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Probability Foundations



Reminder: Probability Theory
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Goal: Make statements and/or predictions about
results of physical processes.

Even processes that seem to be simple at first sight
may reveal considerable difficulties when trying to predict.

Describing real-world physical processes always calls
for a simplifying mathematical model.

Although everybody will have some intuitive notion about
probability, we have to formally define the underlying
mathematical structure.

Randomness or chance enters as the incapability of precisely
modelling a process or the inability of measuring the initial conditions.

◦ Example: Predicting the trajectory of a billard ball over more than 9 banks
requires more detailed measurement of the initial conditions (ball location,
applied momentum etc.) than physically possible according to Heisenberg’s
uncertainty principle.



Formal Approach on the Model Side
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We conduct an experiment that has a set Ω of possible outcomes.
E. g.:

◦ Rolling a die (Ω = {1, 2, 3, 4, 5, 6})
◦ Arrivals of phone calls (Ω = N0)

◦ Bread roll weights (Ω = R+)

Such an outcome is called an elementary event.

All possible elementary events are called the frame of discernment Ω
(or sometimes universe of discourse).

The set representation stresses the following facts:

◦ All possible outcomes are covered by the elements of Ω.
(collectively exhaustive).

◦ Every possible outcome is represented by exactly one element of Ω.
(mutual disjoint).



Events
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Often, we are interested in higher-level events
(e. g. casting an odd number, arrival of at least 5 phone calls or
purchasing a bread roll heavier than 80 grams)

Any subset A ⊆ Ω is called an event which occurs, if the outcome ω0 ∈ Ω of
the random experiment lies in A:

Event A ⊆ Ω occurs ⇔
∨

ω∈A
(ω = ω0) = true ⇔ ω0 ∈ A

Since events are sets, we can define for two events A and B:

◦ A ∪B occurs if A or B occurs; A ∩B occurs if A and B occurs.

◦ A occurs if A does not occur (i. e., if Ω\A occurs).

◦ A and B are mutually exclusive, iff A ∩B = ∅.



Event Algebra
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A family of sets E = {E1, . . . , En} is called an event algebra,
if the following conditions hold:

◦ The certain event Ω lies in E .
◦ If E ∈ E , then E = Ω\E ∈ E .
◦ If E1 and E2 lie in E , then E1 ∪ E2 ∈ E and E1 ∩ E2 ∈ E .

If Ω is uncountable, we require the additional property:

For a series of events Ei ∈ E , i ∈ N, the events
∞⋃

i=1

Ei and
∞⋂

i=1

Ei are also in E .
E is then called a σ-algebra.

Side remarks:

Smallest event algebra: E = {∅,Ω}
Largest event algebra (for finite or countable Ω): E = 2Ω = {A ⊆ Ω | true}



Probability Function
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Given an event algebra E , we would like to assign every event E ∈ E its
probability with a probability function P : E → [0, 1].

We require P to satisfy the so-called Kolmogorov Axioms:

◦ ∀E ∈ E : 0 ≤ P (E) ≤ 1

◦ P (Ω) = 1

◦ For pairwise disjoint events E1, E2, . . . ∈ E holds:

P (
∞⋃

i=1

Ei) =
∞∑

i=1

P (Ei)

From these axioms one can conclude the following (incomplete) list of properties:

◦ ∀E ∈ E : P (E) = 1− P (E)

◦ P (∅) = 0

◦ If E1, E2 ∈ E are mutually exclusive, then P (E1 ∪ E2) = P (E1) + P (E2).



Elementary Probabilities and Densities
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Question 1: How to calculate P ?

Question 2: Are there “default” event algebras?

Idea for question 1: We have to find a way of distributing (thus the
notion distribution) the unit mass of probability over all elements ω ∈ Ω.

◦ If Ω is finite or countable a probability mass function p is used:

p : Ω→ [0, 1] and
∑

ω∈Ω
p(ω) = 1

◦ If Ω is uncountable (i. e., continuous) a probability density
function f is used:

f : Ω→ R and
∫

Ω
f(ω) dω = 1



“Default” Event Algebras
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Idea for question 2 (“default” event algebras) we have to distinguish
again between the cardinalities of Ω:

◦ Ω finite or countable: E = 2Ω

◦ Ω uncountable, e. g. Ω = R: E = B(R)

B(R) is the Borel Algebra, i. e., the smallest σ-algebra
that contains all closed intervals [a, b] ⊂ R with a < b.

B(R) also contains all open intervals and single-item sets.

It is sufficient to note here, that all intervals are contained

{[a, b] , ]a, b] , ]a, b[ , [a, b[ ⊂ R | a < b} ⊂ B(R)
because the event of a bread roll having a weight between
80 g and 90 g is represented by the interval [80, 90].



Example: Rolling a Die
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Ω = {1, 2, 3, 4, 5, 6} X = id

p1(ω) =
1
6 F1(x) = P (X ≤ x)

1 2 3 4 5 6

1

6

ω

p1(ω)
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1

0.5

x

F1(x)

∑

ω∈Ω
p1(ω) =

6∑

i=1

p1(ωi)

=
6∑

i=1

1

6
= 1

P (X ≤ x) =
∑

x′≤x
P (X = x′)

P (a < X ≤ b) = F1(b)− F1(a)

P (X = x) = P ({X = x}) = P (X−1(x)) = P ({ω ∈ Ω | X(ω) = x})


