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Abstract— Air traffic at airports is affected by various factors.
The capacity of an airport and the demand at a certain point
in time are serious parameters that account for a big extent
to aircraft delay and related variables. It has been proven that
weather is another important impact in this regard. Although
weather cannot be controlled, the knowledge of how weather
affects the air traffic at an airport can be very helpful to
optimize air traffic management. Data mining promises to gain
that knowledge.

Usually, the very first step in data mining is data visualization.
In this paper we discuss two new visualization techniques
that allow to visualize aviation data and weather data in
order to contribute to the optimization process. These modern
multi-dimensional scaling techniques provide mappings ofhigh-
dimensional data to low-dimensional feature spaces. We will show
some results on a practical application of a major European
airport.

I. I NTRODUCTION

During the recent years a continuous world wide growth of
air traffic could be observed, neglecting a temporary decrease
due to terrorist acts in 2001. Likewise traffic forecast estimates
an increase of about4% yearly for Europe [6]. Of course, the
airport’s capacity is mainly constrained by its traffic demand.
Earlier studies have shown that weather is another major factor
that affects the performance of an airport [1], [3], [5], [7].

Since weather is a comprehensive description of multiple
single phenomena like temperature, height of cloud layers,
wind speed, etc., data sets, describing the combination of
weather and traffic at an airport, are fairly complex and thus
high-dimensional when projecting them into a feature space.

Commonly, visualization is used as a part of data pre-
processing when trying to determine appropriate data min-
ing methods. In order to visualize high-dimensional data,
sophisticated techniques need to be applied that permit to
display complex data on limited projection media as computer
monitors or printed hard copies.

Multi-dimensional scaling [2] is a family of methods that
seek to present the important structure of complex data on a
reduced number of dimensions. In this paper we present two
recent techniques of this kind and apply them on the practical
example of aviation and weather data.

The rest of the paper is organized as follows: in section II
we discuss two recent multi-dimensional scaling approaches.
In section III we briefly describe the application and the data.
In section IV results on aviation and weather data will be
shown followed by some concluding remarks in section V.

II. M ULTI -DIMENSIONAL SCALING

Multi-dimensional scaling (MDS) aims at arrangingn data
objectsX = {x1, . . . , xn} ⊂ R

p into a low-dimensional
(typically a two- or three-dimensional) feature space while
preserving pairwise similarity of objects approximately.Sim-
ilarity is usually defined by a distance measure, e.g. the
Euclidian distance. In this section we present two recent
approaches that provide multi-dimensional scaling based on
density preservation and on the approximate preservation of
pairwise angles between data objects.

A. MDSpolar

Different from conventional multi-dimensional scaling
where pairwise distances between data are considered,
MDSpolar generates 2-dimensional layouts preserving angles
between data approximately. For this purpose, a representation
in polar coordinatesY = {(l1, ϕ1), . . . , (ln, ϕn)} is used for
the target feature space, which allows to preserve the length
lk of the original vectorxk on the one hand and demands the
optimization of the angleϕk on the other hand. The solution
of MDSpolar is defined to be optimal, if all anglesϕi and
ϕk between pairs of data objects in the projected data setY
coincide as well as possible with the anglesψik in the original
feature spaceX .

The use of polar coordinates in the target space has two
major advantages: the number of parameters to be optimized
is reduced and generalization can be achieved, which means
that new points can be added without recalculation of the entire
mapping.

Due to length preservation, data vectors of different length
will be mapped far away from each other. This already
guarantees a roughly correct placement of the feature vectors
in the target space. In order to differentiate dissimilar data of
similar length, the approximation of the respective angleshave



to be considered. Since dissimilarity of objects of different
length is inherently reflected in the mapping, efficiency can
be gained when angle arrangements are mainly constrained
to objects of similar length. For vectors having a significant
difference in length, angle arrangements can be neglected.The
minimization of the error that has to be taken into account
when mapping high-dimensional data onto the plane while
approximating pairwise angles, is formalized by the following
objective function:

E =

n
∑

k=2

k−1
∑

i=1

wik(ϕi − ϕk − aikψik)
2. (1)

Function (1) contains some variables that are not introduced
so far. Although, original anglesψik will always satisfy
0 ≤ ψik ≤ 180◦, the order of the minuendsϕi and ϕk
can have an influence on the sign of the resulting angle.
Therefore, the angle betweenyi and yk might perfectly
match the angleψik, ϕi − ϕk can either beψik or −ψik.
The straight forward approach, putting the termϕi − ϕk
into brackets and taking the absolute or the quadratic
value, unfortunately, yields either a function that is not
differentiable entirely or whose derivatives describe a system
of non-linear equations, for that no analytical solution can
be provided. In [8] it is explained in detail that we can take
the freedom to choose whether we want the termϕi − ϕk or
the termϕk − ϕi to minimize function (1). Since we have
(ϕk − ϕi − ψik)

2 = (−(ϕk − ϕi − ψik))
2 = (ϕi − ϕk + ψik)

2,
instead of exchanging the order ofϕi andϕk, we can choose
the sign ofψik. The function reflects the respective sign of
ψik in form of theaik-values, withaik = {−1, 1}.

Parameterwik refers to the concept of weighting the error
of angle adjustments. This weighting parameter should be
controlled in that way that mainly angles of data objects with
similar vector length will be optimized. Thus, the weight of
vectors with similar length should be larger than the weightof
vectors with significantly different length. This has the effect
that an optimization procedure focuses on these angles since
they produce large errors. The optimization procedure can be
improved when omitting the adjustment of weights for pairs
of vectors, whose mapping is sufficiently differentiated bythe
consideration of their length.

As a fist step to minimizeE we obtain the following partial
derivative

∂E

∂ϕk
= −2

k−1
∑

i=1

wik(ϕi − ϕk − ψik) (2)

and set it equal to zero in order to fulfill the necesary condition
for a minimum. Solving∂E/∂ϕk for ϕk we get

ϕk =

∑k−1
i=1 wik(ϕi − aikψik)

∑k−1
i=1 wik

. (3)

For an efficient implementation it is useful to sort the
original feature vectors by means of their length and using

Algorithm 1 Greedy MDSpolar

Given the data setX = {x1, x2, . . . , xn}
Let Ψn×n be a matrix with the pairwise anglesψij between
all (xi, xj)

ϕ1 = 0

for k = 2 to n do
aik = 1 for all i = 1 . . . k − 1

for i = 1 to k − 1 do
wik = getWeight(li,lk)

if wik > 0 then
ϕk =

∑

k−1

i=1
wik(ϕi−aikψik)/

∑

k−1

i=1
wik

ek =
∑k−1

j=1 wik(ϕj − ϕk − ajkψjk)
2

t = ϕk
aik = −1

ϕk =
∑

k−1

i=1
wik(ϕi−aikψik)/

∑

k−1

i=1
wik

fk =
∑k−1

j=1 wik(ϕj − ϕk − ajkψjk)
2

if ek < fk then
aik = 1

ϕk = t

end if
else

break //breaks the innerfor -loop
end if

end for
end for

a decreasing weighting function that depends on the dissimi-
larity of the data pair. Then an efficient computation scheme
can be defined that reduces computational costs drastically.

Algorithm 1 describes the optimization procedure schemati-
cally. The functiongetWeight() returns a weight according
to a user defined weighting function, e.g.

getWeight(li, lk) =

{

1, if |li − lk| ≤ ϑ
0, otherwise

(4)

where ϑ is a user defined threshold. This simple binary
weighting function returns either1 for similar data vectors
or 0 for data vectors that are sufficiently differentiated by
means of their vector lengths. Many other weighting functions
are feasible, e.g. restricting the maximum number of non-
zero weights for eachk is suggestive. This refers to binning-
strategies that allow a conservative estimation of maximum
computational costs.

Once one weightwik became zero, the innerfor -loop will
be interrupted and the nextk will be proceeded. This approach
is efficient and reasonable, since sorting by vector length will
arrange the data setX in such a way that, once onewik
became zero, all succeeding weights will also be zero for the
samek. Initially, all signs forψik are positive, i.e.aik = 1.
Algorithm 1 greedily sets a negative sign toψik whenek ≥ fk,
i.e. when−ψik actually minimizesE.



B. Density-based MDS

The approach of density-based MDS has been recently
proposed in [9]. The idea behind is to reflect density variations
of high-dimensional data on low-dimensional mappings. For
this purpose, a multivariate Gaussian distribution is defined
for each data object in the original space that represents the
data point’s potential energy. Adding these potentials yields
multi-dimensional mountains. Summits of the mountains rep-
resent dense data regions, valleys represent sparse data areas.
Density-based MDS aims at transforming the original data and
finding a low-dimensional layout whose potentials coincideas
well as possible with the mountains of the original.

Formally the problem is described as follows. Given the
data setX = {x1, . . . , xn} ⊂ R

p we seek for the mapped
data setY = {y1, . . . , yn} ⊂ R

k with k = 2 or k = 3 with
the following potential forxi:

fi(x) =
1

c
exp



−1

2

p
∑

t=1

(

x(t) − x
(t)
i

σ

)2


 (5)

with

c =
1

σp
√

(2π)p
.

By x(t) and x(t)
i the tth attribute of data objectx or xi is

denoted. Functionfi simply describes the density of ap-
dimensional Gaussian distribution with mean valuexi and
varianceσ2 in each dimension. The parameterσ is fixed for
the entire procedure. Ifσ is small, then the potentials do
rarely overlap. For very largeσ the potential landscape will be
blurred completely with little variance in height. Therefore, it
is useful to defineσ according to the diameterd of the data
space, the average distance between data points, the number
n of data and the dimensionalityp.

For the target data space, the procedure tries to map the
feature vectorsY = {y1, . . . , yn} ⊂ R

k such that the
potentials

gi(y) =
1

c̃
exp



−1

2

k
∑

t=1

(

y(t) − y
(t)
i

σ̃

)2


 (6)

with c̃ = 1

σ̃k

√
(2π)k

coincide at least in these points with

those in the original space. For this,σ̃ should be chosen
similarly to σ.

Normally, the diameterd in the target space should be
approximately of the same extent as for the original space.
Otherwise, the area (or the volume) of the target space will be
much smaller compared to the hyper volume of the original
space(k ≪ p). This means that the density in the target space
is also higher for the same size of the data set. Thus,σ̃ should
be chosen smaller thanσ. Further, it should be assured that the
maximum height of the single potentials in the original space
and in the target space match, i.e. the respective maxima of
the Gaussian distributions should be:

fi(xi) ≈ gi(yi).

Normally this will not be the case. Therefore a constanta is
introduced:

a · fi(xi) = gi(yi)

which can be derived from equations (5) and (6):

a =
σp

σ̃k

√

(2π)p−k.

From this one can formulate the objective function. The
summarized modified potential in the original space is
∑n
j=1 a · fj(xi) at xi and

∑n
j=1 gj(yi) at yi in the target

space. Since both potentials should be equal, the objective
function can be defined as follows:

Edensity =

n
∑

i=1





n
∑

j=1

gj(yi) −
n
∑

j=1

a · fj(xi)





2

=

n
∑

i=1





n
∑

j=1

(gj(yi) − a · fj(xi))





2

. (7)

The gradient for each components is:

∂Edensity
∂yls

= 2

n
∑

i=1

n
∑

j=1

(gj(yi) − a · fj(xi)) ·
∂

∂yls
gj(yi). (8)

∂
∂yls

gj(yi) is only zero when we havel = i or l = j. For both
cases we obtain the derivatives from equation (8):

∂

∂yls
gl(yi) =

1

c̃
exp



−1

2

k
∑

t=1

(

y
(t)
i − y

(t)
l

σ̃

)2


 · y
(s)
i − y

(s)
l

σ̃

∂

∂yls
gj(yl) = −1

c̃
exp



−1

2

k
∑

t=1

(

y
(t)
l − y

(t)
j

σ̃

)2


 ·
y
(s)
l − y

(s)
j

σ̃
.

For i = j = l we have ∂
∂yls

gj(yi) = 0. Finally the gradient is:

∂Edensity
∂yls

=
2

c̃

n
∑

i=1

(

(gl(yi) − a · fl(xi)) (9)

· exp



−1

2

k
∑

t=1

(

y
(t)
i − y

(t)
l

σ̃

)2


 · y
(s)
i − y

(s)
l

σ̃

− (gi(yl) − a · fi(xl))

· exp



−1

2

k
∑

t=1

(

y
(t)
l − y

(t)
i

σ̃

)2


 · y
(s)
l − y

(s)
i

σ̃



 .

The density-based approach should be combined with conven-
tional MDS like Sammon’s mapping [11]. Thus, the Sammon
gradientEsammon and the density gradientEdensity can be
combined through linear combination:

E = α
∂Esammon

∂yl
+ β

∂Edensity
∂yl

. (10)

The parametersα andβ can be considered as learning rates
or weights to control the impact of the respective mapping
strategy. Thus, higher weightsα for the Sammon gradient
favour distance-based mappings and larger valuesβ for the
density gradient favour the density approach.



III. A PPLICATION

In this section we briefly describe the data to analyze.
Subject of the study is to show the influence of weather in the
vicinity of Frankfurt Airport on the travel time of approaching
aircraft. Therefore, two combined data sets will be considered:
a weather data set that describes the weather situation at the
airport and an aviation data set that comprises arrival times of
all approaching aircraft at the airport.

A. Weather Data

The weather data originate from the ATIS1 weather data
set. Different sensors present at the airport capture several
weather characteristics and form a weather report. Such a
report is released every thirty minutes (in case of rapidly
changing weather, the frequency is increased). Each weather
report contains information such as temperature, air pressure,
wind speed and precipitation information, e.g. the presence of
snow, rain or hail.

B. Traffic Data

In addition to the weather data set, information about the
traffic is available, through a data set that contains the arrival
times of all aircraft at Frankfurt Airport for the observed
time period. Since the variation in the travel time is of
interest that is caused by weather factors in the vicinity of
the airport, the point in time of the aircraft’s entrance in the
airport vicinity – the terminal area (TMA) – and the time
when the corresponding aircraft is landing are considered.
The difference between these two times corresponds to the
observed travel time in the TMA.

Many research has been done on this subject[4], [7], [10].
In this paper we will analyze a sample of the data set with the
objective to get more insight into a specific scenario. Subject of
this study will be the analysis of the impact of traffic demand
during extreme weather situations. For this purpose we build
a data set that contains all weather reports denoting eitherlow
visibility range or increased wind speed, both, in association
with low traffic demand and high traffic demand, respectively.
This corresponds to 1205 data which are labeled according
to three travel time classes (short, medium, long).23% of
this data account for short flights,42% account for flights
with medium travel times and35% for flights with long flight
durations in the TMA2.

With both techniques that we have described above, we will
visualize these different scenarios. It will show whether the
impact of traffic demand or weather, combined or separately,
is reflected in the data.

1ATIS (Automatic Terminal Information Service) is a continuous broadcast
of recorded information in airports. ATIS broadcasts contain essential weather
information but also the active runway and other information required by the
pilots.

2For comparison, in the full data we have45% short flights,41% medium
flight durations and14% long flights in the TMA.
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(a) Mapping of originally high-dimsnional data. The symbols (♦, #, �, ▽)
denote different weather situations under various traffic demand.
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(b) Mapping of originally high-dimsnional data. The symbols (�, #, ▽)
denote different flight durations.

Fig. 1. Sammon’s Mapping of the combined aviation and weather data
set, describing two weather scenarios in association with low and high traffic
demand.

IV. RESULTS

In this section we will show some results of both multi-
dimensional scaling techniques on the combined aviation and
weather data set.

As a reference, figures 1(a) and 1(a) show different in-
terpretations of one mapping of the data gained with Sam-
mon’s mapping. The symbols in figure 1(a) can be read as
follows. Small circles (#) represent weather reports with low
visibility and low traffic demand. Small boxes (�) refer to
low visibility und high traffic demand. Weather, implying
increased wind speed with low traffic demand, is visualized by
diamond symbols (♦). Small triangles (▽) represent weather
reports with increased wind speed and high traffic demand.
The scattering of the feature vectors clearly shows that two
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(a) Mapping of two different weather scenarios in association with low and
high traffic demand. The symbols (♦, #, �, ▽) denote different weather
situations under various traffic demand.
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(b) Mapping of two different weather scenarios in association with low and
high traffic demand. The symbols (�, #, ▽) denote different flight durations

Fig. 2. Mapping of the combined aviation and weather data setwith
MDSpolar.

weather clusters are formed. Likewise, different traffic demand
is clearly reflected in the mapping. While the upper parts of
both figures mainly represent high traffic demand, lower traffic
demand is mostly spread in the lower part of both figures.
Figure 1(b) shows the same mapping but symbols refer to
another interpretation. In this figure, small boxes (�) represent
weather reports where short travel times could be achieved.
Medium travel times are visualized by small circles (#) and
longer travel times by triangles (▽), respectively. Obviously,
most data points account for medium and long travel times,
but also data, comprising short travel times, can be found.
Comparing to the travel time distribution of the full data set,
where short flight durations prevail a shift to long travel times
can be observed. This fact reflects the impact of weather.
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(a) Mapping of two different weather scenarios in association with low and
high traffic demand. The symbols (♦, #, �, ▽) denote different weather
situations under various traffic demand.
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(b) Mapping of two different weather scenarios in association with low and
high traffic demand. The symbols (�, #, ▽) denote different flight durations

Fig. 3. Mapping of the combined aviation and weather data setwith density-
based MDS.

Further, the correlation of increasing traffic demand and longer
travel times is clearly reflected in the mapping.

Figures 2(a) and 2(b) show a mapping of the data using
MDSpolar. The main characteristics of the reference mapping
(see figure 1) can also be found here. In the lower left part of
the mapping some outlying medium and long flight durations
can be observed. Obviously, another factor that is not reflected
by the weather data affects flight duration. A binary weighting
function yielding a bin-size of 200 is used with MDSpolar to
obtain the mapping. As for all mappings that are obtained by
multi-dimensional scaling, both axes do not represent either of
the original parameters, but a combination of all. Therefore,
axes labeling is omitted intentionally. Mappings are rotation
invariant. Both interpretations of the mapping, again, show



that two weather clusters are formed as for the reference
mapping, and travel time increases for demanding traffic.
Modifications on the greedy algorithm in such a way, that the
inner for -loop will be repeated several times, allow a drastic
reduction of the bin-size yielding equal quality mappings to
lower computational costs.

Density-based multi-dimensional scaling leads to mappings
shown in figures 3(a) and 3(b). This technique is fairly
expensive regarding computational costs and therefore only
applicable to smaller data sets. For this reason we applied
it to a sample of the combined aviation and weather data
set. Also this mapping shows that weather and flight duration
discriminate the data noticeably.

V. CONCLUSION

In this paper, we have described two recent techniques that
provide visualization of high-dimensional data. As a practical
application, we have shown mappings of real high-dimensional
weather and aviation data. The results that were obtained by
MDSpolar and density-based MDS clearly show the impact
of weather on arriving aircraft, but also the impact of traffic
demand during critical weather situations. Subject of future
research should be a speedup of density-based MDS on the
one hand and the consideration of different weather scenarios
on the other hand.
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