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Decomposition
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Example World Relation

color shape size
small
medium
small
medium
medium
large
medium
medium
medium
large

• 10 simple geometric objects

• 3 attributes
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Relation

color shape size
small
medium
small
medium
medium
large
medium
medium
medium
large

Geometric Representation



Object Representation

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 64

Universe of Discourse: Ω

ω ∈ Ω represents a single abstract object.

A subset E ⊆ Ω is called an event.

For every event we use the function R to determine whether E is possible or not.

R : 2Ω → {0, 1}

We claim the following properties of R:

1. R(∅) = 0

2. ∀E1, E2 ⊆ Ω : R(E1 ∪ E2) = max{R(E1), R(E2)}

For example:

R(E) =




0 if E = ∅
1 otherwise
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Attributes or Properties of these objects are introduced by functions:
(later referred to as random variables)

A : Ω→ dom(A)

where dom(A) is the domain (i. e., set of all possible values) of A.

A set of attibutes U = {A1, . . . , An} is called an attribute schema.

The preimage of an attribute defines an event:

∀a ∈ dom(A) : A−1(a) = {ω ∈ Ω | A(ω) = a} ⊆ Ω

Abbreviation: A−1(a) = {ω ∈ Ω | A(ω) = a} = {A = a}

We will index the function R to stress on which events it is defined.
RAB will be short for R{A,B}.

RAB :
⋃

a∈dom(A)

⋃

b∈dom(B)

{
{A = a,B = b}

}
→ {0, 1}



Formal Representation
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A = color B = shape C = size
a1 = b1 = c1 = small
a1 = b1 = c2 = medium
a2 = b1 = c1 = small
a2 = b1 = c2 = medium
a2 = b3 = c2 = medium
a2 = b3 = c3 = large
a3 = b2 = c2 = medium
a4 = b2 = c2 = medium
a4 = b3 = c2 = medium
a4 = b3 = c3 = large

RABC(A = a,B = b, C = c)

= RABC({A = a,B = b, C = c})
= RABC({ω ∈ Ω | A(ω) = a∧

B(ω) = b∧
C(ω) = c)}

=





0 if there is no tuple (a, b, c)

1 else

R serves as an indicator function.
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Projection / Marginalization

Let RAB be a relation over two attributes A and B. The projection (or marginaliza-
tion) from schema {A,B} to schema {A} is defined as:

∀a ∈ dom(A) : RA(A = a) = max
∀b∈dom(B)

{RAB(A = a,B = b)}

This principle is easily generalized to sets of attributes.
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Cylindrical Extention

Let RA be a relation over an attribute A. The cylindrical extention RAB from {A}
to {A,B} is defined as:

∀a ∈ dom(A) : ∀b ∈ dom(B) : RAB(A = a,B = b) = RA(A = a)

This principle is easily generalized to sets of attributes.
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Intersection

Let R
(1)
AB and R

(2)
AB be two relations with attribute schema {A,B}. The intersection

RAB of both is defined in the natural way:

∀a ∈ dom(A) : ∀b ∈ dom(B) :

RAB(A = a,B = b) = min{R(1)
AB(A = a,B = b), R

(2)
AB(A = a,B = b)}

This principle is easily generalized to sets of attributes.



Object Representation

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 70

Conditional Relation

Let RAB be a relation over the attribute schema {A,B}. The conditional relation of
A given B is defined as follows:

∀a ∈ dom(A) : ∀b ∈ dom(B) : RA(A = a | B = b) = RAB(A = a,B = b)

This principle is easily generalized to sets of attributes.
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(Unconditional) Independence

Let RAB be a relation over the attribute schema {A,B}. We call A and B relationally
independent (w. r. t. RAB) if the following condition holds:

∀a ∈ dom(A) : ∀b ∈ dom(B) : RAB(A = a,B = b) = min{RA(A = a), RB(B = b)}

This principle is easily generalized to sets of attributes.
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(Unconditional) Independence

Intuition: Fixing one (possible) value of A does not
restrict the (possible) values of B and vice versa.

Conditioning on any possible value of B always re-
sults in the same relation RA.

Alternative independence expression:

∀b ∈ dom(B) : RB(B = b) = 1 :

RA(A = a | B = b) = RA(A = a)
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Obviously, the original two-dimensional relation can be reconstructed from the
two one-dimensional ones, if we have (unconditional) independence.

The definition for (unconditional) independence already told us how to do so:

RAB(A = a,B = b) = min{RA(A = a), RB(B = b)}

Storing RA and RB is sufficient to represent the information of RAB.

Question: The (unconditional) independence is a rather strong restriction. Are
there other types of independence that allow for a decomposition as well?
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Clearly, A and C are unconditionally dependent, i. e.
the relation RAC cannot be reconstructed from RA
and RC .



Conditional Relational Independence

Rudolf Kruse, Matthias Steinbrecher, Pascal Held Bayesian Networks 75

However, given all possible values of B, all respective
conditional relations RAC show the independence of
A and C.

RAC(a, c | b) = min{RA(a | b), RC(c | b)}
With the definition of a conditional relation, the de-
composition description for RABC reads:

RABC(a, b, c) = min{RAB(a, b), RBC(b, c)}



Conditional Relational Independence
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Again, we reconstruct the initial relation from
the cylindrical extentions of the two relations
formed by the attributes A,B and B,C.

It is possible since A and C are (relationally)
independent given B.


