
Otto-von-Guericke-University Magdeburg

Department of Computer Science

Studienarbeit

Determination of Parameter Settings

of Ant Colony System

for the Traveling Salesman Problem

Author:

Julia Preusse

28. July 2009

Academic Supervisors:

Prof. Saman Halgamuge, Kent C. B. Steer BE/BCS
University of Melbourne

Department of Mechanical Engineering
Parkville, 3052, Victoria, Australia

Prof. Dr. Rudolf Kruse, Dipl.-Inform. Georg Ruÿ
Universität Magdeburg
Fakultät für Informatik

Postfach 4120, D-39016 Magdeburg, Germany

Abstract

Many computational problems are too complex to be practically solved to
proven optimality. This is one of the main reasons why heuristics � algorithms
using problem speci�c knowledge to compute near-optimal solutions � became
very popular. Ant Colony Optimization (ACO) is one of the most successful
heuristics for the Traveling Salesman Problem (TSP), which is to �nd a short-
est tour through a given list of cities. Unfortunately we cannot use the full
potential of ACO algorithms if we cannot determine good parameter settings.
Commonly, algorithms use a standard parameter setting, which might be good
for many problems. Nevertheless, there are problems for which better settings
can be found. This is why we dedicated this work to the search for measures
helping us to characterize TSP instances to derive appropriate parameter set-
tings for ACO. We have developed new adaptive settings which have been
shown experimentally to be better than the standard version.

i

ii

Contents

Contents

1 Introduction 1

1.1 Purpose of this Document 1

1.2 Motivation . 1

1.3 The Tasks . 2

1.4 Document Structure . 3

2 Basics 5

2.1 Traveling Salesman Problem (TSP) 5

2.2 Metaheuristics . 6

2.3 Swarm Intelligence . 7

2.4 On Optimal Parameters . 11

3 ACO for the TSP 13

3.1 Ant System (AS) . 14

3.2 MAX −MIN Ant System 15

3.3 Ant Colony System (ACS) 16

3.4 Description of Parameters for Ant Colony System 17

3.5 Improvements . 19

3.5.1 Candidate List . 19

3.5.2 Local Search . 20

3.5.3 Don't-look-at bits . 22

4 Optimal Parameters for ACS for TSP 23

4.1 Design of the Algorithm . 23

4.1.1 Trial . 24

4.2 Testbed Design . 26

4.2.1 Problem Sets . 26

iii

Contents

4.2.2 Settings for the TSP Instances 28

4.2.3 TSP Classi�cations 29

5 Results 31

5.1 Evaluation of Graph Measures 31

5.2 Ranking of the Combinations 34

5.2.1 Best Combinations 34

5.2.2 Worst Combinations 38

6 Conclusions and Further Investigations 41

A Glossary 49

iv

Chapter 1

Introduction

This chapter gives a short introduction to this work, its motivation, the prob-
lems we encountered and how these can be tackled.

1.1 Purpose of this Document

The purpose of this document is to give my supervisors a detailed report about
what I have done during my six months of internship at the Department of
Mechanical and Manufacturing Engineering at the University of Melbourne,
Australia. Furthermore, writing this document is mandatory within the condi-
tions of my studies of computer science. Finally, in this document I will describe
what I have done in my internship and how I �nished my work afterwards.

1.2 Motivation

Since many problems are too complex to solve them to optimality in a reason-
able amount of time, �nding algorithms that use problem-speci�c knowledge
to achieve a good albeit not optimal solution in an appropriate amount of time,
is an important issue.

One of the most-studied problems is the Traveling Salesman Problem
(TSP), de�nes as �nding a shortest closed tour through a given list of cities
and. For example the problem of �nding a shortest closed tour through all
24,978 cities of Sweden was solved in May 20041 , but needed more than one
year to be computed and proven. One can easily see that this is not a practi-
cally usable approach, as the computation time exceeds the time constraints
for most problems. We found Ant Colony Optimization (ACO) algorithms to
be a promising approach to obtaining good results for the TSP in an appro-
priate amount of time. Ant Colony Optimization is motivated by the foraging

1http://www.tsp.gatech.edu (Version from 16th July 2009)

1

http://www.tsp.gatech.edu

Chapter 1. Introduction

behavior of ants, which enable them to determine the shortest path from the
nest to a food source. We notice four major challenges:

Guaranteed optimal solution Even if the two most popular versions of Ant
Colony Optimization,MAX −MIN Ant System and Ant Colony Sys-
tem, are proven to converge to the optimum [7], the time for this conver-
gence process is not polynomial. Thus in practice, running an algorithm
until it converges is not possible, but we want to guarantee to have found
a good solution.

Understanding parameter choice A full understanding of the e�ects of dif-
ferent parameter settings has not yet been developed. This is due to the
fact that the parameters interact with each other. So parameter setting
is a very complex task.

Problem dependence Di�erent parameter settings were experimentally shown
to be good for di�erent problems. So approaches which have proven to
yield good results for the Traveling Salesman Problem may not be ap-
propriate for scheduling algorithms [27].

Finding good parameters The problem of �nding good parameters for an
Ant Colony Optimization algorithm for a problem is usually as di�cult
as to solve the problem itself. Due to the fact that no full understanding
of the parameter choice has yet been developed and the parameters to be
chosen are domain-dependent, �nding a general approach to determine
optimal parameters is a very di�cult problem and no breakthrough has
yet been made.

We conclude with some tasks and how we tackle them shortly below.

1.3 The Tasks

1. Developing new approaches: Inspired by our investigation of literature,
we aim to combine approaches already made to develop new dynamic
parameter control approaches. We will use the stagnation behavior as
the algorithm's feedback. Furthermore, we propose three adaptive ap-
proaches that depend on how long no better solution has been found.
In order to classify problems, we will build up a collection of relevant at-
tributes, which are based on ideas from statistics, as well as on measures
proposed by other researchers.

2. Conducting experiments: To validate our proposals, we run experi-
ments with the Ant Colony System. We test all di�erent combinations
of the parameter settings we developed before and we determine the
values for the respective problem measurements.

2

1.4. Document Structure

3. Conclusions: Finally, we will draw conclusions from the results of our
simulations. We will do so by analyzing the experimental outcomes of
the di�erent measures one by one, �nally judging the usefulness of each.
We are going to state three new parameter strategies which perform
better than the standard settings used and known so far.

1.4 Document Structure

The remainder of this document is organized as follows:

Chapter 2 will provide the knowledge needed to understand the remainder of
this thesis. In particular it will introduce one of the most popular com-
binatorial problems: the Traveling Salesman Problem. We will continue
with the concepts of metaheuristics and swarm intelligence. Besides Par-
ticle Swarm Optimization, the concept of Ant Colony Optimization will
be introduced. We describe how ants are able to determine the short-
est path for foraging and explain how this ability is translated into an
algorithm. Finally, we will explain di�erent parameter setting strategies.

Chapter 3 addresses Ant Colony Optimization and the three best-known vari-
ants. While Ant System was the �rst Ant Colony Optimization algorithm
designed,MAX −MIN Ant System and Ant Colony System are im-
provements which have been experimentally shown to �nd solutions bet-
ter than Ant System. As this thesis focuses on Ant Colony System, we
explain the parameters of this algorithm in detail and give an overview
of strategies for parameter setting. We conclude with improvements of
Ant Colony Optimization algorithms in general. Three versions of lo-
cal search are presented, as well as the often-used speed-up techniques
named candidate list and don't-look-at bits.

Chapter 4 presents the design of our testbed and the design choices we have
made for parameter settings. We present three new dynamic parameter
control strategies for Ant Colony System for the Traveling Salesman
Problem and give some graph measures to analyze the chosen instances.
Finally, we will explain the setup of the tests.

Chapter 5 presents the results of our tests and conclusions we draw. We
evaluate the graph measurement we have done, then we analyze good
and bad combinations.

Chapter 6 summaries what we have achieved and shows possible further in-
vestigations.

Our starting point was to conduct a literature review on Ant Colony Opti-
mization algorithms and parameter strategies, which will be presented in the
following chapter.

3

Chapter 2

Basics

This basic chapter will provide the knowledge needed to understand the re-
mainder of this thesis. In particular it will introduce the following concepts:

• Traveling Salesman Problem

• Metaheuristics

• Swarm intelligence

• Ant Colony Optimization

• Parameter strategies

2.1 Traveling Salesman Problem (TSP)

The TSP is de�ned by the following optimization program via an undirected
graph:

Given a graph G = (V, E) with weights ce (∀e ∈ E), δ(M) denotes for a
set of nodes M those edges that are incident to nodes in M.

• De�nitions:
xe = 1 ↔ e ∈ TSP tour with xe ∈ {0, 1}E

• Objective function:
min {

∑
e∈E cexe}

• Constraints:

� Each node is entered and left once:∑
e∈δ(v) xe = 2 ∀ v ∈ V

� Subtour elimination constraints (no disjunct cycles):∑
e∈δ(S) xe ≥ 2 ∀ ∅ 6= S $ V

5

Chapter 2. Basics

So the Traveling Salesman Problem involves �nding a minimal-weighted tour1

containing all cities of a given set. It is common to de�ne the weight of an
edge {i , j} (or respectively a directed edge (i , j)) over the distance from vertex
i to vertex j. We will abbreviate the edge {i , j} as i j from now on. The three
main categories of Traveling Salesman Problems that we are interested in, are
introduced below. We consider complete (di-)graphs, as each pair of di�erent
nodes is connected by an edge (respectively an arc).

Asymmetric and Symmetric Traveling Salesman Problem In the asym-
metric Traveling Salesman Problem, the distance for traveling from one city
to another need not be the same as in the other direction. Therefore, an
asymmetric TSP instance can be represented by a directed complete graph,
which is a set of vertices and arcs as shown in Figure 2.1a.

For the symmetric TSP, the distance between two cities is the same in each
direction. Thus, a symmetric Traveling Salesman Problem can be pictured as
an undirected complete graph, as it is done in Figure 2.1b.

Euclidean Traveling Salesman Problem In the Euclidean Traveling Sales-
man Problem, each city is represented by a point in the Euclidean plane and
the distance between two cities is de�ned as the Euclidean distance between
their coordinates. An example graph is shown in Figure 2.1c.

2.2 Metaheuristics

�Heuristic: A `rule of thumb', based on domain knowledge from a particular
application, that gives guidance in the solution of a problem. Unlike algorithms,
heuristics cannot have proven performance bounds owing to their open-ended
dependence on speci�c application knowledge; [. . .] Heuristics may thus be
very valuable most of the time but their results or performance cannot be
guaranteed."
(A Dictionary of Computing, Oxford University Press 2004)

Speaking loosely, a heuristic is an algorithm using problem-speci�c knowledge
to create or improve solutions. Heuristics are often used for the computation
of solutions to NP complete problems, as optimal solutions from this problem
class are not expected to be found in a suitable amount of time. A metaheuris-
tic is a set of heuristic concepts that comprises heuristics which are applicable
to more than one problem domain. A particularly interesting and successful
metaheuristic is Ant Colony Optimization, which we will discuss in detail in
this thesis.

1a tour is visiting each city exactly once and then returning to the starting city

6

2.3. Swarm Intelligence

(a) (b)

(c)

Figure 2.1: (a) asymmetric, (b) symmetric and (c) Euclidean TSP

2.3 Swarm Intelligence

�Swarm intelligence is a property of systems of unintelligent agents of limited
individual capabilities exhibiting collectively intelligent behavior"
(White and Pagurek: Towards multi-swarm problem solving in networks p.333, 1998.)

Swarms of bees, an ant colony, a �ock of birds, cars being the agents in a
swarm of cars called tra�c and many more examples could be listed to illus-
trate the variety of swarms.

The concept of Swarm Intelligence can be described as following: Simple
skills of individuals are needed to solve complex problems as a union via rule-
based actions. Each individual interacts (directly or indirectly) with others
based on simple local rules without being aware of the swarm behavior. The
intelligent behavior can be observed on a global level.

At �rst, we will explain the di�erence between Swarm Intelligence and
Collective Intelligence. Since there are plenty of Swarm Intelligence �avors,
we will give a general overview of the two most popular below.

7

Chapter 2. Basics

Distinction from Collective Intelligence

Even if Collective Intelligence and Swarm Intelligence are sometimes used syn-
onymously, there is a big di�erence between both of them [18]. Collective
intelligence is a shared or group intelligence that emerges from the collabo-
ration and competition of many individuals. While the single individual in a
swarm is rather simple, compared to the task it has to ful�ll, each part of
the Collective Intelligence might be very complex. Wikipedia is a prominent
example of the latter, since each author is a complex intelligence and its con-
tribution to the collective is not replaceable. However, humans do also appear
in forms of Swarm Intelligence, e.g. in a Mexican wave. In example, the re-
action of each part of this swarm can be described as a simple reaction to its
predecessor's action.

Ant Colony Optimization (ACO)

We now introduce the main principles of Ant Colony Optimization. We use
ACO for the Traveling Salesman Problem, since Swarm Intelligence and espe-
cially Ant Colony Optimization are very promising concepts for combinatorial
problems and have shown to perform well on the TSP [7].

Foraging behavior of Biological Ants

The double bridge experiment [3] on the foraging behavior of the Argentine
ant Iridomyrmex humilis explored the ability of these ants to �nd the shortest
path from the nest to a food source (see Figures 2.2 � 2.5).

When following a path, ants lay a trail of a chemical substance called
pheromone. The probability of choosing a path depends on the amount of
pheromone on the path and some randomness allowing the ants to change
their path in order to explore the environment. Pheromone evaporates over
time, so long paths have problems to maintain stable pheromone levels.

The starting point of the experiment was to build up a double bridge from
the ants' nest to the food source. At the beginning, the ants were freed and
started to walk along the paths.

If an ant has to decide between two unseen paths to get to the food, it
�rst chooses randomly which one to take (see Figure 2.2b). As the ant taking
the shorter path arrives earlier at the food source (see Figure 2.3a). For the
way back there already is pheromone on the path, so it will very likely take
the same branch back, as can be seen in Figure 2.3b. If this continues, the
amount of pheromone on the shortest branch is increasing and will lead to
most of the ants taking the shorter path.

8

2.3. Swarm Intelligence

(a) (b)

Figure 2.2: The double bridge experiment is set up. (a) The two branches
have di�erent length. (b) At the beginning of the experiment there is no
pheromone on the trails, so the ants choose randomly which branch to take.
Therefore about half of the ants take the short branch and the others choose
to take the longer one.

From Real to Arti�cial Ants

Inspired by this mechanism, Dorigo et al. translated the approach to the com-
puter by using arti�cial ants laying and following arti�cial pheromone [7]. In
order to adapt these principles to the computer, the main elements of an Ant
Colony Optimization (ACO) algorithm according to [5] are:

• A colony of ants that will be used to build a solution in the graph.

• A probabilistic transition rule responsible for determining the next edge
of the graph to which an ant will move.

• A heuristic desirability that will in�uence the probability of an ant moving
to a given edge.

• The pheromone level of each edge, which indicates how good it is.

Applications

In this thesis, we will examine ACO's application to the Traveling Salesman
Problem, but there are also other combinatorial problems using it. Ant Colony
Optimization is used for routing problems, clustering algorithms, machine
learning, assignment problems and many more [7] (Another fascinating as-
pect of ants' life, namely their brood clustering, is used for some clustering
techniques [1, 15]).

Particle Swarm Optimization (PSO)

The social behavior of �ocking birds or �sh shoals inspired Eberhart and
Kennedy in 1995 to introduce the Particle Swarm Optimization (PSO) al-
gorithm as a method for optimization of continuous nonlinear functions [14].

9

Chapter 2. Basics

(a) (b)

Figure 2.3: (a) By using a trail, ants depose pheromone on it. (b) The ant
that has taken the shorter path arrives earlier at the food source. On its way
back to the nest, it has to make a choice which is now biased towards the
amount of pheromone on the branches. Very likely the ant returns via the
same branch again, as there is already some pheromone on it.

(a) (b)

Figure 2.4: (a) Finally the second ant arrives at the food source and (b)
makes its decision for the return paths biased towards the pheromone: one
pheromone unit on the longer branch and two units on the shorter branch. So
it is likely that the second ant takes the shortest path, as well.

(a) (b)

Figure 2.5: (a) Via the ants' biased choice the amount of pheromone on the
shortest paths is rising steadily. (b) After a certain time most ants take the
shortest paths; even though the longer branch is also taken by a small number
of ants.

10

2.4. On Optimal Parameters

The problem space in which an optimum should be found is initialized with a
random population of potential solutions, called particles, that are represented
via their coordinates in the space. In PSO the experience of each particle

Figure 2.6: Simple illustration of a particle swarm

(its position) plays an important role. Individuals learn from their own past
and from the past experiences of others. In order to pro�t from the swarms'
intelligence each particle compares its own position with
a) its neighbors or
b) all other particles
and imitates only those that are superior according to a �tness function. At
each time step every particle changes the velocity towards its best performing
neighbor or towards the global best performing particle. This movement is
weighted by a random term which is generated separately for the best particle
of a) and b).

Particle Swarm Optimization was shown to be e�ective by [17] and has
often been applied in research as well as application areas due to its speed and
the few parameters to choose. We refer the reader to [17] for a more detailed
discussion.

2.4 On Optimal Parameters

Importance of Parameter Setting Strategies

Despite the usefulness of metaheuristics, some di�culties can arise. It is not
unusual for a metaheuristic to have ten or more parameters, which need to be
tuned or adapted at runtime. Unfortunately the space of possible parameter
constructions might not be much smaller than the problem space. This prob-
lem arises, since the parameters are not independent of each other so they
might in�uence other parameters. The problem that comes along with this is
called the parameter tuning problem [23]: The di�culty might not be running
the actual program, but the choice of the right parameter values.

11

Chapter 2. Basics

Parameter Control versus Parameter Tuning

Since we want to �nd good parameter combinations, we need to understand
the di�erent possibilities to change and adapt parameters. We will explain the
basic principles below. Eiben et al. divide parameter setting strategies into
parameter control and parameter tuning [10]. The aim of parameter tuning is
to �nd parameters before the run of the program that remain �xed at runtime.
Eiben et al. give reasons why this method is inappropriate:

• Parameters are not independent, but trying all di�erent combinations
systematically is practically impossible.

• The process of parameter tuning is time-consuming, even if parameters
are optimized one by one, regardless of their interactions.

• For a given problem the selected parameter values are not necessarily
optimal, even if the e�ort made for setting them was signi�cant.

Therefore the concept of parameter control as a feasible alternative is pre-
sented in the following.

Parameter Control

Parameter control is done during the run of the program [10]. Furthermore it
is divided into:

• Static parameter control: The parameter values are varied according to
deterministic rules without using any feedback from the program run.

• Adaptive parameter control: This parameter control strategy uses feed-
back from the program to receive a direction for the change of the
parameter values to set.

• Self-adaptive parameter control: The idea of this strategy is an evolution
of evolution: The parameters are encoded in chromosomes and undergo
an evolutionary process.

In this work we aim at �nding appropriate parameter control strategies for
Ant Colony Optimization for the Traveling Salesman Problem. So far, just a
few adaptive parameter control approaches have been made for ACO, so the
standard parameter setting remained a static one. Self-adaptive approaches for
this metaheuristic comprise using other metaheuristics or genetic algorithms
together with ACO. This makes it even harder to determine good parameter
settings, since parameters for two algorithms need to be chosen.

Hence, we focus on adaptive parameter control strategies for some ACS
parameters and present them in Section 4.1.

12

Chapter 3

Ant Colony Optimization for

the Traveling Salesman

Problem

We have already explained how an ant is able to �nd the shortest path. This
chapter will show how this simple mechanism is used to solve the more complex
task of �nding a resonable solution to the Traveling Salesman Problem.

The Setup

The setup is the following:
A group of m arti�cial ants are moving from city to city along the TSP graph.
They decide to which city to go next based on:

• The set of cities they have not visited so far on their tour

• The amount of pheromone on the edges between cities

• A probabilistic function of the weight of an edge which enables the arti-
�cial ants to determine the closest-by cities

Thus, ants prefer close cities connected by edges with a high level of pheromone.
At the beginning of the algorithm, m arti�cial ants are placed on randomly se-
lected cities. By choosing a path, the arti�cial ants leave arti�cial pheromone
on it.

After all ants have �nished one tour each, the edges of the shortest tour
receive some additional pheromone which is inversely proportional to the tour
length. It is appropriate to use the inverse of the distances, since nearby cities
should be weighted higher than far away ones. In the following sections, we
present the three basic ACO versions.

13

Chapter 3. ACO for the TSP

3.1 Ant System (AS)

The Ant System is the �rst Ant Colony Optimizationalgorithm and has been
developed by Dorigo et al. [7, 8].

Initialization Phase

At �rst, all trails are initialized with an amount of pheromone τ0, chosen as
τ0 = n

Cnn , where n is the number of cities and C
nn is the tour length computed

with the nearest neighbor heuristic 1.
We have to be careful with the choice of τ0 (see Section 3.4 for an ex-

planation). As proposed in [7], the number of ants is set to the number of
cities. The m arti�cial ants are placed on random cities at the beginning of
the algorithm and start their tour constructions.

Tour Constructions

Each ant decides, being in city i , whether to go to city j next according to the
following probabilistic rule

pi j(t) =

{
[τi j (t)]

α·[ηi j]βP
x∈Ni
[τix (t)]α·[ηix]β

, if j has not been visited yet

0 , otherwise
(3.1)

where τi j(t) is the amount of pheromone on edge i j at time t, ηi j is a heuristic
function chosen as the inverse of the weight wi j , Ni is the feasible set of neigh-
bors of city i , α and β weight the importance of the pheromone information
relative to the heuristic function.

After each ant �nished a tour, the pheromone is updated globally

τi j(t + 1)← (1− ρ) · τi j(t) +

m∑
k=1

∆τkij (t),

where ρ is the pheromone evaporation rate, which is bounded between 0 and
1 and

∑m
k=1 ∆τkij (t) is the amount of pheromone that all ants deposit on i j ,

which is calculated by

∆τkij (t) =

{
Q/Lk(t) , if i j belongs to the tour that ant k did at iteration t
0 , otherwise

where Q is another user de�ned parameter and Lk(t) the length of the tour
that ant k built at iteration t.

1This heuristic starts at a city and goes on to the nearest unvisited city until all cities

have been visited.

14

3.2. MAX −MIN Ant System

3.2 MAX −MIN Ant System

Stützle and Hoos proposed the MAX −MIN Ant System as an improve-
ment [25] of the AS. It di�ers from the AS in four key points:

1. Only the best ant updates the pheromone globally.

2. The pheromone on the trails is bounded by [τmin, τmax].

3. The initial amount of pheromone is set to the upper bound.

4. After a certain number of stagnating iterations, the trails are reinitialized.

Initialization Phase

First, all trails are initialized with τ0 chosen as τ0 = τmax, which is the upper
pheromone trail limit (other initialization strategies are discussed in [25]). To-
gether with a low pheromone evaporation rate this causes a slow increase in
the di�erence of pheromone trails and therefore a high exploration of tours at
the beginning of the algorithm. For more details on the general requirements
for a good setting of τ0, we refer to Section 3.4. The number of ants is equal
to the number of cities [7]. Parameters τmin and τmax were introduced to avoid
stagnation since the �xed range of pheromone also alters the probabilities of
being chosen, for all edges. Note that both parameters need not remain con-
stant throughout the tour constructions (For further information on how to
set these two parameters, we refer to [25]). All ants are placed on random
cities at the beginning of the algorithm and start their tour constructions.

Tour Constructions

Ant k decides whether to go from city i to city j also according to the Equation
3.1 from Ant System. The pheromone τi j is updated globally after each
iteration by:

τi j(t + 1)←
[
(1− p) · τi j(t) + ∆τbesti j

]τmax
τmin

where τmin is the lower pheromone bound, τmax is the upper pheromone bound,
p is the evaporation rate and ∆τbesti j is de�ned as

∆τbesti j (t) =

{
1/Lbest(t) , if i j belongs to best tour
0 , otherwise.

Depending on the design choice, best can either be the best-so-far tour or the
best tour at iteration t (iteration-best).

15

Chapter 3. ACO for the TSP

Function [x]ba is de�ned by

[x]ba =


b , if x > b

a , if x < a

x , otherwise.

If the quality of the constructed tours stagnates for a certain number of iter-
ations, the trails are reinitialized. This is due to the fact that there are some
paths with only a small probability of being chosen, so the tour construction
is too biased.

3.3 Ant Colony System (ACS)

Ant Colony System is another modi�cation of the Ant System proposed by
Dorigo et al. [6]. It di�ers from the AS in of three main aspects:

1. A local update is done after each traversed edge.

2. The global updating rule is only applied to edges belonging to the best
tour.

3. The state transition rule is introduced and allows to balance between
exploring the search space and exploiting locally good solutions.

We will discuss these changes in the following in more detail.

Initialization Phase

The initialization phase is nearly the same as the one we presented for the
AS algorithm, except for the number of ants that are used to construct tours.
Dorigo et al. propose to set this number to ten, as it was experimentally shown
to yield good results [7].

Tour Constructions

ACS uses the pseudo-random proportional rule: The probability of ant k mov-
ing from city i to city j depends on the random variable q, which is uniformly
distributed over [0, 1] and a parameter q0 ∈ [0, 1]

pi j(t) =

{
maxx∈Niτi j(t)[ηi j]

β , if q ≤ q0
(3.3) , otherwise

(3.2)

with (3.3)

pi j(t) =

{
[τi j (t)]·[ηi j]βP

x∈Ni
[τix (t)]·[ηix]β

, if j has not been visited yet

0 , otherwise
(3.3)

16

3.4. Description of Parameters for Ant Colony System

where τi j(t) is the amount of pheromone on edge i j at time t, ηi j is a heuristic
function chosen as the inverse of the weight wi j , Ni is the feasible set of
neighbors of city i and β weights the importance of the heuristic information.
Hence with probability q0, ant k does the next move according to the best
possible edge, thus it exploits the learned knowledge. With probability (1−q0)
the ant explores the search space with a bias.

Another di�erence is that Ant Colony System introduces a local pheromone
updating rule. After each construction step, every ant changes the pheromone
on the last edge traversed in the following way

τi j(t)← (1− ρlocal) · τi j(t) + ρlocal · τ0

where 0 < ρlocal ≤ 1 is the local decay rate and τ0 is the initial pheromone
level on edge i j .

With this decay process it is easier to leave a local maximum, because
ants are less likely to follow those edges which others have passed before.
This enables ants to choose di�erent edges and hence a larger diversity of
possible solutions is reached.

The global update is computed di�erently in the following way

τi j(t + 1) =

{
(1− ρ) · τi j(t) + ρ · ∆τi j(t) , if i j belongs to best tour
τi j(t) , otherwise

where best tour is again either the best tour found so far or the best tour at
iteration t and ∆τi j(t) = 1

Lbest .
Hence, the global pheromone update is applied only to those edges be-

longing to the best tour found and can be described as a weighted average
between the old pheromone value and the pheromone deposit.

MAX −MIN Ant System versus Ant Colony System

We focus on one particular ACO version to determine good parameter set-
tings, so the choice between MAX −MIN Ant System and Ant Colony
System has to be made. Both algorithms yield good results in many tests and
are considered as the best-performing ACO variants [7]. Neither one seems to
be truly superior over the other. We choose ACS, since there are less parame-
ters to tune (α is �xed to 1 and we do neither need to consider τmin nor τmax

and only get ρlocal as a new parameter).

3.4 Description of Parameters for Ant Colony System

Since we use Ant Colony System for our simulations, we will give a short
overview of the e�ects of the choice of parameters. In this subsection we will

17

Chapter 3. ACO for the TSP

discuss which settings appear to be good, but the explicit design choices will
be explained in Section 4.1.

β : controls the relative weight of the heuristic information or respectively
the ratio between heuristic information and pheromone information as
α is set to 1 (α does not appear in Equation 3.2, since it is set to
1). If β increases, so does the ratio and thus the di�erence between all
edges increases. This means that, the higher β becomes, the greater
the exploitation is and when β is decreases, the exploration is increasing.

We range β ∈ (0, 5]. This is a contrast to most proposals in literature
[7], where β was ranged between 2 and 5. It is logical to make β close
to 0, since this enables the maximal exploration. This is because all
distances get close to 1 and therefore the di�erence between all edges
is small, giving even more distant cities a chance to be chosen.

ρ : controls the global pheromone evaporation. The value of ρ is naturally
bounded between 0 and 1. Dorigo et al. [7] propose ρ to be 0.1 for
ACS, but we �x ρ in a range between 0.1 and 0.5. If ρ increases, the
exploration of the search space is increased. This is due to the fact that
only the pheromone on the edges belonging to the best tour is updated.
If we increase ρ, there will be less pheromone on these edges, hence the
di�erence to the less desirable edges is diminished, giving the latter a
better chance to be chosen.

ρlocal : controls the local pheromone update and therefore the diversity of di�er-
ent paths. The bigger ρlocal is, the less likely it is that ants follow others.
Therefore a high value of ρlocal forces a high diversity of paths. If q0 is
chosen too large, we would destroy the e�ect of the ants' pheromone
communication.

Since Dorigo et al. found 0.1 to be a good value for ρlocal and even
�xed the parameter in the algorithm to this value, we do not put more
research into this parameter and focus on the others instead.

q0 : de�nes the percentage of exploration versus exploitation. This is due to
the fact that ants perform a biased search with probability q0 and go for
the best next city with probability (1−q0) (see Equation 3.2). Therefore,
the larger q0 is, the more ants construct their tours through exploitation
of knowledge. In contrast, if q0 is close to zero, the search is rather
focused on exploration. Dorigo et al. [7] propose a value of 0.9 with
obviously a strong focus on those paths with a high probability of being
chosen. Especially, if a better solution was not found for a long time, a
strong di�erence between the respective edges should be present. If we
continued with a greedy strategy, it would be unlikely to �nd a better
solution. Hence, we range q0 between 0.5 and 1.0, decreasing q0 if
stagnation occures.

18

3.5. Improvements

τ0 : controls the amount of pheromone that the trails are initialized with.
If τ0 is chosen too small, the tour construction is biased towards the
very �rst tour constructions. On the other hand, if it is chosen too
large, it takes too many iterations until the pheromone evaporates. This
in�uences when the ants can start using their biased search.

Dorigo et al. propose a value of 1
nCnn for τ0, where n is the number of

cities and Cnn is the length generated by the nearest-neighbor heuristic.
That is, to start at a city and to go on to the nearest unvisited city,
repeating this step for new cities, until all cities have been visited.

m : determines the number of ants and thus controls the amount of explo-
ration. Obviously the more ants we use, the slower the algorithm gets.
On the other hand, if we would not take enough ants, it would take too
long to approach good solutions as there are not enough ants to commu-
nicate with each other. While for Ant System andMAX −MIN Ant Sys-
tem, empirical studies conclude that the number of ants should equal
the number of cities, for Ant Colony System a �xed number of ten ants
seemed to yield good results. We do not vary the number of ants during
our experiments; m is set to ten.

max_it : controls the maximal number of iterations in which all ants build in each
case a tour. Obviously, the more iterations we use, the higher the costs
will be. If we stop the algorithm too early, we might miss a better
solution. Some studies on this subject (e.g. [25]) suggest to choose a
strategy where max_it only depends on the number of cities.

3.5 Improvements

After the �rst successes ofMAX −MIN Ant System and Ant Colony Sys-
tem, researchers put a lot of e�ort into improving performance of both algo-
rithms. Some of the new ideas that were mentioned in [16] are introduced
below.

3.5.1 Candidate List

A candidate list restricts the number of possible choices that need to be con-
sidered at each construction step. In the TSP's case a candidate list of city
i contains a �xed number nn of cities that have the smallest distance to city
i . These cities are called nearest neighbors. In order to determine them, all
cities are sorted by their distance to city i in nondecreasing order and the �rst
nn cities are inserted in city i 's candidate list. For the tour construction rule
(Equation 3.2 or respectively Equation 3.1), the biased search is performed
only for cities in the candidate list. If all cities from this list have already

19

Chapter 3. ACO for the TSP

been visited, one of the remaining cities is chosen. Experimental studies have
shown that this method results in an improvement of solution quality and a
signi�cant performance gain [13]. Most Ant Colony Optimization algorithms
use a candidate list of size 20 [7].

3.5.2 Local Search

Local search is used to improve a solution found by looking in its neighborhood
for better ones. In the case of the TSP, this means involved by improving a
given tour with small local changes. Having found a tour, the order of the cities
is slightly changed into another valid tour by applying one of the following three
methods.

2-OPT Local Search The simplest way to change a TSP tour is to exchange
two edges. To realize this, two non-adjacent2 edges, call them ab and cd , are
chosen (Note that ab means that city a is visited before city b on the tour).
These edges are deleted and new edges ac and bd are inserted and hence form
a new TSP tour (see Figure 3.1). It is important to keep track of the way
the cities are reordered since new edges ad and bc would lead to two disjunct
cycles, neither one containing all cities.

2-OPT local search is considering all possible 2-exchanges and computes
the best one of those.

(a) (b)

Figure 3.1: This �gure illustrates a 2-OPT local search. Edges ab and cd
from the graph illustrated in (a) were deleted and the tour was completed
again by inserting edges ac and bd , thus resulting in the valid tour shown in
the graph in (b).

3-OPT Local Search 3-OPT local search considers all exchanges of 3 edges
in the tour and �nally computes the best one. Three non-adjacent edges ab,
cd and ef are chosen and deleted. To result in a valid TSP tour again, there

2Two edges ab and cd are non-adjacent if the endpoints a, b, c, d are pairwise disjoint

20

3.5. Improvements

are eight possible ways to reconnect the graph correctly. In Figure 3.2 we have
taken the best one, in order to re�ect the working principle of the 3-OPT local
search.

(a) (b)

Figure 3.2: This �gure illustrates a 3-OPT local search. Edges f d , be and ca
were deleted from the graph shown in (a) and the tour was completed again
by the insertion of edges bc , de and f a resulting in the valid tour presented
in (b).

2.5-OPT Local Search Even if the 3-OPT local search yields better solu-
tions, the complexity of doing such a search is O(n3) and therefore higher than
to do a 2-OPT with complexity O(n2). The 2.5-OPT local search is more ef-
fective than 2-OPT local search but has also complexity O(n2). It uses the
2-OPT and improves the constructed tour slightly, but does not consider as
many possible exchanges as 3-OPT. This is done through trying to insert a
city between two nodes, thus changing the edges accordingly. To illustrate the
way 2.5-OPT works, we present Figure 3.3.

(a) (b)

Figure 3.3: This �gure gives an example of a 2.5-OPT local search. City d
was ordered between city c and e, resulting in a shorter tour.

21

Chapter 3. ACO for the TSP

3.5.3 Don't-look-at bits

In 1992, Bentley introduced the concept of don�t-look-at bits [2]. The reason
is the following: If we want to try out all possible combinations of 2-OPT,
3-OPT or 2.5-OPT moves after each construction step, the algorithm will be
a lot slower. Hence, Bentley proposed considering only those exchange moves
which may cause an improvement. Starting at city i , if we fail to �nd a better
move in i 's neighborhood it does not make sense to try to �nd an improving
tour starting at i again, since the neighbors have not changed. We make use
of this observation by introducing a special �ag for each city. At the beginning,
the �ag is turned o� for all cities and is turned on for city i i� a search for
an improving move starting at i failed. The bit for i is only turned o� again,
if an improving move involving i 3, is found. This concept is included in the
local search approach by regarding only those cities as a starting point for local
search, whose don't-look-at bits are turned o�.

3that is if i is an endpoint of one of the exchanged edges

22

Chapter 4

On Optimal Parameters for the

Ant Colony System for the

Traveling Salesman Problem

Dorigo et al. provide a freely available ANSI C implementation of some Ant
Colony Optimization versions for the Traveling Salesman Problem1, which
serves as a foundation for our modi�cations. For the purpose of simpli�cation
we restrict our work to symmetric TSP instances, while it can easily be ex-
tended to incorporate asymmetric TSP instances. Furthermore, we focus on
one particular ACO version, so the choice betweenMAX −MIN Ant Sys-
tem and Ant Colony System had to be made and was carried out in favor of
ACS, as already explained in Section 3.3.

The aim of this work is to compare di�erent instances in order to �nd
some structural properties that allow us to determine good parameter settings.
Before we can continue with the results, we will discuss the design of the
algorithm and the choices we have made.

4.1 Design of the Algorithm

In this section, we discuss the parameter settings that were necessary for run-
ning the algorithm. Some of the basic design choices for Ant Colony System's
parameters were already discussed in Section 3.4; now we want to go into more
detail. As already reasoned in Section 2.4, we want to develop and test new
adaptive parameter control methods, which we introduce for some parameters
in this section.

1available at http://www.aco-metaheuristic.org/downloads/ACOTSP.V1.0.tar.gz

23

http://www.aco-metaheuristic.org/downloads/ACOTSP.V1.0.tar.gz

Chapter 4. Optimal Parameters for ACS for TSP

4.1.1 Trial

A trial is one run of the algorithm, which depends on the time we assign to
the ants to build their solutions.

Number of Trials In the given framework the number of trials was set to
a default value of ten. After ten trials, the mean of the best solutions found
in each trial and the mean of the time needed for it is computed, as well as
the standard deviation for both values. We decided to implement it that way
since it is easier to deal with the randomness in Ant Colony System and get a
feasible view on its performance.

Time for each Trial versus Number of Tour Constructions The question
is whether the stopping criterion for the ants' tour construction should be
the time or the number of tours which have to be constructed. As we run
these experiments to look into some comparisons among completely di�erent
instances, time seems to be an inadequate measurement. In [25] it is proposed
to perform the comparison based on the same number of tour constructions
for all algorithms: This number is chosen as n · 1000, where n is the number
of cities of an instance.

After running some tests with these values, we observe a long period of
stagnation at the end of each trial, where no better solution is found. There-
fore, we reduce the number of tour constructions and experimentally found
n · 100 to be a good trade-o� between enabling the algorithm to �nd better
solutions and avoiding excessive stagnation.

Adaptive β

As described in Section 3.4, the higher β is, the more exploitative the algo-
rithm gets. If β is getting smaller, the level of exploration is increasing. We
are inspired by [11] to vary β adaptively with the condition of �attening on
the stagnation of the algorithm. To make use of this approach, we needed
to �nd a measure to �nd a way of stagnating. We do so by counting during
how many iterations no better2 solution is found (iterationsWithoutImprove-
ment). We range β ∈ (βmin, βmax] = (0, 5] and link it to the iterations without
improvement by

β = βmin +
(βmax − βmin)

iterationsWithoutImprovement
.

Whenever a new best solution is found, iterationsWithoutImprovement is set
to 1 and therefore β = βmax. This is exactly what we want since the algorithm
can a�ord to be greedy at this point and might even try to further exploit the

2where better is related to the best-so-far solution

24

4.1. Design of the Algorithm

solution found. The more the algorithm stagnates, the closer β gets to βmin,
thus ants should follow more diverse paths.

To converge slower to zero, we take the square root of the iterations
without improvement. Thus the resulting formula is

β = βmin +
(βmax − βmin)√

iterationsWithoutImprovement
.

Dynamic Pheromone Evaporate Rate

Analogously to parameter β, we link the pheromone evaporation rate ρ to the
number of iterations without improvement. We range ρ between [ρmin, ρmax] =

[0.1, 0.5].

If no better solution is found for some iterations, ρ should get larger (so
close to ρmax) to support a stronger exploration. If, on the other hand, a new
best solution is found recently, the exploitation should be stronger and ρ close
to ρmin. Finally, to slow down the convergence towards ρmax the square root
of iterationsWithoutImprovement is taken

ρ = ρmax −
(ρmax − ρmin)√

iterationsWithoutImprovement
.

Dynamic q0

We range q0 between 0.5 and 1.0, where 1.0 should be taken if a better solution
was found in the current iteration, otherwise q0 should converge towards 0.5.
We implement this in the same way as we did with β and ρ and hence connect
q0 to iterationsWithoutImprovement by

q0 = q0min
+

(q0max
− q0min

)√
iterationsWithoutImprovement

.

If a better solution is found recently, a greedy search in city i 's neighborhood
will be performed, otherwise a biased exploration is enabled.

Iteration-best versus Best-so-far Ant

Surprisingly, it is still unknown whether the use of iteration-best ant is better
than using the best-so-far ant and vice versa. We run our tests with both
combinations as an optional input, but at least one of the �ags for best-so-far
or iteration-best has to be set. Hence, there is always at least one update for
the best ant. We assign the same value for the pheromone update to both

25

Chapter 4. Optimal Parameters for ACS for TSP

versions, so the best update is calculated by

τi j(t + 1) =


(1− ρ) · τi j(t) + ρ · ∆τi j(t) , if i j ∈ iteration-best tour & ib
(1− ρ) · τi j(t) + ρ · ∆τi j(t) , if i j ∈ best-so-far tour & bs
τi j(t) , otherwise

where ib refers to the set �ag for the iteration-best update and bs denotes
that the �ag for the best-so-far update is set.

Update of Worst Ant

In the original version of the Ant Colony System only the best ant is allowed
to update the pheromone. In [19] the update of the worst ant was introduced:
The worst ant lowers the pheromone level on the bad edges and therefore
punishes very bad solutions. Thus, this update makes a bad solution very
unlikely to be chosen again.

Since this seems to be a coherent concept, we implement the worst-so-far
ant update as well. Note that we have the choice between the worst-so-far
and the iteration-worst ant and choose the �rst one. The main reason for this
is because it was proposed in [19] that way and the execution time of all tests
would have been doubled if we had taken both versions as a possible input.

Finally the pheromone update can be described by

τi j(t + 1) =


(1− ρ) · τi j(t) + ρ · ∆τi j(t) , if i j ∈ best tour
(1− ρ) · τi j(t)− ρ · ∆τi j(t) , if i j ∈ worst-so-far tour & ws
τi j(t) , otherwise

where best is either the best-so-far tour or the iteration-best tour and ws
denotes that the worst-so-far �ag is set.

4.2 Testbed Design

Our aim is to examine which structural properties of a TSP instance cause
which parameter combination to yield good results. In order to have a variety
of TSP instances, we design the following test bed. Note that we consider
only symmetric instances.

4.2.1 Problem Sets

TSPLIB

We use symmetric and Euclidean instances from TSPLIB3 , whereby for most
instances the optimal solution is known and can be found at the given URL.

3http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

26

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

4.2. Testbed Design

DIMACS TSP Challenge

• Random Instance Generator: This random instance generator con-
structs two-dimensional instances with integer-coordinate points which
are uniformly distributed in the 106 X 106 square. The optimal solutions
are unknown for problems produced by this generator.

• Random Cluster Instance Generator: This random cluster instance
generator constructs integer-coordinate points located in clusters which
are uniformly distributed in the 106 X 106 square. The optimal solution
is unknown for this generator.

Fractal Instance Generator

Probably since L-systems4 are quite popular for describing fractal-like recur-
sive structures, they were used in [20] to describe particular instances for the
Euclidean TSP. Moreover, due to the recursive structure of the constructed
instances, the optimality of all tours generated with a L-system is proven 5.
We decided to generate 3 fractal types: the David Tour, the MPeano and the
MNPeano Tour.

(a) (b)

Figure 4.1: Instance MNPeano of order two is illustrated in (a) from [21]. (b)
from [20] shows the MNPeano instance of order three. Note that an order of
n means, that n parallel substitutions are made.

4An L-system or Lindenmayer system is a parallel rewriting system (for more information

see [24])
5The optimal tour is the permutation (1 . . . n) where n is the number of cities.

27

Chapter 4. Optimal Parameters for ACS for TSP

Random Symmetric Distance Matrix Generator

Finally, we implement a method for constructing random instances by gener-
ating a random distance matrix. The distances are uniformly distributed in (0,
1000).

4.2.2 Settings for the TSP Instances

The next step is to decide which of the instances to take for our simula-
tions. For external reasons, we have to skip numerous instances to �nish the
simulations soon enough to complete this work.

Size of Instances

The most obvious criterion is the number of cities, often referred to as the
size of an instance, which is handled as the most signi�cant measurement for
complexity of an instance so far. Clearly, the bigger the instance, the more
computational e�ort must be invested to obtain a good solution. We generate
the size of all instances with an exponential function. Due to external reasons
we have to restrict the number of instances. We create 18 instances sized
between 100 and 1,713 cities. For the other testbed classes, we choose 1,883
as the upper bound for the size, since this is the largest instance presented at
TSPLIB with less than 2,000 cities. 2,000 is also the limit we set due to the
time restrictions.

Resulting Testbed

We present the whole testbed in Table 4.1. Overall we obtain 131 TSP prob-
lems from �ve di�erent testbeds. Since TSPLIB contains the most realistic
data, most instances are taken from this repository.

Instance Type Number of Instances
TSPLIB 65
Random instance generator 18
Random cluster instance generator 18
Fractal 12
Random distance matrix 18

Sum 131 instances

Table 4.1: Testbed

28

4.2. Testbed Design

4.2.3 TSP Classi�cations

To �nd out which TSP problems can be solved best with which parameter com-
bination, we need to di�erentiate between di�erent graph instances. Therefore
we have chosen six measures to characterize a given instance. Note that we
explain all measures only by how we used them.

Measures

Size We call the number of cities in an instance size. Since the number of
possible tours 6 in a graph of size n is (n−1)!2 the di�culty to determine
which of all possible tours is the best, is getting larger with the instance
size. However problem instances with the same size may be solved in a
di�erent number of computational steps [12], so the problem size on its
own is not a su�cient criterion.

Arithmetic Mean The arithmetic mean µ (or mean) of all graph distances

in the distance matrix Dn×n is calculated by µ =

P
dij∈D

n2
. Thus, the

mean is the average distance between all cities. The mean is sensitive
to outliers when the samples are small, so in this case the median is a
better indicator of the center of the data.

Median We call the value positioned in the middle in the sorted list with entries
of the distance matrix the median. Whereas the mean is vulnerable to
outliers, the median does not re�ect them.

Standard Deviation The standard deviation (std) is a measure of the vari-
ability or dispersion of a data set. The higher std gets, the higher the
diversity in the data set is. The standard deviation of all entries in the

distance matrix D is calculated by std =

qP
dij∈D

(di j−µ)2

n∗n , where µ is the
mean as de�ned above. In [4, 22] the standard deviation is described as
an important measure that goes beyond the typical classi�cation of the
problem size. They have shown that problems with the same problem
size, which only di�er according to the standard deviation of distances,
are completely di�erent problems in terms of the required computational
e�ort to solve them.

Std of nNND The nearest neighbors (NN) of a city are those cities that have
the shortest distance. In order to make this distance independent of the
scaling of an instance, we normalize it by dividing it through the mean

6Firstly the starting city is given, so we got (n−1) cities to go to next. As the TSP tour is

a cycle it does not matter if we �rst go to the left or to the right from the starting city; both

tours are the same since the graph is symmetric, but they are two di�erent combinations in

the set of (n−1)! many combinations. Since this is true for each of the (n−1)! combinations,

we have to divide this number by two. �

29

Chapter 4. Optimal Parameters for ACS for TSP

distance of all edges in the TSP graph. Finally, the standard deviation
is computed for the sequence of normalized nearest-neighbor distances
(nNND) for all cities [12] and we obtain the standard deviation of nor-
malized nearest-neighbor distances (std of nNND). This is a measure
of the homogeneity of the graph: the more compact all cities are, the
smaller this measure is and vice versa. The std of nNND takes only
the smallest distances between cities into account. A look beyond the
nearest-neighbors is provided by the following measure.

Variation Coe�cient In [12] the variation coe�cient is de�ned as the stan-
dard deviation of all distances of the graph divided by the mean of all
distances given. It is a measure of dispersion which is independent of
the scaling of a graph.

Running the Tests

We run the simulations on four AMD Opteron 254 E with 2×2.8GHZ and
4GB RAM. We split the simulations into four groups and run each group on
a di�erent machine. Table 4.2 gives an overview over the possible parameter
con�gurations.

To obtain the best con�guration for the respective instances, we test all
possible combinations of the strategies. Finally, we obtained six possible com-
bination of the �rst three parameters, resulting in: 6× 2︸︷︷︸

β

× 2︸︷︷︸
ρ

× 2︸︷︷︸
q0

= 48

parameter combinations for all parameters.

Parameter Strategy Flag Set Flag not Set
best-so-far apply best-so-far update set iteration-best �ag
iteration-best apply iteration-best update set best-so-far �ag
worst-so-far apply worst-so-far update �
dynamic β apply dynamic β β is set to 3.5
dynamic ρ apply dynamic ρ ρ is set to 0.1
dynamic q0 apply dynamic q0 q0 is set to 0.9

Table 4.2: Usage of parameter strategies

30

Chapter 5

Results

In this chapter, we present the results of our tests and the conclusions we
have drawn. At �rst, we evaluate the graph measurement we have done. We
continue with the analysis of good and bad combinations and we end this
chapter with a review of what we have achieved.

5.1 Evaluation of Graph Measures

Our primary goal is to determine which parameter settings work well in con-
junction with particular graph characteristics. After having implemented six
graph measures (Section 4.2.3), we plot each of them against all instances
and all di�erent combinations. We aim to �nd a link between a graph measure
and some parameter combinations, telling us for which measure range which
parameter combination �ts best.

Firstly we focus only on the �ve best parameter combinations for each
instance. We obtain those by comparing the average best tour, taking the
average time for a solution as the second criterion if otherwise no choice can
be made.

Some experiments lead us to conclude that there are some instances where
more than �ve (for some of them even all) combinations yield the same best
result in the same time. However, if we continued taking only the best �ve
combinations for these instances, the combination of parameters might be
skewed. In order to avoid this distorted picture on which combination �ts best,
we will do the following: If we obtain more than �ve combinations with the
same best solution and the same time, we call it nBest, we consider all those
nBest combinations as best. Otherwise, we take the best �ve combinations
and consider them best.

We present the �gures and our conclusions in the following sections. Note
that we do not split the instances in the �ve testbed groups, since we are
interested in how to �nd the best parameter setting for a new and unknown
instance. In this case we do not know where the instance was taken from.

31

Chapter 5. Results

Therefore, the distinction between di�erent testbed classes is not in our inter-
est and will be disregarded.

Size of an Instance

Firstly, to get an impression on the distribution of the instances in the testbed
according to their size, we present Figure 5.1a. The second Figure 5.1b is a
plot of the problem size against all parameter combinations. The instance sizes

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 20 40 60 80 100 120 140

co
m

bi
na

tio
ns

size

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 500 1000 1500 2000

c
o

m
b

in
a

ti
o

n
#

size

(b)

Figure 5.1: Size versus parameter combinations

are ranged between 100 and 1,889. As one can already see, we have taken more
instances with smaller size than with a bigger one, since the smaller instances
require less computational e�ort. The �gure suggests that the di�culty is
increasing with the instance size. Unfortunately, this cannot be a su�cient
measure as, e.g., two instances both have 100 nodes. While for the �rst
problem twelve nBest solutions were found, there was only one parameter
combination yielding the best solution for the latter.

Evaluation

Even if the problem size seems to be a good measure, we cannot use it to
characterize graphs. Two graphs might have the same number of cities, but
as shown their di�culty di�ers a lot. Therefore, we propose to measure the
problem's computational di�culty not only with the problem size, but in com-
bination with further measurements. It is, however, unclear which measure to
choose.

Mean, Median and Standard Deviation of all Distances

By means of Figure 5.2, one can infer that mean, median and standard devi-
ation vary a lot, not only in their range, but also with the parameter settings

32

5.1. Evaluation of Graph Measures

that are easiest to solve (according to the number of nBest). They are easier
to solve since many combinations, for some even the worst ones, lead to the
best solution in the shortest time. So there must be something structural
about these instances that makes them easier to solve than other instances,
thus we refer to them as easy instances. Looking at Figures 5.2a, 5.2c and
5.2e, a range gap between 1,000 and 10,000 on the y-axes can be seen. Due
to the harsh restrictions in number of instances and instance size, we cannot
say whether this gap is also apparent among other testbeds and whether it
might be seen as an important characteristic.

Evaluation

Regrettably, the data points are not arranged in a way that leads to a conclu-
sion on how the three measures in�uence the parameter setting. This is since
the areas of high density (the areas with many nBest points) are too equally
distributed.

The standard deviation is another inappropriate measurement, since it does
not show any property of the respective instances, in contrast to what was pro-
posed in [4, 22]. We can but establish one property of our test data: only a
few outliers are present in the distance matrix. This results from comparing
the median of distances for each instance is to the mean. All three �gures are
rather similar and do not enable us to draw any further conclusion. Therefore,
the three measures seem inappropriate to us, since they do not re�ect proper-
ties which might help us to reason anything about the parameter combinations
that suit the respective instances.

Standard Deviation of Normalized-Nearest Neighbor Distances and

Variation Coe�cient

Figure 5.3 shows the two measures plotted for all instances or against all
parameter combinations, respectively.

Standard Deviation of Normalized-Nearest Neighbor Distance (std of

nNND) The std of nNND re�ects the homogeneity of the graph. Most
of the instances are ranged between 0 and 0.06 on the x-axis, as can be see
from Figure 5.3b. A division into two parts can be made according to Figure
5.3b: Instances ranged between 0 and 0.05 on the x-axis seem to have many
bestN and the remaining ones only the minimal number of �ve bestN or slightly
more. Nevertheless, this might be misleading since the number of instances in
the �rst part is much higher than in the second. On the contrary, one can see
from Figure 5.3b that the rightmost instance has more than �ve bestN.

33

Chapter 5. Results

Variation Coe�cient The following tendency for the plot can be seen: The
farther we proceed to the right, the fewer instances there are with more than
�ve bestN, and thus the more di�cult the instances are. Most of the TSP
instances are grouped around 0.5 on the vertical axis. Hence, the standard
deviation for most instances is around half of the mean value of all distances.

Conclusions

Both approaches might be worth being considered further, even if we do not
know how to evaluate them appropriately at the moment. The concept of both
measures is a good idea; further measures should be chosen independently of
the problem scale. The independence of the instance scaling is achieved for
both measures, because they are computed by a ratio based on the mean
distances of all cities.

5.2 Ranking of the Combinations

We use some abbreviations for the tables in this chapter and denote them
therefore brie�y below in Table 5.1. For a more detailed description of these
parameters, see Section 4.1 and Section 4.2.3.

Abbreviation Long Form
ib iteration-best update
bs best-so-far update
ws worst-so-far update
der dynamic ρ (evaporation rate)
dq0 dynamic q0
db dynamic β

Table 5.1: Abbreviations used

5.2.1 Best Combinations

To obtain an overview of which parameter settings are best for most instances,
we have listed the best ten combinations below. Note that we use the 3 symbol
to show that we have enabled the adaptive option or the update respectively.
The 7 symbol is used to indicate which update was disabled and a given value
represents the static parameter setting with the particular value.

Evaluation

Surprisingly, we found three combinations that yield better results than the
standard version proposed by Dorigo et al. (only best-so-far is set), on our

34

5.2. Ranking of the Combinations

Pos. ib bs ws der dq0 db in bestN

1 3 7 3 3 3 3.5 37.40%
2 3 7 7 3 3 3.5 29.77%
3 7 3 3 3 0.9 3.5 28.24%
4 7 3 7 0.1 0.9 3.5 26.72%
5 3 7 3 0.1 0.9 3.5 26.72%
6 3 7 7 0.1 0.9 3.5 25.95%
7 7 3 3 3 3 3.5 25.95%
8 3 7 7 3 0.9 3 25.95%
9 7 3 3 0.1 0.9 3.5 25.19%
10 3 7 3 3 0.9 3 24.43%

Table 5.2: Ranking of the best combinations found for all instances.

test data. This might indicate that either we have a better approach for most
instances or that our testbed is not an appropriate representation for most
TSP problems.

Dynamic β is only presented twice among the best combinations, so we
would not recommend this strategy so far. To answer the question whether
the best-so-far update is better than iteration-best, we have scored the occur-
rences in the table: Iteration-best is ranked six times among the best instances,
so only slightly more often than best-so-far. It is however set in the two best
combinations. Otherwise, the worst-so-far update is ranked six times among
the best and is even set in the best combination. If we turn the worst-so-far
update o�, we obtain only the second best combination.

No combination is totally superior in a sense that using it is a guarantee
for good solutions. Even the best combination achieves the best solution only
for 37.40% of all instances.

Unknowingly, we might have chosen instances with characteristics that are
biased towards the given combination, so it is hard to tell how valid the results
presented here are.

Comparison among three best Combinations

After having found the best combinations, we ask ourselves whether the best
combinations achieve the best solutions on the same instances or whether they
have been ranked best at di�erent ones. The results are illustrated in Figure
5.4. Surprisingly, the three best combinations have not been ranked together
among the best for most instances; so they appeal to di�erent problems. This
is unexpected, since the �rst combination and the second only di�er in one
parameter setting. Overall, this con�rms the complexity of the interaction of
all di�erent parameters, reported by Dorigo et al.

35

Chapter 5. Results

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 20 40 60 80 100 120 140

co
m

bi
na

tio
ns

mean

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10 100 1000 10000 100000 1e+06

c
o

m
b

in
a

ti
o

n
#

log mean

(b)

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 20 40 60 80 100 120 140

co
m

bi
na

tio
ns

median

(c)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10 100 1000 10000 100000 1e+06

c
o

m
b

in
a

ti
o

n
#

log median

(d)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 20 40 60 80 100 120 140

co
m

bi
na

tio
ns

std

(e)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10 100 1000 10000 100000 1e+06

c
o

m
b

in
a

ti
o

n
#

log std

(f)

Figure 5.2: The distribution of mean, median and standard deviation for all
instances is presented in (a), (c) and (e). The plot of the respective measure
against all parameter combinations is given in (b), (d) and (f).

36

5.2. Ranking of the Combinations

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 20 40 60 80 100 120 140

co
m

bi
na

tio
ns

stdn

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

c
o

m
b

in
a

ti
o

n
#

std of nNND

(b)

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 20 40 60 80 100 120 140

co
m

bi
na

tio
ns

vc

(c)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

c
o

m
b

in
a

ti
o

n
#

variation coefficient

(d)

Figure 5.3: The distribution of the standard deviation of normalized-nearest
neighbor distances for all instances is presented in (a). (c) shows the same plot
for the variation coe�cient. (b) and (d) illustrate the plot of the respective
measure against all parameter combinations.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120 140

c
o
m

b
in

a
ti
o
n
s

instance#

Best

Second

Third

Figure 5.4: Three best parameter combinations

37

Chapter 5. Results

5.2.2 Worst Combinations

Without the knowledge of the worst combinations, the best ten combinations
are not meaningful enough to draw conclusions based on the frequency of each
parameter setting. This is why we also consider the worst combinations and
list them in Table 5.3.

Pos. ib bs ws der dq0 db in bestN

39 7 3 3 3 3 3 9.16%
40 7 3 7 3 3 3 8.40%
41 3 7 7 0.1 0.9 3 8.40%
42 3 3 7 0.1 3 3 8.40%
43 7 3 3 0.1 0.9 3 7.63%
44 3 7 3 0.1 0.9 3 6.87%
45 3 7 3 0.1 3 3 6.87%
46 7 3 7 0.1 3 3 6.87%
47 3 3 3 0.1 3 3 6.11%
48 7 3 3 0.1 3 3 6.11%

Table 5.3: Ranking of the worst combinations found for all instances

Evaluations

One of the results we can derive from both scores is that the usage of dynamic
β is highly discouraged. Table 5.3 reveals that dynamic β is always ranked
among the last combinations and only twice among the best combinations.
Thus, due to these results it is not a good strategy. One possible explanation
for this is that, as the distances approach one, the search is only biased towards
the pheromone. Concerning the amount of pheromone, trails which have been
ranked best often are thus likelier to be chosen again. We can thus say that
β should be bigger than zero, otherwise the pheromone information is over-
weighted.

Dynamic evaporation rate does, on the other hand, seem to be a promising
parameter control approach. Even if it is only listed three times among the
best instances (but there among the two best strategies), together with only
two listings from Table 5.3, we suggest the use of dynamic evaporation rate.

Finally, we would prefer the iteration-best update over the best-so-far,
because the latter is listed seven times in this table and only scored four times
among the best. The di�erence between both is not as high as expected, but
overall iteration-best is superior in our tests.

It is hard to tell, whether the use of the worst-so-far update is recom-
mendable, since it is scored six times for the most successful, as well as six

38

5.2. Ranking of the Combinations

times for the least successful combinations. Nevertheless, it is set for the best
combination, so we would encourage the further use of it.

Comparison among �ve worst Combinations

After having ranked the worst parameter combinations, we are interested again
in whether those parameter combinations are ranked among the same instances
as best-performing ones. As one can see from Figure 5.5, they mostly belong
to the best combinations for the same instances. This can be explained by

Figure 5.5: Comparison of �ve worst combinations

counting how many combinations achieved the best solution in the best time
for each instance: Three instances were found for which all combinations result
in the best tour and �ve instances for which more than 30 best combinations
were found. Together this accounts for 6.11% of all instances, which explains
the percentages found for the last two combinations listed in Table 5.3. Those
eight instances have a size of 100 to 212 cities; relatively small.

Unfortunately, it is still unclear why these particular instances are easier
to solve; it cannot be exclusively due to the size since there are many more
instances in this range which are harder to solve.

Hence, we decided to compare all those instances with more than 10 best
combinations based on their graph measures. The graph measurements for
those 15 instances are presented below in Table 5.4. The range for most of
the values is too large, so considering median, mean and standard deviation
does not help in revealing similarities among the values. Only for the standard
deviation of the normalized nearest-neighbor distances and the variation coef-
�cient, we examine the general range of all instances and aim to draw some
conclusions. The two plots are presented in Figure 5.6. In both �gures easiest

39

Chapter 5. Results

No. nBest Size Mean Median Std Std nNND V.coe�.
15 21 100.0 1.67e3 1537.0 923.71 0.05 0.55
31 48 180.0 402.14 397.0 191.86 0.01 0.48
40 47 100.0 550.11 550.0 267.28 0.05 0.49
45 48 159.0 2.81e3 2.70e3 1.49e3 0.03 0.53
46 37 144.0 5.60E3 5.40e3 2.84e3 0.01 0.51
48 41 108.0 437.95 438.0 207.70 0 + ε 0.47
52 10 225.0 7.05e3 6.80e3 3.35e3 0.0 0.47
69 11 100.0 1.71e3 1.60e3 944.73 0.05 0.55
72 18 118.0 5.22e5 5.12e5 2.56e5 0.05 0.49
83 37 100.0 5.34e5 5.23e5 2.61e5 0.05 0.49
85 46 124.0 5.58e3 5.89e3 2.88e3 0.03 0.52
89 48 212.0 403.18 398.0 192.17 0 + ε 0.48
90 12 428.0 391.74 384.0 186.08 0 + ε 0.48
97 10 118.0 1.50e5 1.41e5 7.97e4 0.11 0.53
107 14 139.0 5.21e5 5.17e5 2.52e5 0.05 0.48

Table 5.4: Graph measurements for 15 easiest instances

refers to the 15 instances we listed in Table 5.4, while other refers to the
remaining 116 instances.

(a) (b)

Figure 5.6: Plot of normalized-nearest neighbor distances (a) and of the vari-
ation coe�cient (b) for all instances

Unfortunately the two �gures show that both measures do not help in distin-
guishing between easier instances and others. All occurrences of easy instances
are uniformly distributed in the given space. Therefore, the question what
makes these instances easier to solve remains unanswered since all measures
seem to be inappropriate to classify them.

40

Chapter 6

Conclusions and Further

Investigations

Conclusions

We have set up experiments with 131 instances and tested them with 48
di�erent parameter combinations. We have also computed six TSP measures
to classify the chosen instances.

After interpreting the results, we have found three parameter strategies
that have led to better solutions than the standard parameter setting proposed
by Dorigo et al. This was obtained concerning the shortest tour found and
the time that was needed for the computation.

Parameter Combinations The most successful combination used the newly
developed strategies dynamic evaporation rate and dynamic q0 as well as the
iteration-best and worst-so-far update. We encourage the use of dynamic
evaporation rate and the worst-so-far ant for further research, since these
settings are scored often among the best combinations. All adaptive strategies
make use of the stagnation behavior of the algorithm: if no better solution was
found for a while, the �nding of di�erent paths should be activated. The newly
designed strategy of dynamic β lead to disappointing results. An important
question is, whether the testbed we have chosen is appropriate, or if we might
have chosen (unknowingly) a skewed distribution of instances that in�uences
the rankings.

Graph Measures In order to evaluate the graph measures, we visualized
all of them and showed that neither median, mean nor standard deviation are
appropriate to represent the TSP graph. Size, standard deviation of normalized
nearest-neighbor distances and variation coe�cient, on the other hand, look
promising to help us in classifying a given instance. Nevertheless, they are

41

Chapter 6. Conclusions and Further Investigations

not su�cient, so further investigations into possible TSP measures should
be undertaken. It can be concluded that the measures have helped us only
to characterize the testbed, but they are not su�cient for judging a single
instance.

Further Investigations

Additional Tests More experiments should be run to show if our proposed
settings can maintain their positions in the ranking of the di�erent approaches.
Those tests should be done with further instances from the �ve di�erent
testbeds (or even further testbeds), possibly choosing only the best ten pa-
rameter settings provided by this work. It might be also taken into account to
vary the static values we have chosen for the default version. In our opinion,
it is worth considering dynamic β in these tests again, as it might be much
better when β is ranged between 1 and 5. Our data for the bigger instances
was not statistically signi�cant enough. For the next experiments, we propose
to choose a uniform distribution of instance sizes.

Multicore Approaches A lot of e�ort has been put into the development of
multi-core-based distributed systems for Ant Colony Optimization [9], which
use multicore processors more e�ectively. For further tests we propose to
make use of this new approach.

New Graph Measures More work should be conducted to �nd graph mea-
sures that represent a TSP instance well. We propose to keep to measures
which are independent of the problem scale, since dependent measures are
not able to discover similarities among a basically identical, but weight-scaled
instance. One possible measure might be the number of clusters derived by
density-based clustering, which was suggested in [26].

Static vs. Adaptive Parameter Control An interesting question is how our
best parameter setting would behave in direct comparison with the (experi-
mentally found) best static parameter setting, which was e.g. investigated in
[12]. We therefore propose to run tests to compare the two approaches.

42

Bibliography

Bibliography

[1] H. Azzag, N. Monmarche, M. Slimane, G. Venturini, and C. Guinot.
Anttree: A new model for clustering with arti�cial ants. In Proceedings
of the 2003 Congress on Evolutionary Computation, pages 2642�2647,
2003.

[2] J.L. Bentley. Fast algorithms for geometric traveling salesman problems.
ORSA Journal on Computing, 4:387�411, 1992.

[3] S. Camazine, J.-L. Deneubourg, N.R. Franks, J. Sneyd, G. Theraulaz,
and E. Bonabeau. Self-Organization in Biological Systems. Princeton
University Press, 2001.

[4] P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the really hard
problems are. In Proceedings of the Twelfth International Conference
on Arti�cial Intelligence, volume 1, pages 331�337. Morgan Kaufmann
Publishers, Inc., 1991.

[5] L.N. De Castro. Fundamentals of Natural Computing: Basic Concepts,
Algorithms, and Applications. Chapman & Hall/CRC, 2006.

[6] M. Dorigo and L.M.P Gambardella. Ant colonies for the traveling sales-
man problem. BioSystems, 1997.

[7] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, 2004.

[8] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: Optimization by a
colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics � Part B, 26(1):29�41, 1996.

[9] Marc Dorigo and Socha Krzysztof. An introduction to ant colony opti-
mization. IRIDIA Technical Report Series, 2006. ISSN 1781-3794.

[10] À.E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evo-
lutionary algorithms. In IEEE Transactions on Evolutionary Computation,
volume 3 of 2, 1999.

43

Bibliography

[11] S. Favuzza, G. Graditi, and E. Riva Sanseverino. Adaptive and dynamic
ant colony search algorithm for optimal distribution systems reinforce-
ment strategy. Applied Intelligence, 24(1):31�42, 2006. ISSN 0924-
669X. doi: http://dx.doi.org/10.1007/s10489-006-6927-y.

[12] D. Gaertner. Natural algorithms for optimisation problems. Master thesis,
2004.

[13] L.M. Gambardella and M. Dorigo. Solving symmetric and asymmetric tsps
by ant colonies. In Proceedings of the IEEE Conference of Evolutionary
Computation, pages 622�627, 1996.

[14] X. Hu. Swarm intelligence. Website, 2009. Available online at http:

//www.swarmintelligence.org/; visited on June 23rd, 2009.

[15] V.K. Jayaraman, P.S. Shelokar, and B.D. Kulkarni. An ant colony ap-
proach for clustering. Technical report, Chemical Engineering and Process
Division, National Chemical Laboratory, India, 2003.

[16] D.S. Johnson and L.A. McGeoch. The Traveling Salesman Problem: A
Case Study in Local Optimization, chapter 8, pages 215�310. Wiley,
1997.

[17] J. Kennedy and R. Eberhart. Particle swarm optimization, 1995.

[18] Pierre Lévy. Die kollektive Intelligenz : für eine Anthropologie des Cy-
berspace. Bollmann, Mannheim, 1997.

[19] Y. Li and S. Gong. Dynamic ant colony optimisation for tsp. International
Journal of Advanced Manufacturing Technology, 22(7-8):528�533, 2003.

[20] A. Mariano, P. Moscato, and M.G. Norman. Using l-systems to generate
arbitrarily large instances of the euclidean traveling salesman problem
with known optimal tours. In Anales del XXVII Simposio Brasileiro de
Pesquisa, Operacional, 1995.

[21] P. Moscato. Tspbib. Website, 2009. Available online at http://

www.densis.fee.unicamp.br/~moscato/TSPBIB_home.html; visited
on July 16th, 2009.

[22] E. Ridge and D. Kudenko. Determining whether a problem charac-
teristic a�ects heuristic performance. In Recent Advances in Evo-
lutionary Computation for Combinatorial Optimization, volume 153,
pages 21�35, 2008. URL http://www.springerlink.com/content/

g22v456585405444/.

[23] E. Ridge and D. Kudenko. Screening and tuning the parameters a�ecting
heuristic performance. In Proceedings of the Genetic and Evolutionary
Computation Conference, 2007.

44

http://www.swarmintelligence.org/
http://www.swarmintelligence.org/
http://www.densis.fee.unicamp.br/~moscato/TSPBIB_home.html
http://www.densis.fee.unicamp.br/~moscato/TSPBIB_home.html
http://www.springerlink.com/content/g22v456585405444/
http://www.springerlink.com/content/g22v456585405444/

Bibliography

[24] G. Rozenberg and A. Salomaa. The mathematical theory of L systems.
Academic Press, New York, 1980.

[25] T. Stützle and H.H. Hoos. Improving the ant system: A detailed report on
the max-min ant system. Technical report, FG Intellektik, FB Informatik,
TU Darmstadt, Germany, 1996.

[26] Jano I. van Hemert. Property analysis of symmetric travelling salesman
problem instances acquired through evolution. CoRR, abs/cs/0502096,
2005.

[27] K.Y. Wong and Komarudin. Parameter tuning for ant colony optimiza-
tion: A review. In International Conference on Computer and Communi-
cation Engineering, 2008.

45

Bibliography

Selbständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig und nur mit
erlaubten Hilfsmitteln angefertigt habe.

Magdeburg, den 05. August 2009

Julia Preusse

47

Appendix A

Glossary

ACO Ant Colony Optimization

ACS Ant Colony System

AS Ant System

PSO Particle Swarm Optimization

TSP Traveling Salesman Problem

49

	Introduction
	Purpose of this Document
	Motivation
	The Tasks
	Document Structure

	Basics
	Traveling Salesman Problem (TSP)
	Metaheuristics
	Swarm Intelligence
	On Optimal Parameters

	ACO for the TSP
	Ant System (AS)
	MAX-MIN Ant System
	Ant Colony System (ACS)
	Description of Parameters for Ant Colony System
	Improvements
	Candidate List
	Local Search
	Don't-look-at bits

	Optimal Parameters for ACS for TSP
	Design of the Algorithm
	Trial

	Testbed Design
	Problem Sets
	Settings for the TSP Instances
	TSP Classifications

	Results
	Evaluation of Graph Measures
	Ranking of the Combinations
	Best Combinations
	Worst Combinations

	Conclusions and Further Investigations
	Glossary

