Decomposition

Example

Example World

Relation

color	shape	size
	0	small
	0	medium
	0	small
	0	medium
	\bigtriangleup	medium
	\bigtriangleup	large
		medium
		medium
	\triangle	medium
	\bigtriangleup	large

- 10 simple geometric objects
- 3 attributes

Example

Relation

color	shape	size
	0	small
	0	medium
	0	small
	0	medium
	\bigtriangleup	medium
	\bigtriangleup	large
		medium
		medium
	\bigtriangleup	medium
	\bigtriangleup	large

Geometric Representation

Universe of Discourse: Ω

 $\omega\in\Omega$ represents a single abstract object.

A subset $E \subseteq \Omega$ is called an **event**.

For every event we use the function R to determine whether E is possible or not.

$$R: 2^{\Omega} \to \{0,1\}$$

We claim the following properties of R:

1. $R(\emptyset) = 0$ 2. $\forall E_1, E_2 \subseteq \Omega$: $R(E_1 \cup E_2) = \max\{R(E_1), R(E_2)\}$ For example:

$$R(E) = \begin{cases} 0 & \text{if } E = \emptyset \\ 1 & \text{otherwise} \end{cases}$$

Attributes or Properties of these objects are introduced by functions: (later referred to as **random variables**)

$$A: \ \Omega \to \operatorname{dom}(A)$$

where dom(A) is the domain (i.e., set of all possible values) of A.

A set of attibutes $U = \{A_1, \ldots, A_n\}$ is called an **attribute schema**.

The **preimage** of an attribute defines an **event**:

$$\forall a \in \operatorname{dom}(A) : A^{-1}(a) = \{ \omega \in \Omega \mid A(\omega) = a \} \subseteq \Omega$$

Abbreviation: $A^{-1}(a) = \{\omega \in \Omega \mid A(\omega) = a\} = \{A = a\}$

We will index the function R to stress on which events it is defined. R_{AB} will be short for $R_{\{A,B\}}$.

$$R_{AB}: \bigcup_{a \in \operatorname{dom}(A)} \bigcup_{b \in \operatorname{dom}(B)} \left\{ \{A = a, B = b\} \right\} \to \{0, 1\}$$

Formal Representation

A = color	B = shape	C = size
$a_1 = \blacksquare$	$b_1 = O$	$c_1 = \text{small}$
$a_1 = \blacksquare$	$b_1 = \bigcirc$	$c_2 = \text{medium}$
$a_2 = \square$	$b_1 = \bigcirc$	$c_1 = \text{small}$
$a_2 = \square$	$b_1 = \bigcirc$	$c_2 = \text{medium}$
$a_2 = \square$	$b_3 = \triangle$	$c_2 = \text{medium}$
$a_2 = \square$	$b_3 = \triangle$	$c_3 = \text{large}$
$a_3 = \Box$	$b_2 = \Box$	$c_2 = \text{medium}$
$a_4 = \square$	$b_2 = \Box$	$c_2 = \text{medium}$
$a_4 = \square$	$b_3 = \triangle$	$c_2 = \text{medium}$
$a_4 = \square$	$b_3 = \triangle$	$c_3 = large$

R serves as an indicator function.

$$R_{ABC}(A = a, B = b, C = c)$$

$$= R_{ABC}(\{A = a, B = b, C = c\})$$

$$= R_{ABC}(\{\omega \in \Omega \mid A(\omega) = a \land B(\omega) = b \land C(\omega) = c\})$$

$$= \begin{cases} 0 & \text{if there is no tuple } (a, b, c) \\ 1 & \text{else} \end{cases}$$

Projection / Marginalization

Let R_{AB} be a relation over two attributes A and B. The projection (or marginalization) from schema $\{A, B\}$ to schema $\{A\}$ is defined as:

$$\forall a \in \operatorname{dom}(A) : R_A(A = a) = \max_{\forall b \in \operatorname{dom}(B)} \{ R_{AB}(A = a, B = b) \}$$

Cylindrical Extention

Let R_A be a relation over an attribute A. The cylindrical extention R_{AB} from $\{A\}$ to $\{A, B\}$ is defined as:

$$\forall a \in \operatorname{dom}(A) : \forall b \in \operatorname{dom}(B) : R_{AB}(A = a, B = b) = R_A(A = a)$$

Intersection

Let $R_{AB}^{(1)}$ and $R_{AB}^{(2)}$ be two relations with attribute schema $\{A, B\}$. The intersection R_{AB} of both is defined in the natural way:

$$\begin{aligned} \forall a \in \text{dom}(A) : \forall b \in \text{dom}(B) : \\ R_{AB}(A = a, B = b) \ = \ \min\{R_{AB}^{(1)}(A = a, B = b), R_{AB}^{(2)}(A = a, B = b)\} \end{aligned}$$

Conditional Relation

Let R_{AB} be a relation over the attribute schema $\{A, B\}$. The conditional relation of A given B is defined as follows:

 $\forall a \in \operatorname{dom}(A) : \forall b \in \operatorname{dom}(B) : R_A(A = a \mid B = b) = R_{AB}(A = a, B = b)$

(Unconditional) Independence

Let R_{AB} be a relation over the attribute schema $\{A, B\}$. We call A and B relationally independent (w.r.t. R_{AB}) if the following condition holds:

 $\forall a \in \operatorname{dom}(A) : \forall b \in \operatorname{dom}(B) : R_{AB}(A = a, B = b) = \min\{R_A(A = a), R_B(B = b)\}$

(Unconditional) Independence

Intuition: Fixing one (possible) value of A does not restrict the (possible) values of B and vice versa.

Conditioning on any possible value of B always results in the same relation R_A .

Alternative independence expression:

$$\forall b \in \operatorname{dom}(B) : R_B(B = b) = 1 :$$
$$R_A(A = a \mid B = b) = R_A(A = a)$$

Obviously, the original two-dimensional relation can be reconstructed from the two one-dimensional ones, if we have (unconditional) independence.

The definition for (unconditional) independence already told us how to do so:

$$R_{AB}(A = a, B = b) = \min\{R_A(A = a), R_B(B = b)\}$$

Storing R_A and R_B is sufficient to represent the information of R_{AB} .

Question: The (unconditional) independence is a rather strong restriction. Are there other types of independence that allow for a decomposition as well?

Conditional Relational Independence

Clearly, A and C are unconditionally dependent, i.e. the relation R_{AC} cannot be reconstructed from R_A and R_C .

Conditional Relational Independence

However, given all possible values of B, all respective conditional relations R_{AC} show the independence of A and C.

 $R_{AC}(a, c \mid b) = \min\{R_A(a \mid b), R_C(c \mid b)\}$

With the definition of a conditional relation, the decomposition description for R_{ABC} reads:

 $R_{ABC}(a, b, c) \; = \; \min\{R_{AB}(a, b), R_{BC}(b, c)\}$

 $R_{AC}(\cdot, \cdot \mid B = b_1)$

Conditional Relational Independence

Again, we reconstruct the initial relation from the cylindrical extentions of the two relations formed by the attributes A, B and B, C.

It is possible since A and C are (relationally) independent given B.

