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Chapter 1. Introduction 1

Chapter 1

Introduction

“Machine learning is a subfield of artificial intelligence (AI) concerned with
algorithms that allow computers to learn.” — Segaran [20]

What such a vague and general definition alludes to is the fact that machine learning
is a vast field which is difficult to define concisely and encompasses many topics. In-
deed, in its more than 50 year history1 machine learning has used ideas and techniques
from—and found applications in—fields such as statistics, optimization, neural networks,
genetic algorithms, evolutionary programming and data mining. This work focuses on
the aspects of machine learning closely related to data mining. These are concerned
with the automatic processing of large amounts of data on the one hand and the gener-
alization of known information about given data on the other. To be precise, the focus
will be on a new algorithm which is a combination of two algorithms respectively taken
from the fields of unsupervised and supervised learning. The algorithms in question
are the growing self-organizing maps (GSOM) and the support vector machines (SVM)
algorithms.

1.1 Algorithm Idea

What is meant by the terms supervised and unsupervised learning will be explained in
more detail in the second chapter. Briefly, unsupervised learning refers to a setting in
which there are a number of input points given and the only additional information is a
certain metric or similarity measure.

In this work the GSOMis used to group the input points with respect to their degree
of similarity. These groups are called clusters. The name unsupervised learning stems
from the absence of additional information about each individual input point.

This setting is contrasted with the supervised learning setting, in which specific
information is attached to each input point. This information is called a label. One

1If we begin with Rosenblatt [19].



2 1.1. Algorithm Idea

example setting is a collection of gene sequences which are labeled with the micro-
organisms to which they belong. A second example is a collection of attributes of certain
flowers—color, blooming period, average height—given as inputs while the label for each
item in the collection is the family the flower belongs to, e.g. the daisy family.

The task of the given supervised learning algorithm is to use the supplied data to find
a way to predict the label that would be given to a new input. Since labels can be seen
as classes for each input point, and assigning a label to a new input means classifying
it, the task of an supervised learning algorithm is usually referred to as classification.
Similarly, the task of the unsupervised learning algorithm used here is referred to as
clustering, as it groups the data into clusters of certain similarity.

The algorithm presented in this paper will use an unsupervised learning algorithm
to enhance the dataset used to train a supervised learning algorithm. Given a sparsely
labeled set of inputs the idea is to use an unsupervised learning algorithm to cluster the
given data. After clustering is done, the new algorithm will test which cluster contains
certain labels and label all input points in the cluster according to those. Thus more
labeled points than in the original input are generated which are then used to train the
classifier of an supervised learning algorithm. The resulting classifier can then be used
to classify those points which have not yet been labeled. These may be new ones or
points from the input which did not belong to a cluster with a known labeled point in
it. This idea is illustrated in figure 1.1 and a more thorough explanation of the actual
implementation along with an outline of the possible benefits and issues is given in
chapter 4.

assign labels

SVM

train and use

clustering

GSOM

Figure 1.1: Combining GSOM and SVM.
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1.2 Motivation

Using a combination of labeled and unlabeled data is referred to as semi-supervised learn-
ing. The field of semi-supervised learning is relatively young and only recently has an
extensive overview of semi-supervised learning algorithms and results been published—
Chapelle et al. [7]. The growing interest in this field is due to the exponential increase
in data being retrieved, stored and processed. This growth has in turn strengthened
the role of computers as an aid to experts for data processing and emphasised the need
for computers to operate with increasing independence. Minimizing the need for human
intervention in the act of data processing is one of the goals of the field of machine learn-
ing. The problem is that the performance of supervised learning algorithms depends on
the amount of training data. Unfortunately, the labels are normally obtained by pre-
senting unlabeled data to experts. As such, the labeling of unlabeled data has become
a bottleneck.

This dilemma is the motivation for better utilising labeled data, and the algorithm
proposed in this work does this by using unsupervised learning techniques to generalize
label information.

1.3 Structure

The second chapter establishes some Machine Learning basic and a brief history. It also
defines explicitly what is meant by the terms supervised and unsupervised learning. The
chapter closes with a short overview over the field of semi-supervised learning, to which
the algorithm developed in this work belongs.

The third chapter explains the two algorithms which are combined to yield the al-
gorithm proposed in this paper. For each of the two algorithms a short history will be
outlined and their main attributes will be presented. This is followed by an explanation
of the basic mathematical concepts used in the respective algorithms after which the
algorithms themselves will be explained. The section for each algorithm will close with
remarks on the implementation used in this work.

The fourth chapter outlines how the algorithms explained in the third chapter have
been combined. The motivation for the new algorithm will be revisited and the algo-
rithm itself will be explained extensively. This will be followed by an explanation of
the possibilities created along with the design choices made and the problems inherent
in the algorithm design. The chapter will close with an evaluation of the algorithm’s
performance on a set of benchmark data taken from Chapelle et al. [7].

The fifth chapter offers some concluding remarks and suggestions for future work.
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Chapter 2

Machine Learning

In this chapter some machine learning basics will be explained. A sketch of the history of
machine learning will be presented and some of the many machine learning formulations
will be mentioned. The bulk of this chapter is devoted to defining and explaining the
machine learning settings which are of interest to this work and the terminology used.
This is necessary to avoid ambiguities and misunderstandings since some of the formula-
tions of machine learning can mean or be used to accomplish different things depending
on the context.

The history of machine learning can be traced back to 1958 where Rosenblatt’s con-
struction of the perceptron in [19] marks a generally accepted starting point for the field.
Combining such a long history—for a branch of computer science—with the broadness
of its definition, it is unsurprising that over time many sub-fields of machine learning
have attracted the interest of researchers. Examples include Unsupervised Learning, Su-
pervised Learning, Inductive Learning, Symbolic Learning, Statistical Learning Theory,
Clustering and Discovery, Case-Based Learning, Clustering, and Classification.

For further reading into these topics and the topic of machine learning the interested
reader is referred to [18] and [22]. Some of those approaches are overlapping or have
different meanings in different contexts. Since this work is confined to three sub-fields
of machine learning, in order to avoid ambiguities the following sections precisely define
the terminology used in this work.

2.1 Supervised Learning

Generally, supervised learning refers to a setting in which the input dataset is given along
with additional information about each input. The supervised learning algorithm’s task
is to find a way of generalizing the given information to new inputs. More specifically,
the setting which will be referred to as supervised learning for the remainder of this
work is such that the input for the respective supervised learning algorithm is a set of
points with each point having a label attached to it. The algorithm’s output will be a
classifier—a mapping from the input space to the ‘label space’.
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2.1 Definition. Let X ( X and Y = {y1 . . . yn|n ∈ N} a finite set with |Y | ≥ 1. Let
f : X → Y . A classification problem is a triple (X ( X, Y, l) where:

• the set X is called the input dataset or set of inputs,

• the elements of X are called input points,

• the set X is called the input space,

• the set Y is called the set of labels or classes and

• the function l is called the labeling of the input points.

A classifier is an algorithm which takes a classification problem (X ( X, Y, l) as input
and whose output is a classification function l′ : V→ Y .

A few things should be noted along with this definition. Firstly, for the remainder
of this work, the term ‘supervised learning’ will exclusively refer to classification. This
is emphasised here to differentiate it from other supervised learning formulations, the
most frequent example being regression. For regression the set of given labels is just
a subset Y ⊆ Y of the continuous set of possible labels. For example, the field of real
numbers. In this case the algorithms task is to compute a continuous function l′ : X→ Y.
The restriction of supervised learning to classification for this work is a conscious choice
made for reasons of convenience because other formulations are not important in the
context of this work. Additionally, making the restriction explicit avoids ambiguities
and confusion.

The next thing to note should be that in this work the following phrases will be used
synonymously in reference to a point x:

• x has the label y,

• x belongs to class y and

• x is labeled y.

In all cases the phrase refers to the fact that l (x) = y. This notation is stated explicitly
because it is contrasted by the fact that the phrase “x is classified as y” is used to denote
that l′ (x) = y.

Thirdly, it should be noted that a classification problem may also be be given as a
tuple (X, l) that is, the specification may only consist of the set of inputs and the labeling.
In this case the set of labels is given implicitly as the codomain Y = {l (x) |x ∈ X} of
f . Furthermore, the input space does not have to be an explicit parameter of the
algorithm, because in most cases it is defined by an implicit assumption within the
respective algorithm, and the context in which it runs.

The last thing to point out is the fact that the set of labels is restricted to have
cardinality greater than one. While there are classification formulations with only one
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label, these are mostly concerned with density estimation. As this formulation is not of
interest here, it has been removed from what is covered in the definition above and is
mentioned here only for the sake of completeness.

2.2 Unsupervised Learning

The setting in which one speaks of unsupervised learning is slightly more general than
the setting for supervised learning. In the unsupervised case the algorithm is only given
the input dataset and no explicit additional information. The algorithm’s task then is
to infer some desired knowledge from the structural properties of the inputs. While it
is not necessary for explicit additional information to be attached to the inputs, there
may be implicit assumptions being utilised by the algorithm. These assumptions may
be in the form of a certain distance or similarity measure, or a certain way of measuring
probabilities. They are generally the result of specific knowledge about the domain from
which the input data is taken or they are taken from basic mathematical properties of the
input data. For example, if the input dataset is given as a set of customer records, the
unsupervised learning algorithm may implicitly employ specific marketing knowledge.
In the field of bioinformatics, the inputs may be gene sequences and the algorithm may
use distance measures specifically designed for these inputs. Alternatively, if the inputs
are vectors from a Euclidean vector space the assumption may simply manifest itself in
the usage of the Euclidean distance measure.

Owing to such a general formulation the actual task of an unsupervised learning
algorithm may come in many forms, e.g. density estimation or clustering. For density
estimation the algorithms task is to compute the probability distribution which generated
the input dataset. As mentioned in section 2.1, some supervised learning algorithms may
also be used for density estimation. This alludes to the fact that there can very well be
a connection made between supervised and unsupervised learning.

The unsupervised learning formulation used in this work is called clustering. Here
the algorithms task is to find a decomposition of the input dataset into disjoint subsets,
called clusters. Most of the terminology, like the notion of input dataset and input points
is shared with the the terminology used for classification. The only terms which have to
be defined separately are clustering, cluster and cluster center.

2.2 Definition. Let X be any set. A clustering of X is defined as a subset Xc ⊆ 2X

of the power set of X having the following properties:

(i) ∀X1, X2 ∈ Xc : X1 ∩X2 = ∅ , and

(ii)
⋃
X̄∈Xc

X̄ = X .

That is, a clustering is a disjoint decomposition of the input dataset. The elements of
Xc are called clusters. A clustering algorithm is an algorithm which takes a set X
as input and whose output is a clustering Xc of X.
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The definition above does not put any restrictions on the set of input values and the
final clustering has to be defined by explicitly specifying the set of clusters. In fact, this
definition is still too general. To define a few more phrases needed during the course of
this document, the input dataset has to be a subset of a certain input space.

2.3 Definition. Let X,C ( X. Furthermore let f : C → 2X be defined in such a way
that f (C) = {f (c) |c ∈ C} is a clustering of X. Then the elements of C are called the
cluster centers of the clustering f (C), which is called the clustering induced by C.

This establishes the terminology necessary for discussing supervised learning and the
supervised learning algorithm used in this work.

2.3 Semi-Supervised Learning

As the name suggests, semi-supervised learning refers to a setting which may neither be
clearly defined as supervised nor as unsupervised learning. It does not belong to either
of them because the input dataset is partially labeled—there exists both labeled and
unlabeled points. That is, the set of inputs X is decomposed into two sets Xl and Xu

where Xl ∩Xu = X and Xl ∪Xu = ∅. The set Xl is called the labeled subset of X while
Xu is called the unlabeled subset of X. Furthermore, in the semi-supervised learning
setting the labeling function f is only defined on the labeled subset of X, f : Xl → Y .

The field of semi-supervised learning is a relatively recent development leading to the
release of the first extensive overview on the subject with Chapelle et al. [7]. During this
short period of time there have been multiple approaches to semi-supervised learning.
However, most have focussed on how supervised learning algorithm algorithms can be
made more accurate through the use of additional unlabeled inputs. But this approach
can only be used if the number of labeled input points is not too small in comparison
to the number of unlabeled input points. The algorithm used in this work combines
an unsupervised learning algorithm with a supervised learning algorithm to handle such
sparsely labeled data. The clustering computed by the unsupervised learning algorithm
is used to artificially inflate the amount of labeled data available to train the supervised
learning algorithm.



Chapter 3. Algorithms 9

Chapter 3

Algorithms

This chapter will explain the GSOM and SVM algorithms in detail. Each of these
algorithms will be treated in a separate section which will begin with a short overview
of the algorithm’s history, its main attributes and the settings in which it operates
together with a sketch of the algorithm itself. This will be followed by a more thorough
explanation of the algorithm including a definition of the mathematical concepts needed,
the formulation of the algorithm itself and some notes about the respective algorithm
implementations used in this work.

3.1 Growing Self-Organizing Maps

The GSOM algorithm is an extension of the self-organizing maps algorithm, which will
be denoted with the abbreviation SOM for the remainder of this document. It was intro-
duced by Kohonen in [16] and is extensively described in [17]. The GSOM algorithm was
introduced by Alahakoon et al. in [1] and has been applied in the field of bioinformatics
([13], [5]) and for knowledge discovery in multi agent systems ([24]). Underlying both
is the principle of vector quantization which will be formally defined later. Informally,
both algorithms approximate an input dataset I by computing a set of points P from
the same metric space as the elements of I. The goal is to have |P | < |I|, that is P
should have lower cardinality than I. In this setting the points in P are then the cluster
centers of the clustering induced by P . Both SOM and GSOM maintain the set P of
cluster centers as a grid with a two dimensional layout, hence the term map in the name
of both algorithms. In the original SOM algorithm the number of points in the grid and
the dimensions have to be known a priori. This is one of the extensions which GSOM
provides over SOM. For the former, the number of points in P does not have to be known
in advance because GSOM starts with a fixed number of points and increases the size
of P dynamically while it consumes the input. In their original formulations, the grid
maintained by both algorithms was rectangular, while GSOM has later been extended
to allow for hexagonal grids. The details of this will be outlined in 3.1.2 but they can
also be found in Hsu [12], for example.
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3.1.1 Metric Spaces and Quantization

As has been said earlier, both algorithms try to approximate the input space. For this
purpose there has to be some way of measuring the quality of an approximation, which
is usually done through some kind of distance measure. A set which is endowed with a
distance measure is exactly what is defined by the notion of a metric space:

3.1 Definition (Metric and Metric Space). Let X be a set and let R be the field of real
numbers. A function d : X ×X → R is called a metric on X if and only if it satisfies
the following conditions for any x1, x2, x3 ∈ X:

(i) d (x1, x2) ≥ 0 ∧ d (x1, x1) = 0 (positivity)

(ii) d (x1, x2) = d (x2, x1) (symmetry)

(iii) d (x1, x3) ≤ d (x1, x2) + d (x2, x3) (triangle inequality)

If d is a metric on X, the pair (X, d) is called a metric space.

The three axioms which a metric has to obey are the mathematical formulation of
what one normally expects from a distance measure. For the SOM algorithm any metric
on the input space is sufficient but for GSOM the situation differs slightly. The fact
that the number of cluster centers does not have to be a priori specified leads to the
restriction that the dimension of the input space is a parameter in the GSOM algorithm.
This means that it can only handle finite dimensional input spaces. The reason for this
restriction will be pointed out in 3.1.2.

Now that we have defined the notion of a metric, the notion of input quantization
can be defined.

3.2 Definition (Vector Quantization). Let (X, d) be a metric space and let X ⊆ X. A
quantization of X is a pair (Xc, f), such that Xc ( X and:

f : X → Xc, f (x) 7→ argmin
xi∈Xc

(d (x, xi)) .

The set Xc is then called the set of code-book vectors while the function f is called
the induced quantization function of the quantization (Xc, f).

As one can see a quantization is a way of approximating the input space through
a smaller set, because given an input vector v, the quantization function calculates
the nearest code-book vector vc to the input vector v. This concept is closely re-
lated to the concept of voronoi diagrams, because if a quantization (Xc, f) of the
input dataset X is given, then for any code-book vector xc ∈ Xc the preimage
f−1 (xc) = {x ∈ X|f (x) = xc} is the voronoi cell of xc. Further reading on voronoi
diagrams may be found in de Berg et al. [10], for example.

As said earlier, the vector quantization is the underlying principle for both the SOM
and the GSOM algorithm. This is because the set of nodes in the maps that both
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algorithms compute act as the set of code-book vectors for a quantization of the input
dataset. With this knowledge established, a specification of the GSOM algorithm can
now be given.

3.1.2 The GSOM Specification

The GSOM algorithm in its original formulation from [1] has been improved several
times and the specification given here most closely resembles the one given in [5]. The
only difference is that the specification here is restricted to a hexagonal map topology.
The pseudo code to the algorithm is given in figure 3.1 and what follows will be an in
depth explanation of the different parts of the algorithm.

As can be seen from the input specification the algorithm has one more input apart
from the input dataset and the metric to use, namely phases, which is a list of phase
specifications. This is because the algorithm is divided into phases which are run se-
quentially. The phases to run and their parameters are thus specified by the user as a
list of phase specifications. A phase specification is a quintuple of the parameters for
one phase. These parameters are:

p: The number of passes the phase should make over the input. Each phase consumes
the input and this parameter defines how the input set should be iterated over.

sf : The spread factor. It should be a number from the interval (0, 1] and is used to
influence the number of cluster centers. A higher spread factor will result in more
and smaller clusters.

ns: The neighbourhood size. Each time a point of the input set is consumed, the
weights of specific nodes in the map are changed. This parameter influences how
many nodes have their weights changed on such an occasion.

lr: The learning rate is a measure for how strong the influence of a consumed point
on the weights of the nodes in the map is.

g: The grow flag g determines whether new nodes should be grown during this phase
or not. Phases where no new nodes are grown are needed to smooth out the
approximation error after the map has grown sufficiently.

Thus a phase is specified with a quintuple (p, sf, ns, lr, g). The precise semantics of
these parameters will be explained along with the part of the algorithm for which they
are important.

While the algorithm runs it maintains a map of nodes. This map is essentially a
planar graph with each node n of the map having two attributes assigned to it, the first
being a weight wn and the second being the node’s accumulated error value en. The
weight is an element from the same metric space as the input points, while the error
value is a real number. The error of each node serves as the value which controls the
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Input:

• Input dataset X having dimension D

• metric d : X ×X → R

• List of phase specifications phases

Output: A planar map of nodes with weights acting as a quantization of X

map← initial map (figure 3.2a)1

foreach (p, sf, ns, lr, g) in phases do2

t← 03

tmax ← p · |X|4

for pc ← 1 to p do5

foreach x ∈ X do6

t← t+ 17

nmin ← argmin
n in map

(d (x,wn))
8

dmin ← min
n in map

(d (x,wn))
9

enmin
← enmin

+ dmin10

foreach node ∈ neighbourhood(nmin, ns ·
(

1− t−1
tmax

)
) do11

wnode ← wnode + lr ·
(

1− t−1
tmax

)
· (x− wnode)12

end13

if g and enmin
> −D 1

2 · log (sf) then14

neighbours← neighbourhood(nmin, 1)15

neighbours← neighbours \ nmin16

if |neighbours| < 6 then Grow new nodes. (figure 3.2b)17

enmin
← 1

2
enmin

18

foreach n ∈ neighbours do en ← 1
6
enmin

19

end20

end21

end22

end23

return map24

Figure 3.1: Pseudo code for the GSOM algorithm
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maps growth while the weights constitute the cluster centers of the clustering which is
the algorithm’s output. Thus the algorithm’s output is a planar map of cluster centers
quantizing the input dataset.

In order to maintain the map it has to be initialized first, which is done on the first
line of the algorithm. Since the GSOM implementation used in this work only supports
a hexagonal map topology the map is initialized with seven nodes arranged as a hexagon
as in figure 3.2a. Each node is assigned an initial error value of zero and the initial
weights may either be random or fixed, based on the values of the input points.
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rightmost node.

Figure 3.2: The GSOM map.

After the map is initialized the algorithm commences to run the specified phases
sequentially in the order in which they were given. The phase is divided into steps and
each step handles one input point. How many times the input dataset is iterated over is
specified in the phase parameter p which is an integer and has to be bigger than zero for
the phase to do anything at all. The phase then iterates over the input dataset p-times
so the number of steps a phase has is p times the number of points in the input dataset as
seen in line 4. The algorithm also keeps track of the number of the current step because
it is needed for some calculations, so the first thing which is done during each step is to
increment the step counter by one.

The remaining actions of a step are devoted to handling one input point x. The first
thing which has to be done is finding the so called best matching unit nmin which is
defined as the node in the map whose weight has minimum distance to the current input
point x. After the best matching unit is found its weight’s distance to x is saved in dmin
which is then used to update nmin’s accumulated error value enmin

. Lines 8 to 10 are
devoted to the above.

After nmin and dmin have been calculated the next actions are finding the nodes whose
weights are to be altered and carry out the weight adjustment. Finding out which nodes
are the ones whose weights have to be altered is done using the neighbourhood function
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for which the pseudo code is given in figure 3.3.

Input:

• node which is a node belonging to a map.

• size which is a non negative real number.

Output: A set of nodes.

size← round (size)1

switch size do2

case 03

return {node}4

end5

case 16

return {node} ∪ (Set of the immediate neighbours of node)7

end8

otherwise9

return
⋃

n∈neighbourhood(node,1)

neighbourhood (n, size− 1)
10

end11

end12

Figure 3.3: The neighbourhood (node, size) function.

The function returns a set N of nodes where each element of N has a graph distance
to node which is smaller than or equal to size rounded to the nearest integer.

With this knowledge established it can easily be seen that the neighbourhood size
which is used in line 11 of figure 3.1 is decreased linearly during the phase. It starts out
as the full size specified with ns and linearly decreases until it reaches zero at the end
of the phase. The same happens with the learning rate lr which is used in the weight
adjustment formula on line 12 of figure 3.1. All the nodes in the neighbourhood of nmin
which is in effect for the current step of the phase are adjusted by this formula. From
the formula it can be seen that if the factor lr · (1− fract− 1tmax) evaluates to 1, the
weight which is subject to adjustment is made equal to the input point which is handled
by the current step. On the other hand it is obvious that a learning rate of zero has
no effect. For this reason the condition that lr ∈ (0, 1) should be apparent. If this is
the case, then the weight subject to adjustment will be shifted in the direction of the
current input point by a fraction of depending on lr. The effect of lr decreases linearly
with each step of the phase.

The next actions of the phase are only carried out if the grow flag g of the current
phase is set to True. New nodes are only grown in the map if this flag is set. To
decide whether new nodes should be grown or not the accumulated error value enmin

is checked and if it is greater than −
√
D · log (sf) it is considered too large. Here D



Chapter 3. Algorithms 15

is the dimension of the space from which the input dataset is taken, while sf is the
spread factor parameter of the current phase. As said before one should have sf ∈ (0, 1]
because then − log (sf) ∈ [0,∞) and a lower spread factor will result in higher error
values being allowed before new nodes are grown while a high spread factor will make
node growth be initiated earlier. Thus the higher the spread factor is, the more fine
grained the clustering will be. If the accumulated error value of nmin is deemed too high
the next actions depend on whether the nmin is an internal or a boundary node.

If a node for which the accumulated error value is deemed too high has less than
six immediate neighbours the missing neighbours are created. Their error values are
initialized to zero and the weight vectors are initialized as follows. For every created
neighbour nnew the parent node already has a neighbour nold in the opposite direction.
This is a result of the hexagonal map topology and the fact that whenever node growth
is initiated, the full set of neighbours for the node in question is grown. The weight
of said opposite neighbour is used in weight initialization, which is done through the
formula: wnmin ← 2 ·wnmin

−wnold
. Since a node can have a maximum of six immediate

neighbours as shown in figure 3.2 node new nodes can be from a node which already has
six neighbours. In this case the error value still has to be prevented from just growing
further without having any effect. This is the reason that nmin’s error value is halved
and half of the this value is distributed evenly among the nodes adjacent to nmin. This
is done every time a node’s error value is deemed too high, regardless of whether new
nodes have been grown or not and makes high error values spread toward the map’s
boundary, in order to make node growth possible in later steps.

This is all that is needed to specify the GSOM algorithm and the next section will
outline the specifics of the GSOM implementation which was used during the course of
this work.

3.1.3 Implementation

Previously there have been two implementations of the GSOM algorithm. The first is a
Java based one due to Hsu during his work on [12] and was used in [13] while the second
one is C# based and was written by Chan for [4]. The former is a little dated and has not
seen much development since its inception while the latter is tied to its graphical user
interface and not portable due to the language it is implemented in. For those reasons the
author has decided to re-implement the GSOM algorithm as a Haskell library. Haskell
is an actively developed, lazy, functional language which has compilers available for a
diversity of platforms. More info on the language including its specification an compilers
for it can be found on the Haskell website1.

One important fact about the implementation in hslibsvm is, that it currently only
handles real valued input vectors and is restricted to the euclidean distance measure.
The reason for this is connected to the reason for raising the dimension to the power of
1
2

in the test on line 14 of figure 3.1. In the original proposition this power was omitted.

1http://www.haskell.org
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It has been later shown that map growth should be made dependent on the distance
metric in use. This dependence is controlled by raising D to the appropriate power and
the square root is the one which is compatible with the Euclidean distance metric. Until
now there have been found only ways of adjusting map growth according to Minkowski
metrics of which the Euclidean one is a special case. As different metrics have not shown
to be of significant impact in the algorithm’s performance, the author has decided to
restrict the implementation using the Euclidean distance measure until ways to adjust
map growth to arbitrary metrics have been developed.

There were several reasons for choosing Haskell as an implementation language. The
first was its portability. As Haskell compilers are available for various platforms, im-
plementing the GSOM algorithm in Haskell makes it available on all these platforms.
The second reason is the fact that Haskell provides a higher level of abstraction than C
or C++ while still being compiled to machine code. Thirdly, although even compiled
Haskell code is usually not on par in terms of speed with equivalent C code, one is able
to interface to C from Haskell. Thus performance critical bits of the GSOM algorithm
can be rewritten in C if the Haskell implementation is deemed too slow. Finally, Haskell
is one of the languages which pioneered software transactional memory and it is one of
the few languages which has a working implementation of it.

Software transactional memory is a concurrency abstraction which was proposed in
[21] and the implementation used within the Haskell language is described in [11]. It has
a few advantages over a lock based handling of concurrency, most importantly compos-
ability, and the absence of the possibility for deadlocks. Using Haskell to implement the
GSOM algorithm thus makes it easier to research the possibility of implementing the
GSOM algorithm by using multiple threads thus taking advantage of modern multicore
processors.

The Haskell library which was written in the course of this work is called hsgsom and
is available from the Haskell package database2. The source code is freely available as
a darcs3 repository and may be browsed under http://patch-tag.com/r/hsgsom. It
adheres to the specification given in 3.1.2.

3.2 Support Vector Machines

Support vector machines are a supervised learning technique invented by Boser et al. in
[2] and a good overview on them can be found in Burges [3]. In their most basic form
SVMs are a binary, linear classifier which means that the set of labels has cardinality
two and that the classification function which is computed is characterized by an n-
dimensional hyperplane, where n is the dimension of the input space X. Classification is
carried out by calculating on which side of the hyperplane a given input vector lies. The

2hackage.haskell.org
3A distributed version control system written in Haskell. More information under http://darcs.

net.
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first restriction of having only two labels has been addressed with different approaches
and an extensive comparison of some of them can be found in Hsu and Lin [14]. The
second restriction of only being able to calculate a classification function for linearly
separable data can be addressed by using kernel functions.

Kernel functions are used to transform the elements of the input space into a higher
dimensional space. In order to understand how kernel functions are used with SVMs,
they will be defined in the next section.

3.2.1 Inner Product Spaces and Kernel Methods

A definition of kernel functions can not be done without mentioning another concept of
mathematics, namely the notion of inner products, also known as dot products. Inner
products are a generalization of the scalar products in Euclidean vector spaces.

3.3 Definition (Inner Product). Let V be a vector space over the field R of real numbers.
Let furthermore α ∈ R. Then an Inner Product is defined as a function f : V×V→ R
which satisfies the following conditions for any v1, v2, v3 ∈ V:

(i) f (v1, v1) ≥ 0 ∧ f (v1, v1) = 0 ⇐⇒ v1 = 0

(ii) f (v1, v2) = f (v2, v1)

(iii) f (α · v1, v2 + v3) = α · (f (v1, v2) + f (v1, v3))

A vector space which is endowed with an inner product is called an inner product
space.

It should also be noted that any inner product space (V, f) can be made a metric
space by defining the metric d(v1, v2) =

√
f (v1 − v2, v1 − v2) on it. If no other metric

is defined and the notion of a metric or distance is used in the context of an inner
product space, the above definition is implicitly assumed for the remainder of this work.
This definition is the generalization of the euclidean distance to arbitrary inner product
spaces. Directly connected to the implicit metric on an inner product space is the notion
of a vector’s norm, which is a generalization of the concept the length of a vector. Given
that a metric already provides a way of measuring distances in inner product spaces the
length of a vector v can easily be defined as the distance to the origin d (v, 0) and this is
the definition which will be used throughout this work.

3.4 Definition (Vector Norm). Let (V, f) be an inner product space and let d : V×V→
R be a metric on it. The norm of a vector v ∈ V is defined as the distance to the origin
d (v, 0) and is written as ‖v‖d. If no metric is given the implicit metric on V is assumed.

Now that the definition of scalar products has been revisited, the notion of a hyper-
plane can be defined. Hyperplanes are important in the context of SVMs because the
classification function a SVM computes is based on a hyperplane.
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3.5 Definition (Hyperplane). Let V be an inner product space of dimension d with the
inner product f . A hyperplane h (n, c) ⊆ V is defined as:

h (n, c) = {v ∈ V | f (n, v) = c} .

If the context allows it the hyperplane h (n, c) may also be written in the shorter form
h. The vector n ∈ V is called the normal vector of h while the parameter c ∈ R is
called the constant component of h. Every hyperplane h(n, c) partitions the space V
into three disjoint subsets:

• The set h (n, c) whose elements are called the points on or of h.

• The positive side of h which is also called the positive half space of V with
respect to h:

h+ (n, c) = {v ∈ V | f (n, v) > c} .

• The negative side of h which is also called the positive half space of V with
respect to h:

h− (n, c) = {v ∈ V | f (n, v) < c} .

Every hyperplane defines a mapping Rh(n,c) : V→ R, v 7→ f (n, v)− c. Once again Rh(n,c)

may be written in the shorter form Rh if the values of n and c can be derived from the
context.

This leaves us with the only thing left to define being kernel functions. Informally,
kernel functions are those functions which implicitly transform their input values from
their domain into a vector space and calculate the result of an inner product between
the transformed input values. The precise definition is the following:

3.6 Definition (Kernel Function). Let X be a set and let R be the field of real numbers.
A function K : X × X → R is a Kernel Function if and only if there exists a vector
space V over R, a function φ : X→ V and an inner product f : V× V→ R such that:

∀x1, x2 ∈ X : K (x1, x2) = f (φ (x1) , φ (x2))

Unless the target vector space and the corresponding inner product are known, the
above definition is neither helpful for the construction of kernel functions nor does it give
a useful criterion for testing whether a given function K actually is a kernel function.
To solve those kinds problems the following theorem, taken from Cristianini and Shawe-
Taylor [9], can be used:

3.7 Theorem. Let X be a finite input space with K (x, z) a symmetric function on X.
Then K (x, z) is a kernel function if and only if the matrix

K = (K (xi, xj))
n
i,j=1 ,

is positive semi-definite (has non-negative eigenvalues).
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The above theorem is a special case of Mercer’s Theorem, which is a far more general
result. In [9] Cristianini and Shawe-Taylor give a good explanation of Mercer’s Theorem
and how the above result can be derived from it. With the necessary mathematical
basics established the inner workings of SVMs can now be explained.

3.2.2 The concept behind SVMs

As has been pointed out earlier, SVMs in their original form have been designed to be
a binary, linear classifier. The reason for this is that a SVM actually tries to find a
hyperplane separating the input points according to their labels. That is, it tries to find
a hyperplane h such that all the points labeled with one label are on one side of h while
the input points labeled with the other label are on the other side of h. This formulation
hints at the fact that the input dataset X should be taken from an inner product space,
because hyperplanes are defined using inner products. But even if a hyperplane exists
which separates the input data set in such a way it is usually not unique, a point which
is illustrated in figure 3.4. This raises the question of how the separating hyperplane is
chosen among the available possibilities.

 1
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 0

Figure 3.4: Multiple hyperplanes separating point sets.

The answer is that SVMs try to maximize the geometric margin between the points
which have different labels. The hyperplane which achieves this is called the maximum
margin hyperplane hmax. What is meant with the term geometric margin is illustrated
in figure 3.5 where the same set of points as in figure 3.4 is used but only the maximum
margin hyperplane separating the two classes is shown. The dashed lines indicate paral-
lels of hmax which have been pushed towards each of the two classes until they touch the
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first labeled point. The distance between those parallels is called the geometric margin
or, for the remainder of this document, just the margin.

geometric

margin
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Figure 3.5: The maximum margin hyperplane separating the point sets.

Figure 3.5 also is a good way to explain how SVMs got their name. The hyperplanes
which define the boundary of the margin are only dependent on the points they are
touching. One can remove all the other input points and the margin would still stay the
same. As these vectors thus support the hyperplanes on the margin’s boundary, they are
called the support vectors. The notion of support vectors will be formally defined later
but the explanation above provides a good intuition.

Generally, for a given classification problem (X, {y1, y−1} , l) and a given separating
hyperplane h (n, c), the margin is defined as the distance between the two hyperplanes
h1 (n, c1) and h−1 (n, c−1) where hi is the hyperplane having minimum distance to the
subset of X which is labeled yi while still maintaining that:

∀x ∈ X : sign (Rh (v)) = sign (Rh1 (v)) = sign
(
Rh−1 (v)

)
.

Here sign: R→ R is the usual sign function given by:

sign (x) =


−1 x < 0

0 x = 0
1 x > 0

and the distance between two sets is defined using the implicit metric d on V:

d̄ : 2V × 2V → R

d̄ (A,B) =

{
0 A ∩B 6= ∅

min
a∈A,b∈B

(d (a, b)) A ∩B = ∅
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Though this definition narrows the choice of separating hyperplanes down it still
does not make it unique because given the above definition parallel hyperplanes still
have identical margins. This can be overcome by specifying that among the hyperplanes
having the same margin, the one which has equal distance to the differently labeled point
sets should be chosen. In other words, the separating hyperplane which is computed by
a SVM is the one which maximizes the geometric margin and lies in the middle of said
margin.

The next thing which should be explained is how SVMs actually find the maximum
margin hyperplane. This is accomplished by formulating an optimization problem, where
the separating hyperplane is the main parameter of the objective function and the value
to be optimized is the geometric margin. As it turns out posing the search for the max-
imum margin separating hyperplane as an optimization task yields a quadratic program
which can be solved using known quadratic programming algorithms.

The quadratic program is constructed as follows. The goal is to find a hyperplane
h (n, c) separating two points sets in such a way that the margin between the two sets is
maximized. As one can see this amounts to finding the right parameters n and c because
they define the hyperplane. Since these parameters then also define the hyperplanes
on the boundary of the margin we can define these hyperplanes dependent on them as
h−1 (n, c− 1) and h+1 (n, c+ 1). If constructed in this way the two boundaries of the
margin are guaranteed to be on different sides of h as they should be. The construction
is also well defined because as one can deduce from definition 3.5 that hyperplanes are
invariant under rescaling, that is for a given hyperplane h (n, c) one has that:

∀λ ∈ R : h (λ · n, λ · c) = h (n, c)

This means that the definitions of h−1 and h1 only amount to a normalization and
do not change the optimization result. On the other hand this construction is highly
convenient because it opens the possibility of finding a formula for the margin width
w which is only dependent on the normal vector of the separating hyperplane as the w
is just the distance between h−1 and h1. This formula can be found in the following
way: let v−1 ∈ h−1 and let v1 ∈ h1 and let both vi have minimal distance to each other.
Geometry says that v1 − v−1 has to be perpendicular to both h−1 and h1. But as both
hyperplanes have the normal vector n it follows that v1 − v−1 = λn for a λ ∈ R. Two
things can be deduced from this:

w = ‖λn‖ = λ ‖n‖ (3.1)

v1 = v−1 + λn (3.2)

Now all which is left is to find λ. Definition 3.5 shows that f (n, v1) − c = 1 which
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gives:

f (n, v1)− c = 1
equn. 3.2⇒ f (n, v−1 + λn)− c = 1

defn. 3.3(iii)⇒ λf (n, n) + f (n, v−1)− c︸ ︷︷ ︸
=−1

= 1

⇒ λf (n, n)− 1 = 1

⇒ λ = 2
f(n,n)

Given the implicit metric on the inner product space it follows from equation 3.1 that

w = λ
√
f (n, n) = 2

√
f (n, n)

f (n, n)
=

2√
f (n, n)

.

Unfortunately, this is not very suitable as an objective function for an optimization
problem since it contains a square root. But since all values in the function are positive
neither squaring nor multiplication with positive factors alters the parameters at which
the optimum is obtained which is why in practice instead of maximizing 2√

f(n,n)
one

rather chooses to minimize 1
2
f (n, n).

With this in place the optimization problem which is solved by a SVM can be stated.
Given a classification problem (X ⊆ V, {−1, 1} , l) with (V, f) being an inner product
space, then a separating hyperplane with maximum geometric margin is found by solving
the quadratic optimization problem:

minimize: 1
2
f (n, n)

s.t. ∀x ∈ X: l (x) (f (n, x)− c) ≥ 1

The constraints ensure that each point is outside and on the correct side of the margin
while the returned decision function is given by:

l′ (v) = sign
(
Rh(n,c) (v)

)
.

Now the notion of support vectors may be formally defined. After obtaining the results
of solving the optimization problem above, the set of support vectors SV is defined as:

SV = {x ∈ X | (f (n, x)− c) = 1}

That is, it the set of vectors with active constraints. From optimization theory it is known
that these vectors are sufficient to compute the optimization result. All other input
points may be removed from the classification problem without affecting the resulting
classification function.

This explains how the SVMs compute a decision function for a classification problem
where the different classes can be separated by a hyperplane in the given space but what
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Figure 3.6: Two point sets which are not linearly separable.

happens if this is not the case as for example in figure 3.6? This is where the kernel
functions are useful.

As by their definition (3.6), kernel functions allow us to compute the value of an inner
product in a different space than the one from which the input points are taken. It can
also clearly be seen that in the optimization problem which is solved by a SVM the only
operations which are not among real numbers are inner products. Therefore, one may
replace the application of inner products by applications of kernel functions. Therefore,
for a given classification problem (X ⊆ X, {−1, 1} , l) there is no longer the need for an
inner product on X but only a kernel function K : X×X→ R. The optimization problem
to solve then simply becomes:

minimize: 1
2
K (n, n)

s.t. ∀x ∈ X: l (x) (K (n, x)− c) ≥ 1

This simple substitution provides two improvements. Firstly, the only restriction on the
input space is that there should exist a suitable kernel function for it. Secondly, the
space in which the inner product corresponding to the kernel function is computed may
actually be of higher dimension than the input space. This may allow data which is not
linearly separable in the input space to be so in the kernel space.

Consider for example the function:

K : R2 × R2 → R

K

((
x1

x2

)
,

(
y1

y2

))
= x1y1 + x2y2 + (x2

1 + x2
2) (y2

1 + y2
2) .
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This function is the result of mapping the euclidean plane R2 to the 3-dimensional
euclidean space R3 via the function

φ : R2 → R3

φ

(
x1

x2

)
=

 x1

x2

x2
1 + x2

2


and then applying the canonical inner product

f : R3 × R3 → R

f

 x1

x2

x3

 ,

 y1

y2

y3

 = x1y1 + x2y2 + x3y3.

This makes K a kernel function by definition 3.6 and figure 3.7 shows the result of
applying φ to the points from figure 3.6 and a hyperplane separating the two point sets.
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Figure 3.7: Points from figure 3.6 made linear separable through the transformation φ.

With this explanation some last notes about kernel functions are in order. It should be
mentioned that not only the optimization problem can be altered by substituting a kernel
function for every occurrence of an inner product but so can the computed classification
function. As this function only consists of a hyperplane, which is essentially defined
by the inner product of its normal vector with the test vector, this inner product may
also be substituted with a kernel function. The next thing to point out is that kernel
functions also have a drawback in that they obscure the metric that is actually used
to find the maximum margin. Consequently, it can be hard to understand the results
a SVM gives because one might not really know in which space the input dataset is
actually separated. Nonetheless, SVMs have worked so well in practice that this concern
has not had to much of an impact. The final note about kernel methods is that the
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above mathematical explanation does not even convey their full usefulness. Since a lot
of work has been done on quadratic programming and optimization theory in general the
concept of duality may be applied to the optimization problem described above. Using
duality it is possible to formulate an optimization problem which is equivalent to the one
above but has a different structure. This is called the dual form. The dual form of the
SVM optimization problem is special in that it only contains inner products of the input
vectors and even the classification function is solely characterized by these. Therefore,
the dual form lifts the necessity of fully specifying the kernel function and instead makes
it sufficient to know the values of the kernel function for every pair of input points.

This finishes the outline kernel methods and leaves an explanation of how SVMs are
generalized to handle classification problems with more than two labels. There are two
main approaches, both consisting of multiple SVMs and choosing among them. The first
approach trains a SVM for every label, where one label is taken as is and the remaining
labels constitute the opposite class for this particular SVM. The second approach trains
one SVM for every pair of labels and the classification function is a combination of the
result. These approaches have been compared in [14].

The variant of SVMs which is explained here does not allow for training errors to
occur, which may cause over fitting. This situation was remedied in [8] where Soft-
Margin-SVMs where proposed which allow for training errors but allow the user to
specify a parameter which defines how much a training error is penalized.

The interested reader is referred to [23], [3] and [9] for a thorough treatment of SVMs
and kernel methods.

3.2.3 LibSVM: Some remarks about the implementation

For the purpose of this work the author has not written his own SVM implementation but
chose to use an existing library. This library is called LibSVM and is freely available from
its website4. It is distributed under a 3 clause BSD-Style license and its implementation
details are available in [6]. The library supports a relatively large number of features
of which only a subset has been used in this work. The ones which where used are
explained in the following chapter along with the explanation of how they are used in
the new algorithm.

As LibSVM is written in C++ with a C interface and the software for this work is
written in Haskell, a Haskell binding has also been written for the purpose of this work.
The Haskell binding is released as hslibsvm and is available from the Haskell package
database5. Its source code is available as a darcs6 repository and can be browsed under
http://patch-tag.com/r/hslibsvm.

4http://www.csie.ntu.edu.tw/~cjlin/libsvm/
5hackage.haskell.org
6A distributed version control system written in Haskell. More information under http://darcs.

net.
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Chapter 4

Combining the GSOM and SVM
Algorithms

This chapter provides more details of the approach taken to combine the GSOM al-
gorithm with SVMs. The motivation will be re-established and the specifics of the
algorithm combination implementation will be provided. This will be followed by a dis-
cussion of possibilities that arise by combining the two algorithms as proposed. The
problems with the presented approach will also be considered. The actual implementa-
tion will then be presented and the chapter will close with the results of evaluating the
algorithm on the benchmark datasets used in [7].

Since both the GSOM and the SVM algorithms have been explained, a more thorough
explanation can be given of why a combination of both algorithms may be beneficial.
In semi-supervised learning there is always the question of what the ratio of labeled
to unlabeled data is. In [7] the primary consideration is the case where the number
of unlabeled points is not much greater than the number of labeled points. It is even
suggested that a setting in which there are vastly more unlabeled points—when com-
pared to labeled ones—be called ‘semi-UNsupervised’ learning. The problem is that it
is relatively easy to generate large input datasets, while acquiring labels for the points
means somehow interpreting them. This is usually done by humans and it is a slow and
sometimes expensive process. To alleviate this databases where labeled points are stored
have been created so that researchers may have a pool of labeled data accessible with
which they can work. But new research areas where old labeled data may not be applied
are are constantly explored and data generating technologies are becoming faster so that
traditional label generation strategies has a hard time keeping up. For this reason new
ways to make use of sparse labeled datasets are essential to harnessing the vast amounts
of data being produced.

SVMs alone are poorly suited to cases in which there are only few labeled points.
Although the classification function found by a SVM only depends on the support vectors
and not many of them are needed, if there are not enough labeled points the margin may
actually be chosen too wide which results in over fitting and thus the accuracy with which
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new points are classified drops. This is where combining GSOM and SVMs might be
beneficial. The clustering computed by a GSOM helps in identifying a set S of unlabeled
points which can be deemed sufficiently similar to a known labeled one in order to assign
the same label to the points in S. With this new set of labeled points a SVM may be
trained which may result in a better classification function.

4.1 A detailed explanation of the combination ap-

proach

The idea for combining GSOM and SVM into the new algorithm GSOMSVM is straight-
forward. Given a semi-supervised learning problem (Xl ∪Xu, Y, l) the GSOMSVM con-
sists of the following sequence of steps:

1. Run GSOM with (Xl ∪Xu) as input storing the resulting clustering Xc.

2. Detect clusters xc with xc ∩Xl 6= ∅.

3. Assign the labels of the labeled points in each xc to all the points in xc thus creating
a new decomposition X ′l ∪X ′u.

4. Use X ′l to train a SVM resulting in l′.

5. Use l′ to label the points in X ′u.

6. Output labeled input dataset and/or l′.

As one might notice there is a problem in step 3. It stems from the fact that there
may be multiple, differently labeled points in the cluster xc. This case is called a conflict
because the differing labels can be viewed as giving conflicting suggestions on how to
label the points in the cluster.

As this case indicates, when the clustering is not of sufficiently small granularity,
conflicts are handled by splitting the clusters in which the conflicts occur into multiple
ones. This is done by treating the labeled points in xc as new cluster centers and assigning
each remaining point of xc to the cluster center to which it has minimum distance. If
there are still points left which are tied between two or more cluster centers they are
discarded in order to not infer the wrong labels.

One can see that the heavy lifting really is done in the GSOM and SVM algorithms
and understanding them is crucial in order to understand how they can work together.

4.2 Potential Benefits and Issues

The GSOMSVM algorithm depends heavily on one assumption, namely that the met-
ric used conveys information about the distribution of labels. The algorithm can only
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operate correctly if points which are near each other are also more likely to be labeled
equally. More precisely, the assumption is that a high point density signifies a high
probability for the occurrence of a single label. If that assumption is violated the trained
SVM will very likely give wrong predictions. Therefore it is important to be sure that
these assumptions are correct for a given model.

Fortunately, SVMs are in most cases very compatible with the Euclidean distance
measure used in hsgsom. This stems from the fact that the canonical inner product
used in an R valued vector space—which is the sum of the product of the components—
defines the Euclidean distance measure as the implicit metric of the space. This can
easily be seen from the remarks after definition 3.3. Even if one uses kernel functions
this compatibility is not necessarily lost. As shown in [15], the most successfully applied
family of kernel functions, which are radial basis functions, are compatible with linear
SVMs.

4.3 About the Implementation

The GSOMSVM algorithm has been implemented as a command line application in
Haskell. It is not yet part of the Haskell package database but its source code is avail-
able as a darcs repository and may be freely browsed under http://patch-tag.com/r/
gsomsvm. The gsomsvm package depends on both, hsgsom and hslibsvm.

Apart from the input data and the GSOM phase specifications, the application may
receive three additional parameters. One is the hsgsom soft-margin SVM. The parameter
in question is called nu and it should be in the interval (0, 1]. As stated in [6], it is a
lower bound on the fraction of support vectors and an upper bound on the fraction of
training errors.

The next parameter is due to the fact that gsomsvm is for now restricted to radial
basis functions as kernels. It is not difficult to add support for other kernels in the
future but the decision to only support this family of kernel functions has been made
because with correct parameter selection they can make standard inner products obsolete
according to [15]. The same publication also proposes a successful heuristic for parameter
selection for radial basis functions. The main benefit of using radial basis functions is
that they compute an inner product in an infinite dimensional Hilbert space, which
practically alleviates most restrictions on separability. The only drawback is that data
which is hard to separate may only be classified by an over fitting classifier. The formula
for radial basis functions is

K (x1, x2) = e−γ‖x1−x2‖2

from which it follows that the parameter is γ. The parameter controls the generalization
properties of the kernel. Higher values usually result in better separation but can lead
to over fitting.

The last parameter is the result of a special feature of LibSVM. The library not
only allows for a simple classification to be done but also can train a classifier having
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probability information attached to it. That means the trained classifier is able to
estimate the probability with which a point will be classified as having a certain label.
This feature is used by gsomsvm to enable a threshold parameter t which is chosen from
the interval [0, 1]. If it is supplied only points which are classified with a probability of
at least t are included in the output.

4.4 Evaluating the algorithm

To get an understanding of how the proposed algorithm works in practice it has been
evaluated on a set of benchmark data which is also used in [7]. The datasets are available
from the book’s website1.

The datasets which where used for evaluation here are sets 1 to 7. The remaining
sets 8 and 9 where of a format unsuitable for the evaluation of GSOMSVM. The format
of the rest of the datasets is as follows. Except for dataset 4 every set consists of 1500
input points, with 214 dimensions. The 4th dataset instead consists of 400 input points
117 dimensions. Every dataset has two labels except dataset 6 which has 5 labels. For
benchmarking purposes all the labels for the input points are provided but additionally
so called splits are given.

These splits give the decomposition of the input dataset into labeled and unlabeled
subsets in order for a semi-supervised learning problem to be correctly specified. The
splits are given as the lists of indices which denote which points of the input dataset are
to be treated as the labeled points. For every dataset 12 splits each containing ten and
12 splits each containing 100 labeled points are provided. According to Chapelle et al.
there is no bias in the choice of labeled points except for the fact that each split contains
every label at least once.

The evaluation has been carried out by first running the GSOMSVM algorithm on
each semi-supervised learning problem defined by each given split. Afterwards the accu-
racy of GSOMSVM has been determined by using the classifier to classify the points of
the respective input dataset and using the given labels to test whether the classification
was correct. The accuracy is then calculated as the percentage of input points which
have been correctly classified. The results of computing the average accuracy for all
splits of one size in one dataset are given in table 4.1.

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7
small 78.44% 77.01% 59.87% 51.81% 62.18% 34.26% 68.14%
large 94.68% 90.59% 89.88% 66.63% 71.28% 77.33% 84.26%

Table 4.1: The average accuracy results for each dataset and split size.

It should be explicitly noted that for the calculation of accuracy the points which

1http://www.kyb.tuebingen.mpg.de/ssl-book/
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where already given as labeled points have been included. There are two reasons for this
choice. The reason behind this is that a soft margin SVM has been used and that the
clustering and label inference step compute a set of labels which differs from the one
originally given. As it is possible for a soft margin SVM to classify training data with a
different label than what is originally given in the labeling and as the fact that additional
labels are computed during by GSOMSVM this chance is only increased. This opens
the possibility to actually lower the accuracy by including the original training data in
the accuracy calculation. Therefore the original training data given through the splits is
used included in the accuracy calculation.

The parameters which where used for the evaluation are given as follows. For the
GSOM three phases have been specified. One growing and two smoothing phases, in
that order. The two smoothing phases had no growing flag set and as such the spread
factor was irrelevant for them. For the growing phase the spread factor was set to 0.1,
which is a relatively conservative choice leading to nearly the coarsest possible clustering.
This has been done in order to see whether this leads to labels being wrongly inferred,
which would have a negative effect on performance. The remaining parameters for the
three phases where (5, 0.1, 3), (50, 0.05, 2) and (50, 0.01) in that order. Each tuple should
be read as (passes, learning rate, neighbourhood size). The low number of passes, big
neighbourhood and high learning rate for the first pass where chosen so that the map
does not grow to strong but already establishes a good mapping over the input dataset.
The high number of passes for the next two phases open the possibility for lowering the
other to parameters while still ensuring a good distribution of clusters over the input
data set.

The svm parameters nu and γ where set to 0.1 and frac1D where D denotes the
dimension of the input space respectively. The only exception is dataset 6 for nu was
set to 0.001 because every higher value made the optimization problem infeasible. The
rationale behind the choice of nu was to give to rigid constraints on the number of
support vectors. The parameter γ was chosen this way because making it dependent on
the number of dimensions is in accordance with the fact that a high number of dimensions
raises the probability of the input data set being linearly separable. This stems from the
fact that hyperplanes have better generalization properties the higher their dimension.
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Chapter 5

Conclusions and Future Work

In this work it has been shown how to combine the GSOM and SVM algorithms in
order to solve semi-supervised learning problems. Both algorithms and their foundations
have been explained in order to show which assumptions have to hold and under which
circumstances these algorithms can be applied together fruitfully.

The results that where obtained from benchmark datasets show mixed success. On
the one hand there where datasets for which the algorithm performed well—yielding up
to 94% accuracy with only 6.66% labeled data and up to 78% accuracy with only 0.07%
labeled data. But there were also cases where the accuracy dropped to 34% for sparsely
labeled data.

A result which is surprisingly bad, considering that the classification problem was a
binary one. For comparison, a random classifier that would uniformly guess labels would
achieve an expected accuracy of 50%, assuming the labels are uniformly distributed.
Interestingly, the dataset on which the algorithm exhibited such bad performance had a
structure which severely restricted the parameters available to the SVM. This is a good
indicator that further research into how the structure of the input dataset influences the
performance of GSOMSVM is necessary.

Generally, the results look promising and show room for improvement. Looking at
how the GSOMSVM is influenced by its different parameters—how they work together,
how properties of the input dataset can be used to find good parameters and estimate
performance qualities—might very well give good insights into how to handle sparsely
labeled data in the context of semi-supervised learning.
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Selbständigkeitserklärung
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