

◦ Ask for containment in an arbitrarily chosen subset.

◦ Apply this scheme recursively → number of questions bounded by ⌈log2 n⌉.
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P (x1) = 0.10, P (x2) = 0.15, P (x3) = 0.16, P (x4) = 0.19, P (x5) = 0.40

Shannon entropy: −∑i P (xi) log2P (xi) = 2.15 bit/symbol

Linear Traversal

x4, x5

x3, x4, x5

x2, x3, x4, x5

x1, x2, x3, x4, x5

0.10 0.15 0.16 0.19 0.40

x1 x2 x3 x4 x5
1 2 3 4 4

Code length: 3.24 bit/symbol
Code efficiency: 0.664

Equal Size Subsets

x1, x2, x3, x4, x5

0.25 0.75

x1, x2 x3, x4, x5

0.59

x4, x5

0.10 0.15 0.16 0.19 0.40

x1 x2 x3 x4 x5
2 2 2 3 3

Code length: 2.59 bit/symbol
Code efficiency: 0.830



Question/Coding Schemes

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 322

Splitting into subsets of about equal size can lead to a bad arrangement of the
alternatives into subsets→ high expected number of questions.

Good question schemes take the probability of the alternatives into account.

Shannon-Fano Coding (1948)

◦ Build the question/coding scheme top-down.

◦ Sort the alternatives w.r.t. their probabilities.

◦ Split the set so that the subsets have about equal probability
(splits must respect the probability order of the alternatives).

Huffman Coding (1952)

◦ Build the question/coding scheme bottom-up.

◦ Start with one element sets.

◦ Always combine those two sets that have the smallest probabilities.
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P (x1) = 0.10, P (x2) = 0.15, P (x3) = 0.16, P (x4) = 0.19, P (x5) = 0.40

Shannon entropy: −∑i P (xi) log2P (xi) = 2.15 bit/symbol

Shannon–Fano Coding (1948)

x1, x2, x3, x4, x5

0.25

0.41

x1, x2

x1, x2, x3
0.59

x4, x5

0.10 0.15 0.16 0.19 0.40

x1 x2 x3 x4 x5
3 3 2 2 2

Code length: 2.25 bit/symbol
Code efficiency: 0.955

Huffman Coding (1952)

x1, x2, x3, x4, x5

0.60

x1, x2, x3, x4

0.25 0.35

x1, x2 x3, x4

0.10 0.15 0.16 0.19 0.40

x1 x2 x3 x4 x5
3 3 3 3 1

Code length: 2.20 bit/symbol
Code efficiency: 0.977
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It can be shown that Huffman coding is optimal if we have to determine the
obtaining alternative in a single instance.
(No question/coding scheme has a smaller expected number of questions.)

Only if the obtaining alternative has to be determined in a sequence of (indepen-
dent) situations, this scheme can be improved upon.

Idea: Process the sequence not instance by instance, but combine two, three
or more consecutive instances and ask directly for the obtaining combination of
alternatives.

Although this enlarges the question/coding scheme, the expected number of ques-
tions per identification is reduced (because each interrogation identifies the ob-
taining alternative for several situations).

However, the expected number of questions per identification cannot be made ar-
bitrarily small. Shannon showed that there is a lower bound, namely the Shannon
entropy.
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P (x1) =
1
2, P (x2) =

1
4, P (x3) =

1
8, P (x4) =

1
16, P (x5) =

1
16

Shannon entropy: −∑iP (xi) log2 P (xi) = 1.875 bit/symbol

If the probability distribution allows for a
perfect Huffman code (code efficiency 1),
the Shannon entropy can easily be inter-
preted as follows:

−
∑

i

P (xi) log2P (xi)

=
∑

i

P (xi)
︸ ︷︷ ︸

occurrence
probability

· log2
1

P (xi)︸ ︷︷ ︸
path length

in tree

.

In other words, it is the expected number
of needed yes/no questions.

Perfect Question Scheme

x4, x5

x3, x4, x5

x2, x3, x4, x5

x1, x2, x3, x4, x5

1
2

1
4

1
8

1
16

1
16

x1 x2 x3 x4 x5
1 2 3 4 4

Code length: 1.875 bit/symbol
Code efficiency: 1
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Information Content

The information content of an event F ∈ E that occurs with
probability P (F ) is defined as

InfP (F ) = − log2 P (F ).

Intention:

Neglect all subjective references to F and let the information content
be determined by P (F ) only.

The information of a certain message (P (Ω) = 1) is zero.

The less frequent a message occurs (i. e., the less probable it is), the more inter-
esting is the fact of its occurrence:

P (F1) < P (F2) ⇒ InfP (F1) > InfP (F2)

We only use one bit to encode the occurrence of a message with probability 1
2.
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The function Inf fulfills all these requirements:

Inf

P (F )

1

2

1

The expected value (w. r. t. to a probability distri-
bution P1) of InfP2 can be written as follows:

EP1(InfP2) = −
∑

F∈E
P1(F ) · log2P2(F )

H(Shannon)(P ) is the expected value (in bits) of
the information content that is related to the oc-
currence of the events F ∈ E :

H(P ) = EP (InfP )

H(Shannon)(P ) =
∑

F∈E
P (F )︸ ︷︷ ︸

Probability of F

· (− log2 P (F ))︸ ︷︷ ︸
Information content of F
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Let P ∗ be a hypothetical probability distribution and P a (given or known) prob-
ability distribution that acts as a reference.

We can compare both P ∗ and P by computing the difference of the expected
information contents:

EP (InfP ∗)− EP (InfP ) = −
∑

F∈E
P (F ) log2 P

∗(F ) +
∑

F∈E
P (F ) log2 P (F )

=
∑

F∈E

(
P (F ) log2P (F )− P (F ) log2 P ∗(F )

)

=
∑

F∈E
P (F )

(
log2P (F )− log2P

∗(F )
)

IKLdiv(P, P
∗) =

∑

F∈E
P (F ) log2

P (F )

P ∗(F )
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(A) Test whether a distribution is decomposable w. r. t. a given graph.

This is the most direct approach. It is not bound to a graphical representation,
but can also be carried out w.r.t. other representations of the set of subspaces to
be used to compute the (candidate) decomposition of the given distribution.

(B) Find a suitable graph by measuring the strength of dependences.

This is a heuristic, but often highly successful approach, which is based on the
frequently valid assumption that in a conditional independence graph an attribute
is more strongly dependent on adjacent attributes than on attributes that are not
directly connected to them.

(C) Find an independence map by conditional independence tests.

This approach exploits the theorems that connect conditional independence graphs
and graphs that represent decompositions. It has the advantage that a single
conditional independence test, if it fails, can exclude several candidate graphs.
However, wrong test results can thus have severe consequences.



Strength of Marginal Dependences: Relational
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Learning a relational network consists in finding those subspace, for which the
intersection of the cylindrical extensions of the projections to these subspaces
approximates best the set of possible world states, i. e. contains as few additional
tuples as possible.

Since computing explicitly the intersection of the cylindrical extensions of the pro-
jections and comparing it to the original relation is too expensive, local evaluation
functions are used, for instance:

subspace color × shape shape × size size × color

possible combinations 12 9 12
occurring combinations 6 5 8
relative number 50% 56% 67%

The relational network can be obtained by interpreting the relative numbers as
edge weights and constructing the minimum weight spanning tree.



Strength of Marginal Dependences: Relational
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Hartley information needed to determine

coordinates: log2 4 + log2 3 = log2 12 ≈ 3.58
coordinate pair: log2 6 ≈ 2.58

gain: log2 12− log2 6 = log2 2 = 1

Definition: Let A and B be two attributes and R a discrete possibility measure with
∃a ∈ dom(A) : ∃b ∈ dom(B) : R(A = a,B = b) = 1. Then

I
(Hartley)
gain (A,B) = log2


∑

a∈dom(A)R(A = a)


 + log2


∑

b∈dom(B)R(B = b)




− log2


∑

a∈dom(A)
∑
b∈dom(B)R(A = a,B = b)




= log2

(∑
a∈dom(A)R(A = a)

)
·
(∑

b∈dom(B)R(B = b)
)

∑
a∈dom(A)

∑
b∈dom(B)R(A = a,B = b)

,

is called the Hartley information gain of A and B w.r.t. R.
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Intuitive interpretation of Hartley information gain:
The binary logarithm measures the number of questions to find the obtaining value
with a scheme like a binary search. Thus Hartley information gain measures the
reduction in the number of necessary questions.

Results for the simple example:

I
(Hartley)
gain (color, shape) = 1.00 bit

I
(Hartley)
gain (shape, size) ≈ 0.86 bit

I
(Hartley)
gain (color, size) ≈ 0.58 bit

Applying the Kruskal algorithm yields as a learning result:
✛
✚

✘
✙color

✛
✚

✘
✙shape

✛
✚

✘
✙size

As we know, this graph describes indeed a decomposition of the relation.
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Mutual Information / Cross Entropy / Information Gain

Based on Shannon Entropy H = −
n∑

i=1

pi log2 pi (Shannon 1948)

Igain(A,B) = H(A) − H(A | B)

=

︷ ︸︸ ︷

−
∑

∀a
P (a) log2 P (a) −

︷ ︸︸ ︷
∑

∀b
P (b)


−

∑

∀a
P (a|b) log2P (a|b)




H(A) Entropy of the distribution on attribute A

H(A|B) Expected entropy of the distribution on attribute A
if the value of attribute B becomes known

H(A)−H(A|B) Expected reduction in entropy or information gain
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Igain(A,B) = −
∑

∀a
P (a) log2 P (a)−

∑

∀b
P (b)


−

∑

∀a
P (a|b) log2 P (a|b)




= −
∑

∀a

∑

∀b
P (a, b) log2 P (a) +

∑

∀b

∑

∀a
P (a|b)P (b) log2 P (a|b)

=
∑

∀a

∑

∀b
P (a, b)

(
log2

P (a, b)

P (b)
− log2 P (a)

)

=
∑

∀a

∑

∀b
P (a, b) log2

P (a, b)

P (a)P (b)

The information gain equals the Kullback-Leibler information divergence between the
actual distribution P (A,B) and a hypothetical distribution P ∗ in which A and B are
marginal independent:

P ∗(A,B) = P (A) · P (B)

Igain(A,B) = IKLdiv(P, P
∗)
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projection to
subspace

product of
marginals

s m l s m l

small
medium

large

small
medium

large

information
gain

0.429 bit
40 180 20 160
12 6 120 102
168 144 30 18

88 132 68 112
53 79 41 67
79 119 61 101

0.211 bit
20 180 200
40 160 40
180 120 60

96 184 120
58 110 72
86 166 108

0.050 bit
50 115 35 100
82 133 99 146
88 82 36 34

66 99 51 84
101 152 78 129
53 79 41 67
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Results for the simple example:

Igain(color, shape) = 0.429 bit

Igain(shape, size) = 0.211 bit

Igain(color, size) = 0.050 bit

Applying the Kruskal algorithm yields as a learning result:
✛
✚

✘
✙color

✛
✚

✘
✙shape

✛
✚

✘
✙size

It can be shown that this approach always yields the best possible spanning tree
w.r.t. Kullback-Leibler information divergence (Chow and Liu 1968).

In an extended form this also holds for certain classes of graphs
(for example, tree-augmented naive Bayes classifiers).

For more complex graphs, the best graph need not be found
(there are counterexamples, see below).
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Optimum Weight Spanning Tree Construction

◦ Compute an evaluation measure on all possible edges
(two-dimensional subspaces).

◦ Use the Kruskal algorithm to determine an optimum weight spanning tree.

Greedy Parent Selection (for directed graphs)

◦ Define a topological order of the attributes (to restrict the search space).

◦ Compute an evaluation measure on all single attribute hyperedges.

◦ For each preceding attribute (w.r.t. the topological order):
add it as a candidate parent to the hyperedge and
compute the evaluation measure again.

◦ Greedily select a parent according to the evaluation measure.

◦ Repeat the previous two steps until no improvement results from them.
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Idea: Compute the probability of a directed graph ~G given the database D
(Bayesian approach by [Cooper and Herskovits 1992])

~Gopt = argmax
~G

P (~G | D) = argmax
~G

P (~G,D)

P (D)

= argmax
~G

P (~G,D)

Find an equation for P (~G,D).

In order to compare two graphs, it is sufficient to compute the Bayes factor

P (~G1 | D)

P (~G2 | D)
=
P (~G1, D)

P (~G2, D)

In both ways one can avoid computing the probability P (D).
Assuming equal probability of all graphs simplifies further.
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Model Averaging

We first consider P (~G,D) to be the marginalization of P (~G,Θ, D)
over all possible parameters Θ.

P (~G,D) =
∫

Θ
P (~G,Θ, D) dΘ

=
∫

Θ
P (D | ~G,Θ)P (~G,Θ) dΘ

=
∫

Θ
P (D | ~G,Θ) f(Θ | ~G)P (~G) dΘ

= P (~G)︸ ︷︷ ︸
A priori prob.

∫

Θ
P (D | ~G,Θ)︸ ︷︷ ︸
Likelihood of D

f(Θ | ~G)︸ ︷︷ ︸
Parameter densities

dΘ
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The a priori distribution P (~G) can be used to bias the evaluation measure towards
user-specific network structures.

Substitute the likelihood P (D | ~G,Θ) for its specific form:

P (~G,D) = P (~G)
∫

Θ



n∏

i=1

qi∏

j=1

ri∏

k=1

θ
αijk
ijk




︸ ︷︷ ︸
P (D| ~G,Θ)

f(Θ | ~G) dΘ

See slide 310 for the derivation of the likelihood term.
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The parameter densities f(Θ | ~G) describe the probabilities of the parameters
given a network structure.

They are densities of second order (distribution over distributions)

For fixed i and j, a vector (θij1, . . . , θijri) represents a probability distribution,
namely the j-th column of the i-th potential table.

Assuming mutual independence between the potential tables, we arrive
for f(Θ | ~G) at the following:

f(Θ | ~G) =
n∏

i=1

qi∏

j=1

f(θij1, . . . , θijri)
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Thus, we can further concretize the equation for P (~G,D):

P (~G,D) = P (~G)
∫
· · ·

∫

θijk



n∏

i=1

qi∏

j=1

ri∏

k=1

θ
αijk
ijk


 ·


n∏

i=1

qi∏

j=1

f(θij1, . . . , θijri)


 dθ111, . . . , dθnqnrn

= P (~G)
n∏

i=1

qi∏

j=1

∫
· · ·

∫

θijk



ri∏

k=1

θ
αijk
ijk


 · f(θij1, . . . , θijri) dθij1, . . . , dθijri
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A last assumption: For fixed i and j the density f(θij1, . . . , θijri) is uniform:

f(θij1, . . . , θijri) = (ri − 1)!

It simplifies P (~G,D) further:

P (~G,D) = P (~G)
n∏

i=1

qi∏

j=1

∫
· · ·

∫

θijk



ri∏

k=1

θ
αijk
ijk


 · (ri − 1)! dθij1, . . . , dθijri

= P (~G)
n∏

i=1

qi∏

j=1

(ri − 1)!
∫
· · ·

∫

θijk

ri∏

k=1

θ
αijk
ijk dθij1, . . . , dθijri

︸ ︷︷ ︸

Dirichlet’s integral =

∏ri
k=1 αijk!

(
∑ri
k=1 αijk + ri − 1)!
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We finally arrive at an expression for P (~G,D):

P (~G,D) = K2(~G | D) = P (~G)
n∏

i=1

qi∏

j=1


 (ri − 1)!

(Nij + ri − 1)!

ri∏

k=1

αijk!




n number of attributes describing the domain under consideration

ri number of values of the i-th attribute Ai, i. e., ri = |dom(Ai)|
qi number of instantiations of the parents of the i-th attribute in ~G,

i. e., qi =
∏
Aj∈parents(Ai) ri =

∏
Aj∈parents(Ai) |dom(Ai)|

αijk number of sample cases in which the i-th attribute has its k-th value

and its parents in ~G have their j-th instantiation

Nij =
ri∑

k=1

αijk
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Global — Refers to the outer product: The total value of the K2 metric is the
product over all K2 values of attribute families.

Local — The likelihood equation assumes that given a parents instantiation, the
probabilities for the respective child attribute values are mutual independent. This
is reflected in the product over all qi different parent attributes’ value combinations
of attribute Ai.

We exploit the global property to write the K2 metric as follows:

K2(~G | D) = P (~G)
n∏

i=1

K2local(Ai | D)

with

K2local(Ai | D) =
qi∏

j=1


 (ri − 1)!

(Nij + ri − 1)!

ri∏

k=1

αijk!



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Prerequisites:

Choose a topological order on the attributes (A1, . . . , An)

Start out with a network that consists of n isolated nodes.

Let ζi be the quality of the i-th attribute given the (tentative) set of parent
attributes M :

ζi(M) = K2local(Ai | D) with parents(Ai) =M
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Execution:

1. Determine for the parentless node Ai the quality measure ζi(∅)

2. Evaluate for every predecessor {A1, . . . , Ai−1} whether inserted as parent of Ai,
the quality measure would increase. Let Y be the node that yields the highest
quality (increase):

Y = argmax
1≤l≤i−1

ζi({Al})

This best quality measure be ζ = ζi({Y }).

3. If ζ is better than ζi(∅), Y is inserted permanently as a
parent node: parents(Ai) = parents(Ai) ∪ {Y }

4. Repeat steps 2 and 3 to increase the parent set until no quality increase can be
achieved or no nodes are left or a predefined maximum number of parent nodes
per node is reached.
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1: for i← 1 . . . n do // Initialization
2: parents(Ai)← ∅
3: end for

4: for i← n, . . . , 1 do // Iteration
5: repeat

6: Select Y ∈ {A1, . . . , Ai−1} \ parents(Ai),
which maximizes ζ = ζi(parents(Ai) ∪ {Y })

7: δ ← ζ − ζi(parents(Ai))
8: if δ > 0 then

9: parents(Ai)← parents(Ai) ∪ {Y }
10: end if

11: until δ ≤ 0 or parents(Ai) = {A1, . . . , Ai−1} or |parents(Ai)| = nmax

12: end for
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Step 1 – Edgeless
graph

Step 2 – Insert M

temporarily.
Step 3 – Insert KA

temporarily.
Step 4 – Node L

maximizes K2 value
and thus is added
permantently.
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Step 5 – Insert M

temporarily.
Step 6 – KA is
added as second par-
ent node of KV.

Step 7 – M does not
increase the quality
of the network if in-
sertes as third parent
node.

Step 8 – Insert KA

temporarily.
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Step 9 – Node L be-
comes perent node
of M.

Step 10 – Adding
KA does not in-
crease overall net-
work quaility.

Step 11 – Node L

becomes parent node
of KA.

Result
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large

medium

small

large

medium

small

large

medium

small

large

medium

small
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A

C D

B

pA a1 a2
0.5 0.5

pB b1 b2
0.5 0.5

pC|AB a1b1 a1b2 a2b1 a2b2

c1 0.9 0.3 0.3 0.5
c2 0.1 0.7 0.7 0.5

pD|AB a1b1 a1b2 a2b1 a2b2

d1 0.9 0.3 0.3 0.5
d2 0.1 0.7 0.7 0.5

pAD a1 a2
d1 0.3 0.2
d2 0.2 0.3

pBD b1 b2
d1 0.3 0.2
d2 0.2 0.3

pCD c1 c2
d1 0.31 0.19
d2 0.19 0.31

Greedy parent selection can lead to suboptimal results
if there is more than one path connecting two attributes.

Here: the edge C → D is selected first.
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(A) Test whether a distribution is decomposable w. r. t. a given graph.

This is the most direct approach. It is not bound to a graphical representation,
but can also be carried out w.r.t. other representations of the set of subspaces to
be used to compute the (candidate) decomposition of the given distribution.

(B) Find a suitable graph by measuring the strength of dependences.

This is a heuristic, but often highly successful approach, which is based on the
frequently valid assumption that in a conditional independence graph an attribute
is more strongly dependent on adjacent attributes than on attributes that are not
directly connected to them.

(C) Find an independence map by conditional independence tests.

This approach exploits the theorems that connect conditional independence graphs
and graphs that represent decompositions. It has the advantage that a single
conditional independence test, if it fails, can exclude several candidate graphs.
However, wrong test results can thus have severe consequences.
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General Idea: Exploit the theorems that connect conditional independence graphs
and graphs that represent decompositions.

In other words: we want a graph describing a decomposition,
but we search for a conditional independence graph.

This approach has the advantage that a single conditional independence test,
if it fails, can exclude several candidate graphs.

Assumptions:

Faithfulness: The domain under consideration can be accurately described with
a graphical model (more precisely: there exists a perfect map).

Reliability of Tests: The result of all conditional independence tests coincides
with the actual situation in the underlying distribution.

Other assumptions that are specific to individual algorithms.
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large

medium

small

large

medium

small

large

medium

small

large

medium

small
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The Hartley information gain can be used directly to test for (approximate)
marginal independence.

attributes relative number of Hartley information gain
possible value combinations

color, shape 6
3·4 =

1
2 = 50% log2 3 + log2 4− log2 6 = 1

color, size 8
3·4 =

2
3 ≈ 67% log2 3 + log2 4− log2 8 ≈ 0.58

shape, size 5
3·3 =

5
9 ≈ 56% log2 3 + log2 3− log2 5 ≈ 0.85

In order to test for (approximate) conditional independence:

◦ Compute the Hartley information gain for each possible instantiation of the
conditioning attributes.

◦ Aggregate the result over all possible instantiations, for instance, by simply
averaging them.
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large

medium

small

color Hartley information gain

log2 1 + log2 2− log2 2 = 0

log2 2 + log2 3− log2 4 ≈ 0.58
log2 1 + log2 1− log2 1 = 0

log2 2 + log2 2− log2 2 = 1

average: ≈ 0.40

shape Hartley information gain

log2 2 + log2 2− log2 4 = 0

log2 2 + log2 1− log2 2 = 0

log2 2 + log2 2− log2 4 = 0

average: = 0

size Hartley information gain

large log2 2 + log2 1− log2 2 = 0

medium log2 4 + log2 3− log2 6 = 1

small log2 2 + log2 1− log2 2 = 0

average: ≈ 0.33
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The Shannon information gain can be used directly to test for (approximate)
marginal independence.

Conditional independence tests may be carried out by summing the information
gain for all instantiations of the conditioning variables:

Igain(A,B | C)

=
∑

c∈dom(C)

P (c)
∑

a∈dom(A)

∑

b∈dom(B)

P (a, b | c) log2
P (a, b | c)

P (a | c) P (b | c),

where P (c) is an abbreviation of P (C = c) etc.

Since Igain(color, size | shape) = 0 indicates the only conditional independence,
we get the following learning result:

✛
✚

✘
✙color

✛
✚

✘
✙shape

✛
✚

✘
✙size
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Algorithm: (conditional independence graph construction)

1. For each pair of attributes A and B, search for a set SAB ⊆ U\{A,B} such that
A⊥⊥B | SAB holds in P̂ , i.e., A and B are independent in P̂ conditioned on SAB.
If there is no such SAB, connect the attributes by an undirected edge.

2. For each pair of non-adjacent variables A and B with a common neighbour C (i.e.,
C is adjacent to A as well as to B), check whether C ∈ SAB.
• If it is, continue.

• If it is not, add arrow heads pointing to C, i.e., A→ C ← B.

3. Recursively direct all undirected edges according to the rules:

• If for two adjacent variables A and B there is a strictly directed path from A to
B not including A→ B, then direct the edge towards B.

• If there are three variables A, B, and C with A and B not adjacent, B−C, and
A→ C, then direct the edge C → B.
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Suppose that the following conditional independence statements hold:

A⊥⊥
P̂
B | ∅ B⊥⊥

P̂
A | ∅

A⊥⊥
P̂
D | C D⊥⊥

P̂
A | C

B⊥⊥
P̂
D | C D⊥⊥

P̂
B | C

All other possible conditional independence statements that can be formed with the
attributes A, B, C, and D (with single attributes on the left) do not hold.

Step 1: Since there is no set rendering A and C, B and C and C and D
independent, the edges A− C, B − C, and C −D are inserted.

Step 2: Since C is a common neighbor of A and B and we have A⊥⊥
P̂
B | ∅,

but A⊥6⊥
P̂
B | C, the first two edges must be directed A→ C ← B.

Step 3: Since A and D are not adjacent, C −D and A→ C, the edge C −D
must be directed C → D.
(Otherwise step 2 would have already fixed the orientation C ← D.)
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The conditional independence graph construction algorithm presupposes that there
is a perfect map. If there is no perfect map, the result may be invalid.

A

B D

C

A = a1 A = a2pABCD
B = b1 B = b2 B = b1 B = b2

D = d1
1/47

1/47
1/47

2/47
C = c1 D = d2

1/47
1/47

2/47
4/47

D = d1
1/47

2/47
1/47

4/47
C = c2 D = d2

2/47
4/47

4/47
16/47

Independence tests of high order, i. e., with a large number of conditions,
may be necessary.

There are approaches to mitigate these drawbacks.
(For example, the order is restricted and all tests of higher order are assumed to
fail, if all tests of lower order failed.)
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Drafting: Build a so-called Chow–Liu tree as an initial graphical model.

◦ Evaluate all attribute pairs (candidate edges) with information gain.

◦ Discard edges with evaluation below independence threshold (∼0.1 bits).

◦ Build optimum (maximum) weight spanning tree.

Thickening: Add necessary edges.

◦ Traverse remaining candidate edges in the order of decreasing evaluation.

◦ Test for conditional independence in order to determine
whether an edge is needed in the graphical model.

◦ Use local Markov property to select a condition set: an attribute is
conditionally independent of all non-descendants given its parents.

◦ Since the graph is undirected in this step,
the set of adjacent nodes is reduced iteratively and greedily
in order to remove possible children.
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Thinning: Remove superfluous edges.

◦ In the thickening phase a conditional independence test may have failed,
because the graph was still too sparse.

◦ Traverse all edges that have been added to the current graphical model
and test for conditional independence.

◦ Remove unnecessary edges.
(two phases/approaches: heuristic test/strict test)

Orienting: Direct the edges of the graphical model.

◦ Identify the v-structures (converging directed edges).
(Markov equivalence: same skeleton and same set of v-structures.)

◦ Traverse all pairs of attributes with common neighbors and check which com-
mon neighbors are in the (maximally) reduced set of conditions.

◦ Direct remaining edges by extending chains and avoiding cycles.
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Drafting: Build a Chow–Liu tree as an initial graphical model

◦ Evaluate all attribute pairs (candidate edges) with specificity gain.

◦ Discard edges with evaluation below independence threshold (∼0.015).
◦ Build optimum (maximum) weight spanning tree.

Thickening: Add necessary edges.

◦ Traverse remaining candidate edges in the order of decreasing evaluation.

◦ Test for conditional independence in order to determine
whether an edge is needed in the graphical model.

◦ Use local Markov property to select a condition set: an attribute is
conditionally independent of any non-neighbor given its neighbors.

◦ Since the graphical model to be learned is undirected,
no (iterative) reduction of the condition set is needed
(decisive difference to Cheng–Bell–Liu Algorithm).
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Moralizing: Take care of possible v-structures.

◦ If one assumes a perfect undirected map, this step is unnecessary.
However, v-structures are too common and cannot be represented
without loss in an undirected graphical model.

◦ Possible v-structures can be taken care of by connecting the parents.

◦ Traverse all edges with an evaluation below the independence threshold
that have a common neighbor in the graph.

◦ Add edge if conditional independence given the neighbors does not hold.

Thinning: Remove superfluous edges.

◦ In the thickening phase a conditional independence test may have failed,
because the graph was still too sparse.

◦ Traverse all edges that have been added to the current graphical model
and test for conditional independence.
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Danish Jersey Cattle Blood Type Determination

1 2

3 4 5 6

7 8 9 10

11 12

13

14 15 16 17

18 19 20 21

21 attributes:
1 – dam correct?
2 – sire correct?
3 – stated dam ph.gr. 1
4 – stated dam ph.gr. 2
5 – stated sire ph.gr. 1
6 – stated sire ph.gr. 2
7 – truedamph.gr. 1
8 – truedamph.gr. 2
9 – true sire ph.gr. 1
10 – true sire ph.gr. 2

11 – offspring ph.gr. 1
12 – offspring ph.gr. 2
13 – offspring genotype
14 – factor 40
15 – factor 41
16 – factor 42
17 – factor 43
18 – lysis40
19 – lysis41
20 – lysis 42
21 – lysis 43

The grey nodes correspond to observable attributes.
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A fraction of the database of sample cases:
y y f1 v2 f1 v2 f1 v2 f1 v2 v2 v2 v2v2 n y n y 0 6 0 6

y y f1 v2 ** ** f1 v2 ** ** ** ** f1v2 y y n y 7 6 0 7

y y f1 v2 f1 f1 f1 v2 f1 f1 f1 f1 f1f1 y y n n 7 7 0 0

y y f1 v2 f1 f1 f1 v2 f1 f1 f1 f1 f1f1 y y n n 7 7 0 0

y y f1 v2 f1 v1 f1 v2 f1 v1 v2 f1 f1v2 y y n y 7 7 0 7

y y f1 f1 ** ** f1 f1 ** ** f1 f1 f1f1 y y n n 6 6 0 0

y y f1 v1 ** ** f1 v1 ** ** v1 v2 v1v2 n y y y 0 5 4 5

y y f1 v2 f1 v1 f1 v2 f1 v1 f1 v1 f1v1 y y y y 7 7 6 7
... ...

21 attributes

500 real world sample cases

A lot of missing values (indicated by **)

Is it possible to generate a Bayesian Network from Data?
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network edges params. train test
indep. 0 59 -19921.2 -20087.2
orig. 22 219 -11391.0 -11506.1

Optimum Weight Spanning Tree Construction

measure edges params. train test
Igain 20.0 285.9 -12122.6 -12339.6

χ2 20.0 282.9 -12122.6 -12336.2

Greedy Parent Selection w.r.t. a Topological Order

measure edges add. miss. params. train test
Igain 35.0 17.1 4.1 1342.2 -11229.3 -11817.6

χ2 35.0 17.3 4.3 1300.8 -11234.9 –11805.2
K2 23.3 1.4 0.1 229.9 -11385.4 -11511.5

L
(rel)
red 22.5 0.6 0.1 219.9 -11389.5 -11508.2
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Improving the Product Quality by Detecting Weaknesses

◦ Learn a decision tree or inference network
for vehicle properties and failures.

◦ Look for suspicious conditional failure rates.

◦ Find causes of these suspicious rates.

◦ Optimize design of vehicle.

Improve the Error Diagnosis in Service Garages

◦ Learn a decision tree or inference network
for vehicle properties and failures.

◦ Record new faults.

◦ Test for most probable errors.
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Database: approx. 18500 vehicles with more than 100 attributes

Analysis of dependencies between specific equipment and failure.

Results are used as a starting point for technical investigation.

electrical
sliding roof

air condition engine type tire type
acceleration
skid control

battery
failure

compressor
failure

brakes
failure

Fictitious example: There are significantly more battery failures, if an aircondition and
an electrical sliding roof are installed.
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Influence of specific equipment on battery failure:

(fictitious) battery failure rate Aircondition
with without

elec. sliding roof
with 8% 3%
without 3% 2%

Significant deviation from independent distribution.

Hint for possible causes.

Here: Larger battery might be required if both aircondition
and electrical sliding roof are installed.
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Decision Theory
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Descriptive Decision Theorie tries to simulate human behavior in finding the right
or best decision for a given problem

Example:
◦ Company can chose one of two places for a new store
◦ Option 1: 125.000 EUR profit per year
◦ Option 2: 150.000 EUR profit per year

Company should take Option 2, because it maximized the profit.

Often, there are multiple target values, which should be optimal

Example (additional Information):
◦ Option 1: 2.000.000 EUR sales per year
◦ Option 2: 1.800.000 EUR sales per year

There is a conflict to handle
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In real world not every thing is known, so there are uncertainties in the model

Example:
◦ There are plans for restructure the local traffic, which changes the predicted
profit
◦ Option 1: 125.000 EUR profit per year
◦ Option 2: 80.000 EUR profit per year

With modification Option 1 is the better one and without modification Option
2 is the better one

To model these variations in the environment we use so called Decision Tables

z1 (no modification) z2 (restructure)

a1 (Option 1) 125.000 = e11 125.000 = e12
a2 (Option 2) 150.000 = e21 80.000 = e22
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In many cases probabilities could be assigned to each option

Objective Probabilities based on mathematic or statistic background

Subjective Probabilities based on intuition or estimations

Example:
◦ The management estimates the probability for the restructure to 30%

The decision can be chosen by expectation value

z1 (no modification) z2 (restructure) Expectation Value
p1 = 0.7 p2 = 0.3

a1 (Option 1) 125.000 = e11 125.000 = e12 125.000
a2 (Option 2) 150.000 = e21 80.000 = e22 129.000

Option 2 has the higher expectation value and should be used
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An alternative a1 dominates a2 if the value of a1 is always greater of (or equal to)
the value of a2

∀je1j ≥ e2j ´

Example:

z1 z2

a1 150.000 = e11 90.000 = e12
a2 125.000 = e21 80.000 = e22

Alternative a2 could be dropped
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Some more alternatives:

z1 z2 z3 z4 z5

a1 0 20 10 60 25 dominated by a3
a2 -20 80 10 10 60
a3 20 60 20 60 50
a4 55 40 60 10 40
a5 50 10 30 5 20 dominated by a4

◦ a3 dominated a1
◦ a4 dominated a5
Alternatives a1 and a5 could be dropped



Probability Domination

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 381

z1 z2 z3 z4
p1 = 0.3 p2 = 0.2 p1 = 0.4 p2 = 0.1

a1 20 40 10 50
a2 60 30 50 20

Probability Domination means that the cumulated probability for the payout for
is always higher

Algorithm:
◦ Order payout by value in a decreasing order
◦ Cumulate probabilities

Example:
◦ a1 : 50(0.1) 40(0.2) 20(0.3) 10(0.4)
◦ a2 : 60(0.3) 50(0.4) 30(0.2) 20(0.1)
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Example:
◦ a1 : 50(0.1) 40(0.2) 20(0.3) 10(0.4)
◦ a2 : 60(0.3) 50(0.4) 30(0.2) 20(0.1)

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
p (probability)

p (probability)

a2
a1

a2 dominates a1.
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Optimization for multiple Targets

Complementary Targets
◦ Selling left foot shoes / Selling right foot shoes
◦ One could be avoided

Independent Targets
◦ Could be optimized separately

Competitive Targets
◦ Increase profit and sales
◦ Decrease environment pollution
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Price Sales e1 Profit e2 Environment Pollution e3

a1 15 800 7000 -4
a2 20 600 7000 -2
a3 25 400 6000 0
a4 30 200 4000 0

Efficient Alternatives
◦ Only focus on alternatives which are not dominated by others
◦ Example: Drop a4

Finding a decision
◦ If multiple alternatives are effective we need an algorithm to choose the pre-
ferred one
◦ Simplest algorithm: Chose one target (most important, alphabetical) and op-
timize for this value
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Goal find a function U (e1, e2, . . . , en) as a combination of all targets, which could
be optimized

Linear combination
◦ Simplest variant: Linear combination of all targets

◦ U (e1, e2, . . . , ei) =
n∑
i=1

ωi · ei

Example
◦ ω1 = 10, ω2 = 1, ω3 = 500

Price Sales e1 Profit e2 Environment Pollution e3 U (e1, e2, e3)

a1 15 800 7000 -4 13000
a2 20 600 7000 -2 12000
a3 25 400 6000 0 10000
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z1 z2 z3 z4

a1 60 30 50 60
a2 10 10 10 140
a3 -30 100 120 130

Think about, how you would decide!

Decision Rules
◦ Maximin - Rule
◦ Maximax - Rule
◦ Hurwicz - Rule
◦ Savage-Niehans - Rule
◦ Laplace - Rule
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z1 z2 z3 z4 Minimum

a1 60 30 50 60 30
a2 10 10 10 140 10
a3 -30 100 120 130 -30

Chose the one with the highest minimum

Contra: To pessimistic, only focus on one column

Example

z1 z2 z3 z4 Minimum

a1 1,000,000 1,000,000 0.99 1,000,000 0.99
a2 1 1 1 1 1
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z1 z2 z3 z4 Maximum

a1 60 30 50 60 60
a2 10 10 10 140 140
a3 -30 100 120 130 130

Chose the one with the highest maximum

Contra: To optimistic, only focus on one column

Example

z1 z2 z3 z4 Maximum

a1 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000
a2 1,000,001 1 1 1 1,000,001
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z1 z2 z3 z4 Max Min Φ(ai)

a1 60 30 50 60 60 30 0.4 · 60 + 0.6 · 30 = 42
a2 10 10 10 140 140 10 0.4 · 140 + 0.6 · 10 = 62
a3 -30 100 120 130 130 -30 0.4 · 130 + 0.6 · (−30) = 34

Combination of Maximin and Maximax - Rule
Φ(a) = λ ·max(ei) + (1− λ) ·min(ei)
λ represents readiness to assume risk
Contra: Only focus on two column
Example (min(a1) < min(a2),max(a1) < max(a2)⇒ chose a2)

z1 z2 z3 z4 Max Min

a1 1,000,000 1,000,000 1,000,000 0.99 1,000,000 0.99
a2 1,000,001 1 1 1 1,000,001 1
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z1 z2 z3 z4

a1 60 30 50 60
a2 10 10 10 140
a3 -30 100 120 130

Rule of minimal regret
Algorithm:
◦ Find the maximal value for every column
◦ Subtract value from maximal value
◦ Use alternative with the lowest regret
Regret Table:

z1 z2 z3 z4 Max

a1 60 - 60 = 0 70 70 80 80
a2 60 - 10 = 50 90 110 0 110
a3 60 - (-30) = 90 0 0 10 90
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z1 z2 z3 z4

a1 1,000 1,000,000 1,000,000 1,000,000
a2 1,001 0 0 0

Another example

we chose a1

Regret Table:

z1 z2 z3 z4 Max

a1 1 0 0 0 1
a2 0 1,000,000 1,000,000 1,000,000 1,000,000



Savage-Niehans - Rule III

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 392

z1 z2 z3 z4

a1 1,000 1,000,000 1,000,000 1,000,000
a2 1,001 0 0 0
a3 2,000,000 -1,000,000 -1,000,000 -1,000,000

Same example, but we add alternative a3

Now we chose a2

Regret Table:

z1 z2 z3 z4 Max

a1 1,999,000 0 0 0 1,999,000
a2 1,998,999 1,000,000 1,000,000 1,000,000 1,998,999
a2 0 2,000,000 2,000,000 2,000,000 2,000,000
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What this means in real life:

◦ Student think about swimming a1 and running a2

◦ The fun factor is depending on the weather z1 . . . z4

◦ Student decides to go swimming

◦ He talk to a friend and presents his plans for the evening

◦ The friend mentioned to go for a BBQ a3

◦ With the option for BBQ the student decides to go running
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z1 z2 z3 z4 Mean

a1 60 30 50 60 50
a2 10 10 10 140 42.5
a3 -30 100 120 130 80

Chose the one with the highest mean value

Contra:
◦ Not every condition has the same probability
◦ Duplication of one condition could change the result

Most people would also chose a3 in this example
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The following axioms should be fulfilled by the rules

Addition to a column
The decision should not be changed, if a fixed value is added to a column

Additional rows
The preference relation between two alternatives should not be changed, if a new
row is added

Domination
If a1 dominates a2, a2 could not be optimal

Join of equal columns
The preference relation between to alternatives should not change, if two columns
with the same outcomes are joined to a common column
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Rule Example Addition Additional Domination Join of
Result to a row Rows equal Rows

Maximin a1
√ √

Maximax a2
√ √

Hurwicz a2
√ √

Savage-Niehans a1
√ √ √

Laplace a3
√ √ √

No Rule fulfills all axioms ⇒ no perfect rule

Common usage: Remove duplicate Columns and use Laplace

Better: Define subjective probabilities and use them
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Decision Graphs / Influence Diagrams
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A preference ordering � is a ranking of all possible states of affairs (worlds) S
◦ these could be outcomes of actions, truth assignments, states in a search prob-
lem, etc.

◦ s � t: means that state s is at least as good as t

◦ s ≻ t: means that state s is strictly preferred to t

We insist that � is
◦ reflexive: i.e., s � s for all states s

◦ transitive: i.e., if s � t and t � w, then s � w

◦ connected: for all states s,t, either s � t or t � s
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Structure of preference ordering imposes certain “rationality requirements” (it is
a weak ordering)

E.g., why transitivity?
◦ Suppose you (strictly) prefer coffee to tea, tea to OJ, OJ to coffee

◦ If you prefer X to Y, you will trade me Y plus $1 for X

◦ I can construct a “money pump” and extract arbitrary amounts of money from
you
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Rather than just ranking outcomes, we must quantify our degree of preference
◦ e.g., how much more important is chc than ∼mess

A utility function U : S → R associates a realvalued utility with each outcome.
◦ U (s) measures your degree of preference for s

Note: U induces a preference ordering �U over S defined as: s �U t iff U (s) ≥
U (t)
◦ obviously �U will be reflexive, transitive, connected
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Under conditions of uncertainty, each decision d induces a distribution Prd over
possible outcomes
◦ Prd(s) is probability of outcome s under decision d

The expected utility of decision d is defined

The principle of maximum expected utility (MEU) states that the optimal de-
cision under conditions of uncertainty is that with the greatest expected utility.

EU (d) =
∑

s∈S
Prd(s)U (s)
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A decision problem under uncertainty is:
◦ a set of decisions D

◦ a set of outcomes or states S

◦ an outcome function Pr : D → ∆(S)
∗ ∆(S) is the set of distributions over S (e.g., Prd)

◦ a utility function U over S

A solution to a decision problem under uncertainty is any d∗ ∈ D such that
EU (d∗) � EU (d) for all d ∈ D

Again, for single-shot problems, this is trivial
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Note that this viewpoint accounts for both:
◦ uncertainty in action outcomes

◦ uncertainty in state of knowledge

◦ any combination of the two

Stochastic actions Uncertain knowledge
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Why MEU? Where do utilities come from?
◦ underlying foundations of utility theory tightly couple utility with action/choice

◦ a utility function can be determined by asking someone about their preferences
for actions in specific scenarios (or “lotteries” over outcomes)

Utility functions needn’t be unique
◦ if I multiply U by a positive constant, all decisions have same relative utility

◦ if I add a constant to U, same thing

◦ U is unique up to positive affine transformation
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Outcome space is large
◦ like all of our problems, states spaces can be huge

◦ don’t want to spell out distributions like Prd explicitly

◦ Solution: Bayes nets (or related: influence diagrams)

Decision space is large
◦ usually our decisions are not one-shot actions

◦ rather they involve sequential choices (like plans)

◦ if we treat each plan as a distinct decision, decision space is too large to handle
directly

◦ Soln: use dynamic programming methods to construct optimal plans (actually
generalizations of plans, called policies. . . like in game trees)
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Decision networks (more commonly known as influence diagrams) provide a
way of representing sequential decision problems
◦ basic idea: represent the variables in the problem as you would in a BN

◦ add decision variables – variables that you “control”

◦ add utility variables – how good different states are
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Chance nodes
◦ random variables, denoted by circles

◦ as in a BN, probabilistic dependence on parents



Decision Networks: Decision Nodes

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 409

Decision nodes
◦ variables decision maker sets, denoted by squares

◦ parents reflect information available at time decision is to be made

In example decision node: the actual values of Ch and Fev will be observed before
the decision to take test must be made
◦ agent can make different decisions for each instantiation of parents (i.e., poli-
cies)
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Value node
◦ specifies utility of a state, denoted by a diamond

◦ utility depends only on state of parents of value node

◦ generally: only one value node in a decision network

Utility depends only on disease and drug
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Decision nodes are totally ordered
◦ decision variables D1, D2, . . . , Dn

◦ decisions are made in sequence

◦ e.g., BloodTst (yes,no) decided before Drug (fd,md,no)

No-forgetting property
◦ any information available when decision Di is made is available when decision
Dj is made (for i < j)

◦ thus all parents of Di are parents of Dj
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Let Par(Di) be the parents of decision node Di
◦ Dom(Par(Di)) is the set of assignments to parents

A policy δ is a set of mappings δi, one for each decision node Di
◦ δi : Dom(Par(Di))→ (Di)

◦ δi associates a decision with each parent assignment for Di

For example, a policy for BT might be:

δBT (c, f) = bt

δBT (c,∼ f) =∼ bt

δBT (∼ c, f) = bt

δBT (∼ c,∼ f) =∼ bt
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Value of a policy δ is the expected utility given that decision nodes are executed
according to δ

Given associates x to the set X of all chance variables, let δ(x) denote the
assignment to decision variables dictated by δ
◦ e.g., assigned to D1 determined by it’s parents’ assignment in x

◦ e.g., assigned to D2 determined by it’s parents’ assignment in x along with
whatever was assigned to D1

◦ etc.

Value of δ:

EU (δ) =
∑

X

P (X, δ(X)U (X, δ(X))
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An optimal policy is a policy δ∗ such that EU (δ∗) ≥ EU (δ) for all policies δ

We can use the dynamic programming principle yet again to avoid enumerating
all policies

We can also use the structure of the decision network to use variable elimination
to aid in the computation
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We can work backwards as follows

First compute optimal policy for Drug (last dec’n)
◦ for each assignment to parents (C,F,BT,TR) and for each decision value (D =
md,fd,none), compute the expected value of choosing that value of D

◦ set policy choice for each value of parents to be the value of D that has max
value

◦ eg: δD(c, f, bt, pos) = md
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Next compute policy for BT given policy δD(C,F,BT, TR) just determined for
Drug
◦ since δD(C,F,BT, TR) is fixed, we can treat Drug as a normal random vari-
able with deterministic probabilities

◦ i.e., for any instantiation of parents, value of Drug is fixed by policy δD

◦ this means we can solve for optimal policy for BT just as before

◦ only uninstantiated vars are random vars (once we fix its parents)
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How do we compute these expected values?
◦ suppose we have assigned < c, f, bt, pos > to parents of Drug

◦ we want to compute EU of deciding to set Drug = md

◦ we can run variable elimination!

Treat C,F,BT, TR,Dr as evidence
◦ this reduces factors (e.g., U restricted to bt,md: depends on Dis)

◦ eliminate remaining variables (e.g., only Disease left)

◦ left with factor: U () =
∑
DisP (Dis|c, f, bt, pos,md)U (Dis)

We now know EU of doing Dr = md when c, f, bt, pos true

Can do same for fd, no to decide which is best
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The preceding illustrates a general phenomenon
◦ computing expected utilities with BNs is quite easy

◦ utility nodes are just factors that can be dealt with using variable elimination

EU =
∑

A,B,C

P (A,B,C)U (B,C)

=
∑

A,B,C

P (C|B)P (B|A)P (A)U (B,C)

Just eliminate variables in the usual way
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If a decision node D has no decisions that follow it, we can find its policy by
instantiating each of its parents and computing the expected utility of each decision
for each parent instantiation
◦ no-forgetting means that all other decisions are instantiated (they must be
parents)

◦ its easy to compute the expected utility using VE

◦ the number of computations is quite large: we run expected utility calculations
(VE) for each parent instantiation together with each possible decision D might
allow

◦ policy: choose max decision for each parent instant’n
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When a decision D node is optimized, it can be treated as a random variable
◦ for each instantiation of its parents we now know what value the decision
should take

◦ just treat policy as a new CPT: for a given parent instantiation x, D gets δ(x)
with probability 1 (all other decisions get probability zero)

If we optimize from last decision to first, at each point we can optimize a specific
decision by (a bunch of) simple VE calculations
◦ it’s successor decisions (optimized) are just normal nodes in the BNs (with
CPTs)
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Decision networks commonly used by decision analysts to help structure decision
problems

Much work put into computationally effective techniques to solve these
◦ common trick: replace the decision nodes with random variables at outset and
solve a plain Bayes net (a subtle but useful transformation)

Complexity much greater than BN inference
◦ we need to solve a number of BN inference problems

◦ one BN problem for each setting of decision node parents and decision node
value
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In example on previous slide:
◦ we assume the state (of the variables at any stage) is fully observable
∗ hence all time t vars point to time t decision

◦ this means the state at time t d-separates the decision at time t-1 from the
decision at time t-2

◦ so we ignore “no-forgetting” arcs between decisions
∗ once you know the state at time t, what you did at time t-1 to get there is
irrelevant to the decision at time t-1

If the state were not fully observable, we could not ignore the “no-forgetting” arcs
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Setting: you want to buy a used car, but there’s a good chance it is a “lemon” (i.e.,
prone to breakdown). Before deciding to buy it, you can take it to a mechanic
for inspection. S/he will give you a report on the car, labelling it either “good”
or “bad”. A good report is positively correlated with the car being sound, while
a bad report is positively correlated with the car being a lemon.

The report costs $50 however. So you could risk it, and buy the car without the
report.

Owning a sound car is better than having no car, which is better than owning a
lemon.
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EU (B|I,R) = ∑
LP (L|I, R, B)U (L,B)

I = i, R = g:

EU (buy) = P (l|i, g)U (l, buy) + P (∼ l|i, g)U (∼ l, buy)− 50

= .18 · −600 + .82 · 1000− 50 = 662

EU (∼ buy) = P (l|i, g)U (l,∼ buy) + P (∼ l|i, g)U (∼ l,∼ buy)− 50

= −300− 50 = −350(−300 indep. of lemon)
So optimal δBuy(i, g) = buy
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I = i, R = b:

EU (buy) = P (l|i, b)U (l, buy) + P (∼ l|i, b)U (∼ l, buy)− 50

= .89 · −600 + .11 · 1000− 50 = −474
EU (∼ buy) = P (l|i, b)U (l,∼ buy) + P (∼ l|i, b)U (∼ l,∼ buy)− 50

= −300− 50 = −350(−300 indep. of lemon)
So optimal δBuy(i, b) =∼ buy
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I =∼ i, R = g (note: no inspection cost subtracted):

EU (buy) = P (l| ∼ i, g)U (l, buy) + P (∼ l| ∼ i, g)U (∼ l, buy)

= .5 · −600 + .5 · 1000 = 200

EU (∼ buy) = P (l| ∼ i, g)U (l,∼ buy) + P (∼ l| ∼ i, g)U (∼ l,∼ buy)− 50

= −300− 50 = −350(−300 indep. of lemon)
So optimal δBuy(∼ i, g) =∼ buy

So optimal policy for Buy is:
◦ δBuy(i, g) = buy; δBuy(i, b) =∼ buy; δBuy(∼ i, n) = buy

Note: we don’t bother computing policy for (i,∼ n), (∼ i, g), or (∼ i, b), since
these occur with probability 0
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EU (I) =
∑
L,R P (L,R|I)U (L, δBuy(I, R)),

where P (R,L|I) = P (R|L, I)P (L|I)

EU (i) = .1 · −600 + .4 · −300 + .45 · 1000 + .05 · −300− 50

= 237.5− 50 = 187.5

EU (∼ i) = P (l| ∼ i, n)U (l, buy) + P (∼ l| ∼ i, n)U (∼ l, buy)

= .5 · −600 + .5 · 1000 = 200
So optimal δInspect(∼ i) = buy

P (R,L|I) δBuy U (L, δBuy)

g, l 0.1 buy −600− 50 = −650
g,∼ l 0.45 buy 1000− 50 = 950
b, l 0.4 ∼ buy −300− 50 = −350
b,∼ l 0.05 ∼ buy −300− 50 = −350
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So optimal policy is: don’t inspect, buy the car
◦ EU = 200

◦ Notice that the EU of inspecting the car, then buying it iff you get a good
report, is 237.5 less the cost of the inspection (50). So inspection not worth
the improvement in EU.

◦ But suppose inspection cost $25: then it would be worth it (EU = 237.5−25 =
212.5 > EU (∼ i))

◦ The expected value of information associated with inspection is 37.5 (it im-
proves expected utility by this amount ignoring cost of inspection). How?
Gives opportunity to change decision (∼ buy if bad).

◦ You should be willing to pay up to $37.5 for the report

Slide of this section were taken from CSC 384 Lecture Slides c©2002-2003, C. Boutilier and P. Poupart
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Nonstandard Frameworks

of Imprecision and Uncertainty

Content:

Random Sets

Imprecise Probabilities

Possibility Theory

Belief Functions
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Representation of Ignorance (dt. Unwissen)

We are given a die with faces 1, . . . , 6
What is the certainty of showing up face i ?

◦ Conduct a statistical survey (roll the die 10000 times) and estimate the relative
frequency: P ({i}) = 1

6

◦ Use subjective probabilities (which is often the normal case): We do not know
anything (especially and explicitly we do not have any reason to assign unequal
probabilities), so the most plausible distribution is a uniform one.

Problem: Uniform distribution because of ignorance or extensive statistical
tests

Experts analyze aircraft shapes: 3 aircraft types A,B,C
“It is type A or B with 90% certainty. About C, I don’t have any clue and I do
not want to commit myself. No preferences for A or B.”

Problem: Propositions hard to handle with Bayesian theory
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“A ⊆ X being an imprecise date” means: the true value x0 lies in A but there are no
preferences on A.

Ω set of possible elementary events

Θ = {ξ} set of observers

λ(ξ) importance of observer ξ

Some elementary event from Ω occurs and every observer ξ ∈ O shall announce which
elementary events she personally considers possible. This set is denoted by Γ(ξ) ⊆ Ω.
Γ(ξ) is then an imprecise date.

λ : 2Θ → [0, 1] probability measure

(interpreted as importance measure)

(Θ, 2Θ, λ) probability space

Γ : Θ→ 2Ω set-valued mapping
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Let A ⊆ Ω:

a) Γ∗(A) Def= {ξ ∈ Θ | Γ(ξ) ∩ A 6= ∅}
b) Γ∗(A)

Def
= {ξ ∈ Θ | Γ(ξ) 6= ∅ and Γ(ξ) ⊆ A}

Remarks:

a) If ξ ∈ Γ∗(A), then it is plausible for ξ that the occurred elementary
event lies in A.

b) If ξ ∈ Γ∗(A), then it is certain for ξ that the event lies in A.

c) {ξ | Γ(ξ) 6= ∅} = Γ∗(Ω) = Γ∗(Ω)

Let λ(Γ∗(Ω)) > 0. Then we call

P ∗(A) =
λ(Γ∗(A))
λ(Γ∗(Ω))

the upper, and P∗(A) =
λ(Γ∗(A))
λ(Γ∗(Ω))

the lower

probability w. r. t. λ and Γ.
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Θ = {a, b, c, d} λ : a 7→ 1/6 Γ: a 7→ {1}
Ω = {1, 2, 3} b 7→ 1/6 b 7→ {2}

Γ∗(Ω) = {a, b, d} c 7→ 2/6 c 7→ ∅
λ(Γ∗(Ω)) = 4/6 d 7→ 2/6 d 7→ {2, 3}

A Γ∗(A) Γ∗(A) P ∗(A) P∗(A)
∅ ∅ ∅ 0 0

{1} {a} {a} 1
4

1
4

{2} {b, d} {b} 3
4

1
4

{3} {d} ∅ 1
2 0

{1, 2} {a, b, d} {a, b} 1 1
2

{1, 3} {a, d} {a} 3
4

1
4

{2, 3} {b, d} {b, d} 3
4

3
4

{1, 2, 3} {a, b, d} {a, b, d} 1 1

One can consider P ∗(A) and P∗(A) as upper and lower probability bounds.
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Some properties of probability bounds:

a) P ∗ : 2Ω→ [0, 1]

b) 0 ≤ P∗ ≤ P ∗ ≤ 1, P∗(∅) = P ∗(∅) = 0, P∗(Ω) = P ∗(Ω) = 1

c) A ⊆ B ⇒ P ∗(A) ≤ P ∗(B) and P∗(A) ≤ P∗(B)

d) A ∩ B = ∅ 6⇒ P ∗(A) + P ∗(B) = P ∗(A ∪B)

e) P∗(A ∪B) ≥ P∗(A) + P∗(B)− P∗(A ∩B)

f) P ∗(A ∪B) ≤ P ∗(A) + P ∗(B)− P ∗(A ∩B)

g) P∗(A) = 1− P ∗(Ω\A)
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One can prove the following generalized equation:

P∗(
n⋃

i=1

Ai) ≥
∑

∅6=I :I⊆{1,...,n}
(−1)|I|+1 · P∗(

⋂

i∈I
Ai)

These set functions also play an important role in theoretical physics (capacities, Cho-
quet, 1955). Shafer did generalize these thoughts and developed a theory of belief
functions.
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How is new knowledge incoporated?

Every observer announces the location of the ship in form of a subset of all possible ship
locations. Given these set-valued mappings, we can derive upper and lower probabilities
with the help of the observer importance measure. Let us assume the ship is certainly
at sea.

How do the upper/lower probabilities change?
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a) Geometric Conditioning
(observers that give partial or full wrong information are discarded)

P∗(A | B) =
λ({ξ ∈ Θ | Γ(ξ) ⊆ A and Γ(ξ) ⊆ B})

λ({ξ ∈ Θ | Γ(ξ) ⊆ B}) =
P∗(A ∩B)

P∗(B)

P ∗(A | B) =
λ({ξ ∈ Θ | Γ(ξ) ⊆ B and Γ(ξ) ∩ A 6= ∅})

λ({ξ ∈ Θ | Γ(ξ) ⊆ B}) =
P ∗(A ∪B)− P ∗(B)

1− P ∗(B)

Θ
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b) Data Revision
(the observed data is modified such that they fit the certain information)

(P∗)B(A) =
P∗(A ∪B)− P∗(B)

1− P∗(B)

(P ∗)B(A) =
P ∗(A ∩B)

P ∗(B)

These two concepts have different semantics. There are several more belief revision
concepts.
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Let (Ω, 2Ω) be a space of events. Further be (O1, 2
O1, λ1) and (O2, 2

O2, λ2) spaces of
independent observers.

We call (O1 ×O2, λ1 · λ2) the product space of observers and

Γ : O1 ×O2→ 2Ω,Γ(x1, x2) = Γ1(x1) ∩ Γ2(x2)

the combined observer function.

We obtain with

(PL)∗(A) =
(λ1 · λ2)({(x1, x2) | Γ(x1, x2) 6= ∅ ∧ Γ(x1, x2) ⊑ A})

(λ1 · λ2)({(x1, x2 | Γ(x1, x2) 6= ∅)})
the lower probability of A that respects both observations.
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Ω = {1, 2, 3} λ1 : {a} 7→ 1/3 λ2 : {c} 7→ 1/2

{b} 7→ 2/3 λ2 : {d} 7→ 1/2

O1 = {a, b} Γ1 : a 7→ {1, 2} Γ2 : c 7→ {1}
O2 = {c, d} b 7→ {2, 3} d 7→ {2, 3}

Combination:

O1 ×O2 = {ac, bc, ad, bd}

λ : {ac} 7→ 1/6 Γ: ac 7→ {1} Γ∗(Ω) = {(x1, x2) | Γ(x1, x2) 6= ∅}
{ad} 7→ 1/6 ad 7→ {2} = {ac, ad, bd}
{bc} 7→ 2/6 bc 7→ ∅
{bd} 7→ 2/6 bd 7→ {2, 3} λ(Γ∗(Ω)) = 4/6
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A (P∗)Γ1(A) (P∗)Γ2(A) (P∗)Γ(A)
∅ 0 0 0

{1} 0 1/2
1/4

{2} 0 0 1/4
{3} 0 0 0

{1, 2} 1/3
1/2

1/2
{1, 3} 0 1/2

1/4
{2, 3} 2/3

1/2
3/4

{1, 2, 3} 1 1 1
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Let x0 be the true value but assume there is no information about P (A) to decide
whether x0 ∈ A. There are only probability boundaries.

Let L be a set of probability measures. Then we call

(PL)∗ : 2Ω→ [0, 1] , A 7→ inf{P (A) | P ∈ L} the lower and

(PL)∗ : 2Ω→ [0, 1] , A 7→ sup{P (A) | P ∈ L} the upper

probability of A w. r. t. L.

a) (PL)∗(∅) = (PL)∗(∅) = 0; (PL)∗(Ω) = (PL)∗(Ω) = 1

b) 0 ≤ (PL)∗(A) ≤ (PL)∗(A) ≤ 1

c) (PL)∗(A) = 1− (PL)∗(A)

d) (PL)∗(A) + (PL)∗(B) ≤ (PL)∗(A ∪B)

e) (PL)∗(A ∩B) + (PL)∗(A ∪B) 6≥ (PL)∗(A) + (PL)∗(B)
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Let B ⊆ Ω and L a class of probabilities. The we call

A ⊆ Ω : (PL)∗(A | B) = inf{P (A | B) | P ∈ L ∧ P (B) > 0} the lower and

A ⊆ Ω : (PL)∗(A | B) = sup{P (A | B) | P ∈ L ∧ P (B) > 0} the upper

conditional probability of A given B.

A class L of probability measures on Ω = {ω1, . . . , ωn} is of type 1, iff there exist
functions R1 and R2 from 2Ω into [0, 1] with:

L = {P | ∀A ⊆ Ω : R1(A) ≤ P (A) ≤ R2(A)}
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Intuition: P is determined by P ({ωi}), i = 1, . . . , n which corresponds to a point in
R
n with coordinates

(
P ({ω1}), . . . , P ({ωn})

)
.

If L is type 1, it holds true that:

L ⇔
{
(r1, . . . , rn) ∈ R

n | ∃P : ∀A ⊆ Ω:

(PL)∗(A) ≤ P (A) ≤ (PL)∗(A)
and ri = P ({ωi}), i = 1, . . . , n

}
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Ω = {ω1, ω2, ω3}
L = {P | 12 ≤ P ({ω1, ω2}) ≤ 1, 1

2 ≤ P ({ω2, ω3}) ≤ 1, 1
2 ≤ P ({ω1, ω3}) ≤ 1}

general restriction:

0 ≤ P ({ωi}) ≤ 1

P ({ω1}) + P ({ω2}) + P ({ω3}) = 1

{P | 12 ≤ P ({ω1, ω2}) ≤ 1}

Let A1 = {ω1, ω2}, A2 = {ω2, ω3}, A3 = {ω1, ω3}
P∗(A1)+P∗(A2)+P∗(A3)−P∗(A1∩A2)−P∗(A2∩A3)−P∗(A1∩A3)+P∗(A1∩A2∩A3)

=
1

2
+
1

2
+

1

2
− 0− 0− 0 + 0 =

3

2
> 1 = P (A1 ∪ A2 ∪ A3)
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If L is type 1 and (PL)∗(A ∪B) ≥ (PL)∗(A) + (PL)∗(B)− (PL)∗(A ∩B), then

(PL)∗(A | B) =
(PL)∗(A ∩B)

(PL)∗(A ∩B) + (PL)∗(B ∩ A)
and

(PL)∗(A | B) =
(PL)∗(A ∩B)

(PL)∗(A ∩B) + (PL)∗(B ∩ A)

Let L be a class of type 1. L is of type 2, iff

(PL)∗(A1 ∪ · · · ∪ An) ≥
∑

I :∅6=I⊆{1,...,n}
(−1)|I|+1 · (PL)∗(

⋂

i∈I
Ai)
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The best-known calculus for handling uncertainty is, of course,
probability theory. [Laplace 1812]

An less well-known, but noteworthy alternative is
possibility theory. [Dubois and Prade 1988]

In the interpretation we consider here, possibility theory can handle uncertain
and imprecise information, while probability theory, at least in its basic
form, was only designed to handle uncertain information.

Types of imperfect information:

◦ Imprecision: disjunctive or set-valued information about the obtaining
state, which is certain: the true state is contained in the disjunction or set.

◦ Uncertainty: precise information about the obtaining state (single case),
which is not certain: the true state may differ from the stated one.

◦ Vagueness: meaning of the information is in doubt: the interpretation of
the given statements about the obtaining state may depend on the user.
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Definition: Let Ω be a (finite) sample space.
A possibility measure Π on Ω is a function Π : 2Ω→ [0, 1] satisfying

1. Π(∅) = 0 and

2. ∀E1, E2 ⊆ Ω : Π(E1 ∪ E2) = max{Π(E1),Π(E2)}.

Similar to Kolmogorov’s axioms of probability theory.

From the axioms follows Π(E1 ∩ E2) ≤ min{Π(E1),Π(E2)}.
Attributes are introduced as random variables (as in probability theory).

Π(A = a) is an abbreviation of Π({ω ∈ Ω | A(ω) = a})
If an event E is possible without restriction, then Π(E) = 1.
If an event E is impossible, then Π(E) = 0.
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Interpretation of Degrees of Possibility [Gebhardt and Kruse 1993]

Let Ω be the (nonempty) set of all possible states of the world,
ω0 the actual (but unknown) state.

Let C = {c1, . . . , cn} be a set of contexts (observers, frame conditions etc.)
and (C, 2C , P ) a finite probability space (context weights).

Let Γ : C → 2Ω be a set-valued mapping, which assigns to each context
the most specific correct set-valued specification of ω0.
The sets Γ(c) are called the focal sets of Γ.

Γ is a random set (i.e., a set-valued random variable) [Nguyen 1978].
The basic possibility assignment induced by Γ is the mapping

π : Ω → [0, 1]

π(ω) 7→ P ({c ∈ C | ω ∈ Γ(c)}).
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shaker 1 shaker 2 shaker 3 shaker 4 shaker 5

tetrahedron hexahedron octahedron icosahedron dodecahedron

1 – 4 1 – 6 1 – 8 1 – 10 1 – 12

numbers degree of possibility

1 – 4 1
5 +

1
5 +

1
5 +

1
5 +

1
5 = 1

5 – 6 1
5 +

1
5 +

1
5 +

1
5 = 4

5

7 – 8 1
5 +

1
5 +

1
5 = 3

5

9 – 10 1
5 +

1
5 = 2

5

11 – 12 1
5 = 1

5
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Definition: Let Γ : C → 2Ω be a random set.
The possibility measure induced by Γ is the mapping

Π : 2Ω → [0, 1],

E 7→ P ({c ∈ C | E ∩ Γ(c) 6= ∅}).

Problem: From the given interpretation it follows only:

∀E ⊆ Ω : max
ω∈E

π(ω) ≤ Π(E) ≤ min



1,

∑

ω∈E
π(ω)



.

1 2 3 4 5

c1 :
1
2 •

c2 :
1
4 • • •

c3 :
1
4 • • • • •

π 0 1
2 1 1

2
1
4

1 2 3 4 5

c1 :
1
2 •

c2 :
1
4 • •

c3 :
1
4 • •

π 1
4

1
4

1
2

1
4

1
4
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Attempts to solve the indicated problem:

Require the focal sets to be consonant:
Definition: Let Γ : C → 2Ω be a random set with C = {c1, . . . , cn}. The
focal sets Γ(ci), 1 ≤ i ≤ n, are called consonant, iff there exists a sequence
ci1, ci2, . . . , cin, 1 ≤ i1, . . . , in ≤ n, ∀1 ≤ j < k ≤ n : ij 6= ik, so that

Γ(ci1) ⊆ Γ(ci2) ⊆ . . . ⊆ Γ(cin).

→ mass assignment theory [Baldwin et al. 1995]

Problem: The “voting model” is not sufficient to justify consonance.

Use the lower bound as the “most pessimistic” choice. [Gebhardt 1997]

Problem: Basic possibility assignments represent negative information,
the lower bound is actually the most optimistic choice.

Justify the lower bound from decision making purposes.
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Assume that in the end we have to decide on a single event.

Each event is described by the values of a set of attributes.

Then it can be useful to assign to a set of events the degree of possibility
of the “most possible” event in the set.

Example:

∑

max

0

18

18

0

18

0

0

0

18

0

0

0

0

0

0

28

36

18

18

18

18

18

28

28

36

18

18

18

18

18

28

28

max

0

40

0

0

20

0

0 40 0

40

20

40

40

20

40
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Definition: Let X = {A1, . . . , An} be a set of attributes defined on a (finite) sample
space Ω with respective domains dom(Ai), i = 1, . . . , n. A possibility distribu-
tion πX overX is the restriction of a possibility measure Π on Ω to the set of all events
that can be defined by stating values for all attributes in X . That is, πX = Π|EX ,
where

EX =



E ∈ 2Ω

∣∣∣∣∣∣
∃a1 ∈ dom(A1) : . . .∃an ∈ dom(An) :

E =̂
∧

Aj∈X
Aj = aj





=



E ∈ 2Ω

∣∣∣∣∣∣
∃a1 ∈ dom(A1) : . . .∃an ∈ dom(An) :

E =



ω ∈ Ω

∣∣∣∣∣∣

∧

Aj∈X
Aj(ω) = aj







.

Corresponds to the notion of a probability distribution.

Advantage of this formalization: No index transformation functions are needed
for projections, there are just fewer terms in the conjunctions.
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all numbers in
parts per 1000

small

medium

large s m l

small
medium

large

40 70 10 70
20 10 20 20
30 30 20 10

40 80 10 70
30 10 70 60
60 60 20 10

20 20 10 20
30 10 40 40
80 90 20 10

40 80 10 70
30 10 70 60
80 90 20 10

40 70 20 70
60 80 70 70
80 90 40 40

20 80 70
40 70 20
90 60 30

80 90 70 70

80
70
90

90

80

70

The numbers state the degrees of possibility of the corresp. value combination.
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all numbers in
parts per 1000

small

medium

large s m l

small
medium

large

0 0 0 70
0 0 0 20
0 0 0 10

0 0 0 70
0 0 0 60
0 0 0 10

0 0 0 20
0 0 0 40
0 0 0 10

0 0 0 70
0 0 0 60
0 0 0 10

0 0 0 70
0 0 0 70
0 0 0 40

20 70 70
40 60 20
10 10 10

0 0 0 70

70
60
10

40

70

70

Using the information that the given object is green.
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As for relational and probabilistic networks, the three-dimensional possibility
distribution can be decomposed into projections to subspaces, namely:

– the maximum projection to the subspace color × shape and

– the maximum projection to the subspace shape × size.

It can be reconstructed using the following formula:

∀i, j, k : π
(
a
(color)
i , a

(shape)
j , a

(size)
k

)

= min
{
π
(
a
(color)
i , a

(shape)
j

)
, π
(
a
(shape)
j , a

(size)
k

)}

= min



max

k
π
(
a
(color)
i , a

(shape)
j , a

(size)
k

)
,

max
i
π
(
a
(color)
i , a

(shape)
j , a

(size)
k

)


Note the analogy to the probabilistic reconstruction formulas.
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Again the same result can be obtained using only projections to subspaces
(maximal degrees of possibility):

s

s

m

m

l

l

color
new

old

shape

new old

size
old

new

(

old
new

(

old
new

min
new

max
line

min
new

max
column

0 0 0 70

80 90 70 70

(

40
0

(

80
0

(

10
0

(

70
70

(

30
0

(

10
0

(

70
0

(

60
60

(

80
0

(

90
0

(

20
0

(

10
10

70 80

60 70

10 90

(

20
20

(

80
70

(

70
70

(

40
40

(

70
60

(

20
20

(

90
10

(

60
10

(

30
10

90 80 70

40 70 70

This justifies a graph representation:
✛
✚

✘
✙color

✛
✚

✘
✙shape

✛
✚

✘
✙size
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Definition: Let Ω be a (finite) sample space, Π a possibility measure on Ω, and
E1, E2 ⊆ Ω events. Then

Π(E1 | E2) = Π(E1 ∩ E2)

is called the conditional possibility of E1 given E2.

Definition: Let Ω be a (finite) sample space, Π a possibility measure on Ω, and
A, B, and C attributes with respective domains dom(A), dom(B), and dom(C).
A and B are called conditionally possibilistically independent given C,
written A⊥⊥ΠB | C, iff
∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :

Π(A = a,B = b | C = c) = min{Π(A = a | C = c),Π(B = b | C = c)}.

Similar to the corresponding notions of probability theory.
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π(B = b | A = aobs)

= π


 ∨

a∈dom(A)

A = a,B = b,
∨

c∈dom(C)

C = c

∣∣∣∣∣∣
A = aobs




A: color
B: shape
C: size

(1)
= max

a∈dom(A)
{ max
c∈dom(C)

{π(A = a,B = b, C = c | A = aobs)}}
(2)
= max

a∈dom(A)
{ max
c∈dom(C)

{min{π(A = a,B = b, C = c), π(A = a | A = aobs)}}}
(3)
= max

a∈dom(A)
{ max
c∈dom(C)

{min{π(A = a,B = b), π(B = b, C = c),

π(A = a | A = aobs)}}}

= max
a∈dom(A)

{min{π(A = a,B = b), π(A = a | A = aobs),

max
c∈dom(C)

{π(B = b, C = c)}
︸ ︷︷ ︸

=π(B=b)≥π(A=a,B=b)

}}

= max
a∈dom(A)

{min{π(A = a,B = b), π(A = a | A = aobs)}}
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Motivation

(Θ, Q) Sensors

Ω possible results, Γ : Θ→ 2Ω

Γ, Q induce a probability m on 2Ω

m : A 7→ Q({θ ∈ Θ | Γ(θ) = A}) mass distribution

Bel : A 7→ ∑
B:B⊆Am(B) Belief (lower probability)

Pl : A 7→ ∑
B:B∩A6=∅m(B) Plausibility (upper probability)

Random sets: Dempster (1968)

Belief functions: Shafer (1974)
Development of a completely new uncertainty calculus as an alternative to Prob-
ability Theory
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The function Bel : 2Ω → [0, 1] is called belief function, if it possesses the following
properties:

Bel(∅) = 0

Bel(Ω) = 1

∀n ∈ N : ∀A1, . . . , An ∈ 2Ω :
Bel(A1 ∪ · · · ∪ An) ≥

∑
∅6=I⊆{1,...,n}(−1)|I|+1 · Bel(

⋂
i∈I Ai)

If Bel is a belief function then for m : 2Ω → R with m(A) =
∑
B:B⊆A(−1)|A\B| ·

Bel(B) the following properties hold:

0 ≤ m(A) ≤ 1

m(∅) = 0
∑
A⊆Ωm(A) = 1
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Let |Ω| <∞ and f, g : 2Ω → [0, 1].

∀A ⊆ Ω: (f(A) =
∑

B:B⊆A
g(B))

⇔
∀A ⊆ Ω: (g(A) =

∑

B:B⊆A
(−1)|A\B| · f(B))

(g is called the Möbius transformed of f)

The mapping m : 2Ω→ [0, 1] is called a mass distribution, if the following properties
hold:

m(∅) = 0
∑
A⊆Ωm(A) = 1
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A ∅ {1} {2} {3} {1, 2} {2, 3} {1, 3} {1, 2, 3}
m(A) 0 1/4

1/4 0 0 0 2/4 0

Bel(A) 0 1/4
1/4 0 2/4

1/4
3/4 1

Belief =̂ lower probability with modified semantic

Bel({1, 3}) = m(∅) +m({1}) +m({3}) +m({1, 3})
m({1, 3}) = Bel({1, 3})− Bel({1})− Bel({3})

m(A) measure of the trust/belief that exactly A occurs

Belm(A) measure of total belief that A occurs

Plm(A) measure of not being able to disprove A (plausibility)

Plm(A) =
∑

B:A∩B 6=∅
m(B) = 1− Bel(A)

Given one of m,Bel or Pl, the other two can be efficiently computed.
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m(Ω) = 1, m(A) = 0 else total ignorance

m({ω0}) = 1, m(A) = 0 else value (ω0) known

m({ωi}) = pi,
∑n
i=1 pi = 1 Bayesian analysis

Further intermediate steps can be modeled.
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Data Revision:

◦ Mass of A flows onto A ∩B.

◦ Masses are normalized to 1 (∅-mass is destroyed)

Geometric Conditioning:

◦ Masses that do not lie completely inside B, flow off

◦ Normalize

The mass flow can be described by specialization matrices
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Motivation: Combination of m1 and m2

m1(Ai) ·m2(Bj) : Mass attached to Ai ∩Bj ,
if only Ai or Bj are concerned

∑
i,j:Ai∩Bj=Am1(Ai) ·m2(Bj) : Mass attached to A (after combination)

This consideration only leads to a mass distribution,
if
∑
i,j:Ai∩Bj=∅m1(Ai) ·m2(Bj) = 0.

If this sum is > 0 normalization takes place.



Combination Rule

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 469

If m1 and m2 are mass distributions over Ω with belief functions Bel1 and Bel2 and
does further hold

∑
i,j:Ai∩Bj=∅m1(Ai) ·m2(Bj) < 1, then the

function m : 2Ω→ [0, 1] ,m(∅) = 0

m(A) =

∑
B,C:B∩C=Am1(B) ·m2(C)

1−∑B,C:B∩C=∅m1(B) ·m2(C)

is a mass distribution. The belief function of m is denoted as comb(Bel1,Bel2) or
Bel1⊕Bel2. The above formula is called the combination rule.
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m1({1, 2}) = 1/3 m2({1}) = 1/2

m1({2, 3}) = 2/3 m2({2, 3}) = 1/2

m = m1 ⊕m2 :

{1} 7→
1/6
4/6

= 1/4

{2} 7→
1/6
4/6

= 1/4

∅ 7→ 0

{2, 3} 7→
2/6
4/6

= 1/2
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Remarks:

a) The result from the combination rule and the analysis of random sets is identical

b) There are more efficient ways of combination

c) Bel1⊕Bel2 = Bel2⊕Bel1

d) ⊕ is associative

e) Bel1⊕Bel1 6= Bel1 (in general)

f) Bel2 : 2
Ω → [0, 1] ,m2(B) = 1

Bel2(A) =




1 ifB ⊆ A

0 otherwise

The combination of Bel1 and Bel2 yields the data revision of m1 with B.
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The pignistic transformation Bet transforms a normalized mass function m into
a probability measure Pm = Bet(m) as follows:

Pm(A) =
∑

∅6=B⊆Ω
m(B)

|A ∩ B|
|B| , ∀A ⊆ Ω.

It can be shown that
bel (A) ≤ Pm(A) ≤ pl(A)
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There are three possible murders

Let m({John}) = 0.48, m({John,Mary}) = 0.12,
m({Peter , John}) = 0.32, m(Ω) = 0.08

We have:

Pm({John}) = 0.48 +
0.12

2
+
0.32

2
+
0.08

3
≈ 0.73

Pm({Peter}) =
0.32

2
+

0.08

3
≈ 0.19

Pm({Mary}) = 0.12

2
+

0.08

3
≈ 0.09

The picmistic transformation givs a reasonable ”Ranking”
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Otto-von-Guericke-University of Magdeburg
http://www.uni-magdeburg.de/

School of Computer Science
http://www.cs.uni-magdeburg.de/

Computational Intelligence Group
http://fuzzy.cs.uni-magdeburg.de/
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