Dear guest, welcome to this publication database. As an anonymous user, you will probably not have edit rights. Also, the collapse status of the topic tree will not be persistent. If you like to have these and other options enabled, you might ask Pascal Held for a login account.
This site is powered by Aigaion - A PHP/Web based management system for shared and annotated bibliographies. For more information visit www.aigaion.nl. SourceForge.hetLogo
 [BibTeX] [RIS]
Partially Supervised Learning of Fuzzy Classification Rules
Type of publication: Phdthesis
Citation: klose2004dissertation
Year: 2004
School: Otto-von-Guericke-Universität Magdeburg
URL: http://diglib.uni-magdeburg.de...
Abstract: The research area of Data Mining or Knowledge Discovery in Databases has emerged in response to the challenges of analyzing the tremendously growing datasets gathered nowadays by companies and research institutions. Classification is one important task of data mining, where fuzzy techniques to extract classification rules from data are appealing due to their human understandable modeling. Often, datasets to be analyzed do not contain class labels, and their size renders manual labeling infeasible. Thus, there is an increasing interest in semi-supervised methods that can learn from only partially labeled data. Unfortunately, most current data mining methods are supervised, and most current semi-supervised methods do not generate human understandable models. In this thesis we review the key concepts of fuzzy classification and fuzzy classifier learning, with a focus on their capabilities and interpretability, and reveal some common peculiarities and pitfalls. Furthermore, we review approaches to semi-supervised learning with a stress on fuzzy methods, and show their deficiencies, particularly for inducing interpretable fuzzy rules. The main achievements of this thesis are the development of an evolutionary algorithm and specialized fitness functions that allow semi-supervised learning of interpretable fuzzy rules.
Keywords: Data Mining, fuzzy classification, semi-supervised learning
Authors Klose, Aljoscha
Added by: [GR]
Total mark: 0
Attachments
    Notes
      Topics