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Abstract— Air traffic at airports is affected by various factors. The rest of the paper is organized as follows: in section Il
The capacity of an airport and the demand at a certain point e discuss two recent multi-dimensional scaling approsche
in time are serious parameters that account for a big extent |, gection 11 we briefly describe the application and theadat

to aircraft delay and related variables. It has been proven hat | tion IV It iati d ther dat il b
weather is another important impact in this regard. Although n section resufts on aviation and weather data will be

weather cannot be controlled, the knowledge of how weather Shown followed by some concluding remarks in section V.
affects the air traffic at an airport can be very helpful to

optimize air traffic management. Data mining promises to ga [I. MULTI-DIMENSIONAL SCALING
thaLtJ knol\l""etgge'  first step in data mining is data visualizaion Multi-dimensional scaling (MDS) aims at arrangingdata
sualy, the very first Stepin data mining 1s data visuafizaton. objects X = {z1,...,2,} C RP into a low-dimensional

In this paper we discuss two new visualization techniques i ) . .
that allow to visualize aviation data and weather data in (typically a two- or three-dimensional) feature space whil
order to contribute to the optimization process. These mod@ preserving pairwise similarity of objects approximatedym-
multi-dimensional scaling techniques provide mappings ohigh- ilarity is usually defined by a distance measure, e.g. the
ggﬁinsrﬁgﬁ'tfa;ﬁtg 'Ogggirg;”;'onlf(‘:';ﬁg;“rgfssagzs_b\r’vgl‘ﬁghg‘;"n Euclidian distance. In this section we present two recent
airport, P PP ! P approaches that provide multi-dimensional scaling based o

density preservation and on the approximate preservafion o

l. INTRODUCTION pairwise angles between data objects.

During the recent years a continuous world wide growth &% MDS.tar
air traffic could be observed, neglecting a temporary deerea Different from conventional multi-dimensional scaling
due to terrorist acts in 2001. Likewise traffic forecastraates where pairwise distances between data are considered,
an increase of about’ yearly for Europe [6]. Of course, the MDS,,,, generates 2-dimensional layouts preserving angles
airport's capacity is mainly constrained by its traffic dema between data approximately. For this purpose, a repreEmnta
Earlier studies have shown that weather is another majtwrfacin polar coordinated” = {(I1, 1), ..., (I, v,)} is used for
that affects the performance of an airport [1], [3], [5],.[7] the target feature space, which allows to preserve the Hengt

Since weather is a comprehensive description of multipig of the original vectoer;, on the one hand and demands the
single phenomena like temperature, height of cloud layetsptimization of the angles,, on the other hand. The solution
wind speed, etc., data sets, describing the combination affMDS,,., is defined to be optimal, if all angleg;, and
weather and traffic at an airport, are fairly complex and thys, between pairs of data objects in the projected data’set
high-dimensional when projecting them into a feature spaceoincide as well as possible with the anglgg in the original

Commonly, visualization is used as a part of data préeature spaceX.
processing when trying to determine appropriate data min-The use of polar coordinates in the target space has two
ing methods. In order to visualize high-dimensional dataajor advantages: the number of parameters to be optimized
sophisticated techniques need to be applied that permiti¢oreduced and generalization can be achieved, which means
display complex data on limited projection media as computihat new points can be added without recalculation of thieeent
monitors or printed hard copies. mapping.

Multi-dimensional scaling [2] is a family of methods that Due to length preservation, data vectors of different lengt
seek to present the important structure of complex data orwdl be mapped far away from each other. This already
reduced number of dimensions. In this paper we present tgoarantees a roughly correct placement of the feature rgecto
recent techniques of this kind and apply them on the prdctida the target space. In order to differentiate dissimilatadat
example of aviation and weather data. similar length, the approximation of the respective angkage



to be considered. Since dissimilarity of objects of différe Algorithm 1 Greedy MDS,ar

length is inherently reflected in the mapping, efficiency can ..

be gained when angle arrangements are mainly constrainegwen the data SEK.: {.ml’m’ N Z’x."}

to objects of similar length. For vectors having a significan Let ¥yx, be a matrix with the pairwise angles; between
difference in length, angle arrangements can be negletted. @l (i, ;)

minimization of the error that has to be taken into account ¥1 =0

when mapping high-dimensional data onto the plane whilefor & =2 ton do

approximating pairwise angles, is formalized by the follogy ap=1foralli=1...k—1
objective function: fori=1tok—1do
n k1 w; = get Wei ght (l“ lk)
E= wir(pi — ok — aixir)’- @ if w > 0 then
kZZQ ; oK = Zi;f Wik (Pi—aartir) /S,
-1
er =01 wik(p; — ok — ajrbik)?

Function (1) contains some variables that are not introdluce

so far. Although, original angleg);, will always satisfy t=en

0 < ¢, < 180°, the order of the minuends; and ¢y Gik = 1171

can have an influence on the sign of the resulting angle. Pk = Zfllwik(%‘“iwik)/z’f;f wir
Therefore, the angle betweep and y, might perfectly fre =220 ik — ok — ajrbik)?
match the angle);z, v; — @, can either bey;, or —. if e, < fr then

The straight forward approach, putting the term — ¢ a =1

into brackets and taking the absolute or the quadratic op =t

value, unfortunately, yields either a function that is not end if

differentiable entirely or whose derivatives describe stam else

of non-llmear equat_lo_ns, for Fhat no ana_lytlcal solutiom ca break  //breaks the inndor-loop
be provided. In [8] it is explained in detail that we can take .

the freedom to choose whether we want the term- ¢, or en?jnfc(j)rlf

the termy, — ; to minimize function (1). Since we have

(o — i — Vi) = (— (1 — 91 — Yi))? = (95 — px + ax)?, €N fOr

instead of exchanging the order of andy;, we can choose

the sign ofy;,. The function reflects the respective sign of

;. In form of thea;,-values, witha;, = {—1,1}. a decreasing weighting function that depends on the dissimi
Parametetrv;;, refers to the concept of weighting the errofarity of the data pair. Then an efficient computation scheme

of angle adjustments. This weighting parameter should ban be defined that reduces computational costs drastically

controlled in that way that mainly angles of data objecthwit Algorithm 1 describes the optimization procedure schemati

similar vector length will be optimized. Thus, the weight otally. The functiorget Wei ght () returns a weight according

vectors with similar length should be larger than the weigfht to a user defined weighting function, e.g.

vectors with significantly different length. This has théeef

that an optimization procedure focuses on these anglee sinc

they produce large errors. The optimization procedure @n b

improved when omitting the adjustment of weights for pairs

of vectors, whose mapping is sufficiently differentiatedtbg Where ¥ is a user defined threshold. This simple binary

1, i)l — L <9

get Veei ght (I;,lx) = {0 otherwise )

consideration of their length. weighting function returns eithet for similar data vectors
As a fist step to minimizeZ we obtain the following partial " 0 for data vectors that are sufficiently differentiated by
derivative means of their vector lengths. Many other weighting furrdio

are feasible, e.g. restricting the maximum number of non-
OF k-l ) zero weights for each is suggestive. This refers to binning-
dor _22“’%(% — %k~ Yik) (@) strategies that allow a conservative estimation of maximum
=1 computational costs.

and set it equal to zero in order to fulfill the necesary cdadit ~ Once one weightv;;, became zero, the innéor-loop will
for a minimum. Solving?E/a¢, for ¢, we get be interrupted and the nektwill be proceeded. This approach
is efficient and reasonable, since sorting by vector lenglh w

B S win(pi — anbi) ) amange the data seX in such a way that, once one;

¥r = Zk—l Wi ’ (3) became zero, all succeeding weights will also be zero for the
=t samek. Initially, all signs for;, are positive, i.ea;;, = 1.
For an efficient implementation it is useful to sort thélgorithm 1 greedily sets a negative signitg, wheney, > fi,
original feature vectors by means of their length and using. when—1);;, actually minimizesk.




B. Density-based MDS

Normally this will not be the case. Therefore a constarns

The approach of density-based MDS has been recerififoduced:

proposed in [9]. The idea behind is to reflect density variei

a- fz(l”z) = gz(yz)

of high-dimensional data on low-dimensional mappings. Fevhich can be derived from equations (5) and (6):

this purpose, a multivariate Gaussian distribution is defin

oP
for each data object in the original space that represeets th @ =35V (2m)P=F.

data point’'s potential energy. Adding these potentialddgie

From this one can formulate the objective function. The

multi-dimensional mountains. Summits of the mountains reRummarized modified potential in the original space is

resent dense data regions, valleys represent sparse data
Density-based MDS aims at transforming the original dath a

a§?=1 a-fj(x;) atz; and Y7 g;(y:) aty; in the target

pace. Since both potentials should be equal, the objective

finding a low-dimensional layout whose potentials coincde function can be defined as follows:

well as possible with the mountains of the original.

Formally the problem is described as follows. Given the
., xn} C RP we seek for the mapped

data setX = {zq,..
data sety = {y1,...,y,} C R¥ with k = 2 or k = 3 with
the following potential forz;:

1 1 a® — g0 ’
fite) = —exp | =5 > [ —— 5)

—

~

with

By =) andz!" the " attribute of data object or z; is
denoted. Functionf; simply describes the density of @
dimensional Gaussian distribution with mean value and
variances? in each dimension. The parameteiis fixed for

the entire procedure. It is small, then the potentials do
rarely overlap. For very large the potential landscape will be

blurred completely with little variance in height. Theredoit

is useful to definer according to the diametet of the data
space, the average distance between data points, the nun']_%er

n of data and the dimensionaligy

For the target data space, the procedure tries to map the

2

n n n
density Z Z gj (yz> - Z a- fj (Zz>
i=1 \j=1 j=1

2

n n

DD (i) —a- fi(x)
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()

The gradient for each components:
aEdensity _
ayls

n n

0
: @gj (yi).- (8)

%gj(yi) is only zero when we havie= i or [ = j. For both
cases we obtain the derivatives from equation (8):
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iy A W W
2 1 o

t=1

0
ayl s

1
a(yi) = 7 exp

y(t)
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95 (u1) =

ri=j=1we have%gj(yi) = 0. Finally the gradient is:

n

Yhidensity _ % 3 <(gl(yi) —a- fi(zi))

feature vectorsY = {yi,...,y.} C R* such that the OYis ©)
potentials ) =
k(0 ®\?2 (s) _ (s
1 " — " —
k @\ 2 ) 4 Y; U Y Y
1 1 y(t) — v exp —_— —
gily) = zexp | -5 | ——" (6) 2; g o
c 2 — o
= (9i(y) —a- fi(z1))
with ¢ = W coincide at least in these points with RLAVNCING 2 NORNE
those in the original space. For thig, should be chosen - exp —52 e = * L = *
similarly to o. =t

Normally, the diameter/ in the target space should beThe density-based approach should be combined with conven-
approximately of the same extent as for the original spaggnal MDS like Sammon’s mapping [11]. Thus, the Sammon

Otherwise, the area (or the volume) of the target space Will gradient E,,,,m.. and the density gradierf, density Can be
much smaller compared to the hyper volume of the origingbmbined through linear combination:

space(k < p). This means that the density in the target space
is also higher for the same size of the data set. Téushould

be chosen smaller than Further, it should be assured that the
maximum height of the single potentials in the original spa
and in the target space match, i.e. the respective maxima

the Gaussian distributions should be:

fi(zi) = gi(yi)-

c

aE‘sa'rrmwn aE‘de'rLsity
oyl oy
The parameters: and 3 can be considered as learning rates

E=a (10)

05fweights to control the impact of the respective mapping
strategy. Thus, higher weights for the Sammon gradient
favour distance-based mappings and larger valéider the
density gradient favour the density approach.



I11. APPLICATION 8

In this section we briefly describe the data to analyze.
Subject of the study is to show the influence of weather in the o
vicinity of Frankfurt Airport on the travel time of approacly
aircraft. Therefore, two combined data sets will be conside ao
a weather data set that describes the weather situatiore at th
airport and an aviation data set that comprises arrivaldiofe 2
all approaching aircraft at the airport.

A. Weather Data

2k

The weather data originate from the AtlS/eather data
set. Different sensors present at the airport capture akver
weather characteristics and form a weather report. Such &4f
report is released every thirty minutes (in case of rapidly
changing weather, the frequency is increased). Each weathe-s_ " > - : : . .
report contains information such as temperature, air press (a) Mapping of originally high-dimsnional data. The symb@, O, [, v)
wind speed and precipitation information, e.g. the preeenfc denote different weather situations under various trafimand.
snow, rain or hail. 8

B. Traffic Data ok

In addition to the weather data set, information about the
traffic is available, through a data set that contains thigadrr 4+ ~
times of all aircraft at Frankfurt Airport for the observed
time period. Since the variation in the travel time is of
interest that is caused by weather factors in the vicinity of
the airport, the point in time of the aircraft's entrance lire t
airport vicinity — the terminal area (TMA) — and the time
when the corresponding aircraft is landing are considered._2
The difference between these two times corresponds to the
observed travel time in the TMA.

ok

-4t

Many research has been done on this subject[4], [7], [10].
In this paper we will analyze a sample of the data set with the;aM 8 oriarally hiaridimsnioral data. She sy 6
objective to get more insight into a specific scenario. Sutije égnotgpdﬁ?e%eﬂt fﬂgﬁ't”gufaﬁc')%s'_ msnional data. The symial, O, v)
this study will be the analysis of the impact of traffic demand
during extreme weather situations. For this purpose wedbuffig. dl- _f)g’ﬂmmon’s Mar?ping of the combined aviamdagdhwgadﬂ&a
a. data set that COftItaiﬂS a” Wegther reports den(_)ting dmher Zeet,fnaﬁzcn Ing two weather scenarios in association n (0] traffic
visibility range or increased wind speed, both, in assamat
with low traffic demand and high traffic demand, respectively
This corresponds to 1205 data which are labeled according IV. RESULTS
to three travel time classes (short, medium, lorzp% of ) ) ) )
this data account for short flight€2% account for flights N this section we will show some results of both multi-
with medium travel times an@5% for flights with long flight dimensional scaling techniques on the combined aviatiah an
durations in the TMA. weather data set. _ _

With both techniques that we have described above, we willAS @ reference, figures 1(a) and 1(a) show different in-
visualize these different scenarios. It will show whethiee t l€TPretations of one mapping of the data gained with Sam-

impact of traffic demand or weather, combined or separatefjON'’s mapping. The symbols in figure 1(a) can be read as
is reflected in the data. follows. Small circles () represent weather reports with low

visibility and low traffic demand. Small boxe&lj refer to
1ATIS (Automatic Terminal Information Service) is a contius broadcast 10W Visibility und high traffic demand. Weather, implying
of recorded information in airports. ATIS broadcasts comassential weather increased wind speed with low traffic demand, is visualizgd b
information but also the active runway and other informmatiequired by the diamond symbols{). Small triangles ¥) represent weather
ilots. T ’ . - .
P reports with increased wind speed and high traffic demand.

2For comparison, in the full data we ha¥6% short flights,41% medium )
flight durations andl4% long flights in the TMA. The scattering of the feature vectors clearly shows that two
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Fig. 2. Mapping of the combined aviation and weather datave#t Fig. 3. Mapping of the combined aviation and weather datavithtdensity-
MDS,o14r- based MDS.

weather clusters are formed. Likewise, different traffimded Further, the correlation of increasing traffic demand amg &

is clearly reflected in the mapping. While the upper parts &iavel times is clearly reflected in the mapping.

both figures mainly represent high traffic demand, lowefitraf Figures 2(a) and 2(b) show a mapping of the data using
demand is mostly spread in the lower part of both figuredIDS,,-. The main characteristics of the reference mapping
Figure 1(b) shows the same mapping but symbols refer (®ee figure 1) can also be found here. In the lower left part of
another interpretation. In this figure, small boxe (epresent the mapping some outlying medium and long flight durations
weather reports where short travel times could be achievedn be observed. Obviously, another factor that is not tefliec
Medium travel times are visualized by small circles)(and by the weather data affects flight duration. A binary weigdti
longer travel times by trianglesv§, respectively. Obviously, function yielding a bin-size of 200 is used with Mg, to
most data points account for medium and long travel timesbtain the mapping. As for all mappings that are obtained by
but also data, comprising short travel times, can be foundulti-dimensional scaling, both axes do not representeitifi
Comparing to the travel time distribution of the full datd,sethe original parameters, but a combination of all. Therefor
where short flight durations prevail a shift to long traveléis axes labeling is omitted intentionally. Mappings are riotat
can be observed. This fact reflects the impact of weathewariant. Both interpretations of the mapping, again,vsho



that two weather clusters are formed as for the reference
mapping, and travel time increases for demanding traf'fic[1
Modifications on the greedy algorithm in such a way, that the
inner for-loop will be repeated several times, allow a drastic[z]
reduction of the bin-size yielding equal quality mappings t
lower computational costs. [3]

Density-based multi-dimensional scaling leads to mapping
shown in figures 3(a) and 3(b). This technique is fairly
expensive regarding computational costs and thereforg oni]
applicable to smaller data sets. For this reason we applied
it to a sample of the combined aviation and weather dat
set. Also this mapping shows that weather and flight duration
discriminate the data noticeably.

V. CONCLUSION (6]

In this paper, we have described two recent techniques thiat
provide visualization of high-dimensional data. As a picadt
application, we have shown mappings of real high-dimeraion g;
weather and aviation data. The results that were obtained by
MDS, .- and density-based MDS clearly show the impact
of weather on arriving aircraft, but also the impact of tkaffi
demand during critical weather situations. Subject of Heitu
research should be a speedup of density-based MDS on e
one hand and the consideration of different weather sc@marj g
on the other hand.

[11]
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