Density-Based Multidimensional Scaling

F. Rehm, F. Klawonn, and R. Kruse

Abstract Multidimensional scaling provides dimensionality reduction for high-
dimensional data. Most of the available techniques try to preserve similarity in terms
of distances between data objects. In this paper a new approach is proposed that
extends the distance preserving aspect by means of density preservation. Combining
both, the distance aspect and the density aspect, permits efficient multidimensional
scaling solutions.

1 Introduction

Most branches of commerce, industry and research put great efforts in collecting
data with the objective to describe and predict customer behaviour or both technical
and natural phenomena. Besides the size of such data sets, data analysis becomes
challenging due to a large number of attributes describing a data object. Visualiza-
tion can facilitate the discovery of structures, patterns and relationships in data and
exploratory visualization is an important component in hypothesis generation.
Multidimensional scaling (MDS) is a family of dimensionality reduction tech-
niques that use optimization to preserve distance relationships between points in
the multidimensional space in the two- or three-dimensional mapping required for
effective visualization (Kruskal and Wish 1978). In the recent years much effort
has been done to improve MDS regarding its computational complexity (Borg and
Groenen 2005; Chalmers 1996; Morrison et al. 2003; Williams and Munzner 2004).
Besides distance-based approaches also some techniques preserving angles between
data objects have been applied successfully (Lesot et al. 2006; Rehm et al. 2006).
In this paper we present a new approach that extends conventional distance-based
multidimensional scaling by a density preserving aspect. This permits to improve
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the mapping of high-dimensional data for visualization purposes. The rest of the
paper is organized as follows. In Sect.2 we briefly review Sammon’s mapping as
a common representative of distance-based MDS. Section 3 describes the proposed
method. Section 4 discusses results on benchmark examples. Finally we conclude
with Sect. 5.

2 Sammon’s Mapping

Sammon’s mapping is a multidimensional scaling technique that estimates the coor-
dinates of a set of objects Y = {y1,..., yn} in a feature space of specified (low)
dimensionality that come from data X = {x1,...,x,} C R? trying to preserve the
distances between pairs of objects. These distances are usually stored in a distance
matrix

D¥ =(dj), dj =[x —x]

L ij=1.....n.

The estimation of the coordinates will be carried out under the constraint that the
error between the distance matrix D* of the data set and the distance matrix DY =
(dl?j’-), dl?;- = |lyi —y;ll. i,j = 1,...,n of the corresponding transformed data set
will be minimized.

Different error measures to be minimized were proposed, e.g., the absolute error
that considers non-weighted differences between original distances and distances
in the target space, the relative error that takes relative distances into account or a
combination of both. The Sammon’s mapping error measure

¢ (y-a5)

1
Eammon = n n Z Z dx (D

describes the absolute and the relative quadratic error. To determine the transformed
data set Y by means of minimizing error Eqmmon @ gradient descent method can
be used. By means of this iterative method, the parameters y; to be optimized, will
be updated during each step proportional to the gradient of the error function E.
Calculating the gradient of the error function leads to

y
aEsammon . 2 Zdlj _dl); Yi—yj 2)
dy & &4 dp dj,
> Y di A J
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After random initialization for each projected feature vector y; a gradient descent is
carried out and the distances dl-yj as well as the gradients (Bdl?;- /dy;) will be recalcu-
lated again. The algorithm terminates when Eg,mmon becomes smaller than a certain
threshold.
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3 Density-Based Mappings

The concept of density-based visualization is to map density distributions of high-
dimensional data into low-dimensional feature spaces. Density variations often
indicate the existence of clusters which, commonly, are of concern in the field of
data mining. Thus, projecting these density distributions to a visually interpretable
display may help to identify interesting patterns in the data.

In the following we formalize the problem of density preservation by means of
an objective function that can be minimized through a gradient descent technique.
For each data object in the original data space a multivariate Gaussian distribution
is defined that represents a data point’s potential energy. When adding those single
potentials we get a sort of multidimensional potential mountains. Summits of the
mountains can be found where many data objects are located. Accordingly, valleys
can be found in areas of low data density.

Similarly, one can reproduce the mountains in the low-dimensional feature space
(usually two or three dimensions). For this purpose each data object of the original
space will be placed in the projection space. Over every single data point a potential
(in form of a two- or three-dimensional Gaussian distribution) will be applied. The
criterion for the mapping is that the potentials in the original space coincide as good
as possible with the potentials at the corresponding points in the target space.

Given the data set X = {x1,...,x,} C R? we seek for the mapped data set
Y = {y1.....yn} C RF with k = 2 or k = 3 with the following potential for x;:

1 Ay OBRNONS
fir) = exp| - Z(x i ) 3)

c 2 o
r=1

with
B 1

oP \/(271)1’.

By x® and xi(t) we denote the 7-th attribute of data object x and Xx;, respectively.
Function f; simply describes the density of a p-dimensional Gaussian distribution
with mean value x; and variance o2 in each dimension. The parameter o must be
fixed for the entire procedure. If o is rather small, then the potentials do rarely
overlap. For very large o the potential landscape will be blurred completely with
little variance in height.

Therefore, it is useful to define o according to the diameter d of the data space,
the average distance between data points, the number n of data objects and the
dimensionality p. A straight forward approach would be to assume that the data is
uniformly distributed in a hyper-cube or hyper-sphere. In this case the potentials
would have approximately the same height. Of course, this assumption is fairly
theoretical. In practice mountains will be formed due to the heterogeneous structure
of the data. However, under this assumption the average density can be computed
and the potentials on and between data points can be determined. The larger the
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variance o2, the smaller the difference in the potentials. For small data sets the
density is low and therefore a larger o should be chosen.

Similar to Sammon’s mapping we seek the projected data points ¥ = {y,...,
yn} C R¥. Over each data point we apply a potential (in this case a k-dimensional
Gaussian distribution) as for the original space:

k )\ 2
1 1 y® —y
(y) = - 4
gi(y) = _exp 2;( 5 4)
with
5 1
C = .
&k \/(2m)k

Then the objective is to place the feature vectors such that the potentials coincide
at least in these points with those in the original space. Note, & should be chosen
similarly to . In the ideal case we have approximately the same diameter d in the
target space, too. However, the area (or the volume) of the target space will be much
smaller compared to the hyper volume of the original space (k < p). This means
that the density in the target space is also higher for the same size of the data set.
Thus, ¢ should be chosen smaller than o. Still the potentials in the target space
might not match the potentials in the original space yet. It should be assured that the
maximum height of the single potentials in the original space and in the target space
match, i.e., the respective maxima of the Gaussian distributions should be:

fi(xi) ~ gi(yi).
Since normally this will not be the case we introduce a constant a:
afi(xi) = gi(yi)

which can be derived from (3) and (4):

P
a="7, \/(271)1’_".
o

Now we can formulate our objective function. The summarized modified potential

in the original space at x; is
n

> afj(x)

Jj=1

and in the target space at y;
n
> g
j=1

In the ideal case, both potentials should be equal. Hence, we define the objective
function as follows:
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Edensity = Z Zgj (J’z Zafj(xi)
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Now, we only have to determine the gradient for each component s:
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3y1 g (yi) is only zero when we have [ = i or [ = j. For both cases we derive
from (6):
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It can be easily seen that fori = j = [ we have 3;’” g (i) = 0. Finally we obtain
for the gradient:
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Combining the Sammon gradient Egmmon and the density gradient Egensiry through
linear combination we finally obtain

E—u 8Esamm0n + ,B aEdensity )

(10)
a1 i
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Fig. 1 Cube data set
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The parameters @« > 0 and § > 0 can be considered as learning rates or weights
to control the impact of the respective mapping strategy. Thus, higher weights « for
the Sammon gradient favour distance-based mappings and larger values § for the
density gradient favour the density approach.

4 Results

In this section we will discuss some results of the proposed technique on some
benchmark examples. The first data set, the Cube data set (see Fig. 1), is about a
synthetic data set, where data points scatter around the corners of an imaginary
three-dimensional cube. Thus, the Cube data set contains eight well separated clus-
ters. The second data set, the Wine data set (Forina et al. 1988), results from a
chemical analysis of wines grown in the same region in Italy but derived from three
different cultivars. The analysis determined the quantities of 13 constituents found
in each of the three types of wines.

Figure 2 shows a Sammon’s mapping of the Cube data set. The eight data clus-
ters are well reflected in the mapping. The transformation with the density-based
approach, setting « = 0 and thusly optimizing the density aspect exclusively, leads
to the mapping visualized in Fig. 3. It is surprising that already the density aspect
in the optimization is sufficient in this example to reflect the structure of the data
set. Applying a linear combination of both, the Sammon gradient and the density
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gradient, we obtain the mapping depicted in Fig.4. Whereas the distance-based
approach seams to favour the preservation of the inter-cluster structure, the linear
combination of distance and density aspects gives a better overall impression of the
data set.

Figures 5 and 6 show transformations of the Wine data set with Sammon’s map-
ping and with the density-based approach, respectively. Both transformations show
similar characteristics.

Based on the empirical tests we cannot constitute that the density-based approach
is superior to the distance-based approach. Indeed, the computational complexity
per iteration of the density-based approach is rather higher since the density gradient
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Fig. 6 Density-based mapp- 8
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has to be computed additionally. Our tests have shown that the number of iterations
can be reduced with density preservation.

5 Conclusions

In this paper we have presented a new approach to visualize high-dimensional data.
Density-based multidimensional scaling considers not only the distance aspect as
it is usual but also density aspects of a data set. We could show that our approach
is promising and leads to comparable results as conventional MDS and can lead to
better results in combination with MDS. Future work should focus on further tests
on complex data sets to prove stability and convergence.
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