TY - CONF ID - russ2005tencon T1 - Detection of Faulty Semiconductor Wafers using Dynamic Growing Self Organizing Map A1 - Ruß, Georg A1 - Hsu, Arthur L. A1 - Islam, Aminul A1 - Halgamuge, Saman K. A1 - Kruse, Rudolf A1 - Smith, Alan J. A1 - Karim, Md A. TI - Proceedings of the IEEE Tencon 2005, Melbourne, Australia Y1 - 2006 SP - 761 EP - 766 PB - Piscataway T2 - IEEE Operations Center CY - New Jersey UR - http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4085264 M2 - doi: 10.1109/tencon.2005.301056 N2 - Solving product yield and quality problems in a manufacturing process is becoming increasingly more difficult. There are various types of failures and their causes have complex multi-factor interrelationships. Semiconductor manufacturing is very complex due to the large number of processes, diverse equipment set and nonlinear process flows. Its manufacturing database comprises of hundreds of process control, process step and wafer probe data. This huge volume of data coupled with quicker time to market expectations is making finding and resolving problems quickly an overwhelming task. In this study, a methodology developed using dynamic growing self-organizing map (GSOM) to detect the faulty products in a wafer manufacturing process. As part of the methodology, a clustering quality measure was developed to evaluate the performance of the algorithm in separating good and faulty products. Results show that the algorithm was able to separate good and faulty products from the raw data. Even though this work has focused mainly on clustering good and faulty products, the technique can be extended to model the failure causes of the lower yielding products. ER -