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Abstract— Cooccurrence graphs easily grow very dense when ap-
plied to represent binary association patterns of large amounts of
data. Therefore, postprocessing is needed to extract valuable infor-
mation from them. We propose an approach to identify subgraphs
of cooccurrence graphs that show a certain temporal behavior. This
behavior is described with linguistic variables and fuzzy connectives
defined over the change rate domains of certain graph measures.
These measures assess graph properties whose change over time the
user is interested in. To justify our proposed method, we are going to
present evidence from a real-world dataset.
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1 Introduction
Frequent pattern mining has become a prominent method for
identifying patterns in large volumes of data and led to algo-
rithms for postprocessing these patterns [1] or transfer the un-
derlying ideas to other data structures such as graphs [2, 3, 4].
Since the search for frequent patterns necessarily has to deal
with subsets of input data, one easily runs into the problem
of combinatorial explosion which is reflected by the common
problem of finding more patterns than there are input data.
We have addressed this issue in previous work [5], arguing
that the user requires tools that allow to filter the results in or-
der to identify only those results that meet his criteria (such
as interestingness, novelty, etc.). In addition to that we also
provided arguments and empirical evidence [6] that patterns
usually do not arise all of a sudden but evolve or disappear
rather slowly as time passes. In consequence we proposed a
method that allows the user to specify linguistically (in terms
of fuzzy variables) the temporal behavior of the values of as-
sociation rules’ evaluation measures that he is interested in.
The presented algorithm thinned out the entire rule set retain-
ing just those rules that matched the users’ concepts (to some
degree).

In this paper we develop this idea further while keeping the
way of describing temporal behavior (explained in the back-
ground section) but transferring it to a different area of appli-
cation.

This area of application comprises the identification of in-
teresting substructures in cooccurrence graphs. These graphs
arise quite naturally wherever, theoretically speaking, one is
interested in the fact that two entities share some property with
respect to a so-called location (which not necessarily has to
be a spatial artifact but often is). Two authors being cited by
the same paper [7], two persons having visited the same web-

Figure 1: A typical cooccurrence graph with 100 nodes as it
arose in a small-sized application (online gaming players that
having visited the same locations in a 3D world). It is clear
that this representation calls for some means of postprocessing
in order to extract usable information from it.

site [8, 9, 10], or two crimes being committed at the same
location are just three examples of cooccurrences. We will
elaborate the possible applications later in the future work sec-
tion. All these examples can be represented by an undirected
graph with the node set comprising all possible locations and
the weighted edges representing the cooccurrences. A typical
graph of a real-world application is depicted in Fig. 1. It rep-
resents 100 locations in a 3D gaming environment. Whenever
two locations have been visited by the same players, an edge is
inserted (which also gets assigned a weight drawn as the width
of the edge representing the number of common visitors, but
this is omitted here). It is pretty obvious that a user needs some
assistance tools that allow him to identify interesting substruc-
tures (edge combinations). This becomes even more impor-
tant if we have multiple such graphs representing the cooccur-
rences of different time frames (e. g. weeks or months). The
focus of this paper is to present a straightforward yet powerful
approach how to identify common substructures in a collec-
tion of cooccurrence graphs by means of linguistics expres-
sions that address the temporal change in these patterns.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the notation used throughout the paper and
revisits the linguistic filtering introduced in [6]. Section 3 mo-
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tivates and presents the method of extracting substructures of
cooccurrence graphs that exhibit a certain user-specified tem-
poral behavior. To underpin our proposal, we use a real-world
dataset to illustrate the different stages of analysis in Section 4.
Since this dataset reveals substructures that could not have
been better generated manually, we refrain from handcrafting
an artificial dataset and use selected subsets instead. We con-
clude our paper in Section 5 and propose other applications as
well as possible promising extensions.

2 Background and Nomenclature
2.1 Graph Notations
In this paper we are going to deal exclusively with undirected
graphs which we model as a tuple G = (V, E) with vertices V

and edge set E with

E ⊆ V × V \ {(v, v) | v ∈ V },

and the constraint

(u, v) ∈ E ⇒ (v, u) ∈ E

to emphasize the undirected character. We will interpret the
graphs as cooccurrence graphs where edges determine the
number of cooccurrences (of whatever kind). This is taken
into account with an edge weight function for every edge
e = (u, v):

w : E → N0 with w(e) = w(u, v) = w(v, u).

In the figures, this weight is represented as the edge width,
thus we use the notion width and weight interchangeably.
Given a subset W ⊆ V , we can induce a subgraph
GW = (W, EW ) with

E ⊇ EW = {(u, v) | u, v ∈ W ∧ (u, v) ∈ E}.

In the remainder we will sometimes use such a subset W in the
context of a graph; it is GW that we then refer to. A thresh-
old θ defines the subgraph Gθ = (V, Eθ) with

Eθ = {(u, v) | (u, v) ∈ E ∧ w(u, v) ≥ θ},

i. e., as the graph containing only edges with a weight greater
or equal to θ. Both operations can of course be combined, i. e.,
GW,θ represents the subgraph of G induced by the node set W

after having removed all edges with weight less than θ.
Since we will deal with sequences of graphs, we denote the

temporal index as a superscript. All graphs share the same
node set V and differ only in their edge sets or edge weights
or both. Given a sequence G(1), . . . , G(n) of graphs, we define
the sum of these graphs as follows: GΣ = (V, EΣ) with

EΣ =

n⋃
i=1

E(i) and wΣ(u, v) =

n∑
i=1

w(i)(u, v).

2.2 Linguistic Filtering Revisited
As described in [6] it is not only important to find patterns
that meet some predefined constraints (such as minimum sup-
port or confidence) but also interpret these patterns in terms of
temporal change. If a pattern describes a problem in some
domain or an interesting customer behavior, it might be of

interest to find such evolving patterns early. The underlying
idea is as follows: given a pattern, we devise a set of evalu-
ation measures that characterize the particular pattern (in [6]
we used association rule measures such as support, lift, con-
fidence, etc.). Next, the time series of a user-selected subset
of these measures is calculated for every pattern. Each time
series in turn is aggregated to a single value representing the
overall trend, if any. The domain of this aggregate (i. e., the
change rate domain) is equipped with an adequate fuzzy par-
tition. Given a fuzzy rule antecedent (representing the user’s
intention of what temporal behavior of which measure(s) he
is interested in), for every rule a membership degree to this
concept is computed and an ordered list of rules according to
these degrees is returned.

3 Spatio-temporal Filtering
3.1 Motivation
The objective of our approach is to answer questions of the
following type (given a sequence of cooccurrence graphs):

“First, what are interesting candidates for subgraphs
that it would be worth looking at over time?”

and

“Second, given a (still intractable large) set of sub-
graphs, which graphs become more sparse and less
balanced over time?”

Before we turn to the algorithmic part of our approach, we
need to negotiate which types of substructures within the
graphs are most interesting to users. We will exploit the edge
weights for this purpose. Several measures are needed to
quantify for every subgraph aspects such as size, complete-
ness, edge balance, etc.

If the cooccurrence graphs represent visits of different web
pages within the same online shop portal, then it might be de-
sirable to know whether customers are able to use the web
portal as intended by the owners. Are there dead ends where
users are stuck? What are the “hot spot” sites, i. e., the pages
that attract the most users and are visitors able to find the re-
cently introduced shortcut to related pages? How do the ac-
cesses to the support area of the site change after renewing the
navigational aids, etc.

We explicitly stress that subgraphs that are heavily intercon-
nected with large edge weights only provide us with a hint that
there may be an interesting visiting pattern. However, we can
never conclude transitivity just from the cooccurrence graph!
This is due to the fact that it only represents binary cooccur-
rences. Even a fully connected graph does not tell us anything
about individual events. The sets of cooccurring events whose
cardinality is represented by the edge weights even might be
mutually disjoint. However, these subgraphs are found to be
valuable hints that are worth being investigated.

3.2 Graph Measures
Focussing on the before-mentioned type of aspects one can
identify highly connected subgraphs with large edge weights
to be one type of substructures that are most interesting to
users. Another type may be single edges just connecting two
nodes or substructures that are highly interconnected but with
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G1

G2

Measure G1 G2

size Size 5.0 5.0
comp Completeness 0.7 1.0
wght Total Weight 5082.0 7906.0
avg Average Weight 726.0 790.6
med Median Weight 257.0 770.0
dev Std. Dev. 1191.1 129.3

Figure 2: Two graphs with the same number of nodes. G1

lacks three edges to be complete, therefore the completeness
is just 0.7, whereas the clique G2 yields 1.0. The rather large
difference between average weight and median weight for G1

(in contrast to G2) indicate an imbalanced edge widths distri-
bution which is strengthened by the large standard deviation
value. The two graphs obviously justify this finding. The
layout only acts as a visual cue and thus does not have any
influence on the graph measures.

a large imbalance in the edge weights. The latter might repre-
sent two active sets of websites (large edge weights) between
which users are able to navigate back and forth (numerous
edges in between but with small weights since not every user
is likely to use the offered navigational freedom).

The last arguments call for measures that on the one hand
capture the mentioned properties of subgraphs and on the
other hand allow to build a fuzzy partition on their domains
since we are not going to ask for subgraphs with 9 nodes and
edges with weights greater than 100 but for large subgraphs
with moderately sized edges. We use the following set of
(sub)graph measures to quantify different aspects:

Size size(GW ) = |W |

Completeness comp(GW ) =
2 |EW |

|W |2 − |W |
Edge Weight wght(GW ) =

∑
e∈EW

w(e)

The size simply represents the number of nodes of the sub-
graph, whereas completeness refers to the relative number
of edges compared to the maximal number. Zero represents
an isolated graph (no edges) while a value of 1 designates a
clique. Finally, the edge weight simply returns the sum of
all edge weights without giving any clue about the distribu-
tion of these weights among the edges. Therefore, three addi-
tional measures are used: avg(GW ) calculates the arithmetic
mean of all edge weights, med(GW ) returns the median of the
weights and dev(GW ) represents the standard deviation of the
weights. Fig. 2 illustrates these intentions with two graphs of
the same size. Note, that these are subgraphs from real-world

data and no artificial graphs that were crafted to meet the re-
quirements.

3.3 Candidate Graph Generation
As we are now equipped with measures to assess certain as-
pects of subgraphs that we would like to track over time,
the remaining question is how to determine such candidate
graphs? It is clear that a brute-force approach (testing all
subsets of nodes as potential subgraph node sets) fails im-
mediately due to runtime problems, even for small node sets.
We therefore promote the following heuristic: The graphs of
all time frames are added as shown in Section 2 to arrive
at the sum graph GΣ (or simply the cooccurrence graph if
we ignore the time frames). Next, a threshold θ is chosen
and the graph’s components (disconnected subgraphs) CGΣ =
{C1, . . . , Cj , . . . , Cm} of GΣ,θ are taken as the candidate sub-
graphs. The choice of θ can be entirely left to the user (e. g.
by offering a graphical preview tool that shows the compo-
nents instantly whenever the user selects a new threshold via
a slider) or θ may be determined in such a way to limit either
the number of components or the (average) size of the compo-
nents.

3.4 Matching Against Linguistic Concepts
Whatever way of determining the granularity of components is
chosen, we are left with a set of mutual disjoint node sets CGΣ

that are used to create a sequence of subgraphs
〈
G

(i)
Cj

〉
, i =

1, . . . , n, j = 1, . . . , m (one sequence for every subgraph
induced by the node set) that are evaluated against the user-
specified temporal behavior description. A time series is gen-
erated for every measure referenced in this user description.
The temporal change within this time series is computed and
the degree of membership to the user description is calculated.
We will employ a simple regression approach, i. e., we fit a re-
gression line into the time series and interpret its slope as an
indicator of decrease, stability and increase.

The example concept from the motivation of this section is
repeated here:

“Completeness is decreasing and std. deviation is increasing”

Translated into a linguistic concept, the user may specify

〈 ∆comp is decr ∧ ∆dev is incr 〉 ,

which is evaluated to

$
(
µ

(decr)
∆comp

(Cj), µ
(incr)
∆dev

(Cj)
)
,

where $ represents a t-norm modelling the fuzzy conjunction
(we use $min(a, b) = min{a, b} in this paper). Fig. 3 depicts
an example subgraph consisting of 9 nodes. Five time frames
are shown with the respective edge weights. The graph is ob-
viously becoming less dense with time, i. e., the completeness
is decreasing. The chart for this measure is depicted in Fig. 4.
In analogy to this, Fig. 5 shows the increasing deviation of
the edge weights which is attributed to the emergence of the
strong cooccurrence (the sudden appearance in this case can
be explained with time frames that were too large to appro-
priately cover the short period during which this strong cooc-
currence emerged). If we equipped the change rate domains
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Figure 3: The temporal evolution of the graphs induced by a set of nine nodes. The number of edges is decreasing with time
resulting in an almost isolated graph. Simultaneously, the edges that are remaining grow more and more unbalanced, i. e., the
deviation of the edge weights is increasing. Both time series of the corresponding measures comp and dev are shown in Fig. 4
and Fig. 5, respectively.

Figure 4: Time series with decreasing trend for the complete-
ness of the edge weights for the five graphs of the time frames
depicted in Fig. 3.

Figure 5: Time series with increasing trend for the standard
deviation of the edge weights for the five graphs of the time
frames depicted in Fig. 3.

(i. e., domains of the slopes of the regressions lines of the two
time series) with appropriate fuzzy partitions (as we will do
it in the experiments section) we could calculate the member-
ship degree of this node set to the above-mentioned linguistic
concept.

Summarizing, we state the following procedure:

1. Given a sequence G(0), . . . , G(n) of cooccurrence graphs
with their sum graph being GΣ.

2. Based on an appropriate value θ, we calculate the can-
didate graph node sets {C1, . . . , Cm} which are the ver-
tices of the components of GΣ,θ .

3. The user provides a set of linguistic descriptions (fuzzy

rule antecedents) that refer to the temporal change of the
graph measures.

4. Provide fuzzy partitions for every domain of the change
rate of the measures used in the descriptions of step 3.

5. Evaluate for every graph GCj the degree of membership
to the linguistic concepts of step 3.

6. For every linguistic concept sort the graphs in descending
order with respect to their membership degrees.

4 Experiments
Now that we have a tool at hand that allows us to determine the
structural changes of subgraphs over time, we demonstrate the
applicability with a real-world dataset that was already used to
illustrate the examples above.

This dataset contains player contacts at certain locations
within a 3D environment over a time period of six months.
We carefully selected a subset of 100 such locations and dis-
cretized month-wise in order to result in a dataset large enough
to justify the need for filtering while simultaneously being able
to extract subgraphs that exhibit a structure and behavior that
could not have been crafted more exemplary by hand. There-
fore, we refrain from creating an artificial dataset with just the
same structures.

Fig. 6 shows the sum graph of the dataset, i. e., the cooccur-
rences of six months among 100 locations. The edge weights
indicate some subgraphs that are worth looking closer at. The
threshold θ has been chosen to be 1000 to induce the candidate
node sets.

We will match two linguistic concepts against these graph
candidates: first, we are interested in decay, i. e., in graphs that
show kind of a dissolving behavior, translating into a decreas-
ing completeness and decreasing total weight. In the sample
data this might indicate locations whose attractiveness is di-
minishing. A second concept that we would like to assess is
that of an establishing pattern. An increasing average edge
weight and deviation (of edge weight) might point out a phase
of initial apparent random visiting of multiple locations which
accumulates into a strong favored visiting pattern.

4.1 Concept 1: Decreasing Completeness and Weight
In order to evaluate the membership degrees to the linguistic
concept

〈 ∆comp is decr ∧ ∆wght is decr 〉 ,
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Figure 6: The sum graph of six months of visiting history of
players in a 3D environment. We will match the major com-
ponents (extracted via a user-specified threshold) against two
linguistic concepts.

Figure 7: Fuzzy partitions for the four graph measures used in
the two experiments.

we need to declare a fuzzy partition on the change rate do-
mains of comp and wght. Fig. 7 displays all used fuzzy parti-
tions. We apply three fuzzy sets. Note the asymmetric slopes
of the borders. This setup has proven to be useful in this con-
text since “unchanged” has a more strict semantic to users than
the adjectives “decreasing” and “increasing”. The respective
values that determine the particular fuzzy partition can be read
from the four different horizontal scales. These values have
been selected with respect to the dataset since the quantity that
renders a slope to be highly decreasing or increasing differs,
of course, from dataset to dataset.

If we apply the linguistic concept to the candidate graphs
and select the one with the highest membership (ignoring the
remaining ones here for brevity), the subgraph whose history
is depicted in the upper row in Fig. 8 scores 0.71. Most of the
high degree can be attributed to the rapid loss of visits in the
last two months. The membership degree was evaluated via

min{µ(decr)
∆comp

(C1), µ
(decr)
∆wght

(C1)} = min{0.71, 0.84} = 0.71,

with C1 being the set containing the five nodes. Data inspec-
tion revealed a newly set up structure which was heavily fre-
quented shortly after opening followed by abating excitement.

4.2 Concept 2: Increasing Average and Deviation
We follow the same procedure to find the subgraph that scores
best on the concept

〈 ∆avg is incr ∧ ∆dev is incr 〉 .

The lower part of Fig. 8 shows the resulting graph with a score
of

min{µ(incr)
∆avg

(C2), µ
(incr)
∆dev

(C2)} = min{0.83, 0.89} = 0.83,

The graph shows an establishing link between two nodes in
parallel with a weakening in the remaining edges thus render-
ing the graph history becoming more unbalanced.

5 Conclusion and Future Work
In this paper we discussed the need to postprocess cooccur-
rence graphs if they grow very dense in practical use. We put
forward a heuristic that allows to restrict the candidate node
sets, and transferred the fuzzy concept matching approach
from [6] to the graphical setting. We provided empirical ev-
idence of the applicability by analyzing a real-world dataset
containing six months of game player visits to 100 locations
in a 3D environment.

As indicated in the introductory section, there are many
other scenarios for which such an analysis might be inter-
esting. We are most interested in applying our method to a
web click stream analysis.

Since the used real-world dataset contained time stamps for
every event, it is possible to generate a directed graph that also
indicates which nodes were the source and target nodes for
different users. This requires, of course, some heuristic with
which to decide what should be the maximal period in which
a user has to commit two visits to different nodes in order to
assume that it was a transition and not just two independent
visits.

A shortcoming of the presented approach is the heuristic to
generate the candidate node sets. It worked well on the un-
derlying datasets but one can imagine that it will return fewer
and more interconnected components the more the threshold θ

is reduced. Such subgraphs are also referred to as giant con-
nected components [11]. To address this problem, we intend
to phrase the problem in the setting of the emerging area of
graph mining, more specific finding common substructures in
a single graph [2, 12]. However, we will need a more spe-
cific subgraph definition since we have to account for the edge
weights and not only the edge presence. This in turn automat-
ically leads to another area of investigation: devising more
sophisticated graph measures such as the edge betweenness
centrality [13].

References

[1] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami.
Mining Association Rules between Sets of Items in Large
Databases. In Peter Buneman and Sushil Jajodia, editors, Proc.
ACM SIGMOD Int. Conf. on Management of Data, Washington,
D.C., May 26-28, 1993, pages 207–216. ACM Press, 1993.

[2] Mathias Fiedler and Christian Borgelt. Subgraph support in a
single graph. In Proc. IEEE Int. Workshop on Mining Graphs
and Complex Data (MGCS 2007 at ICDM 2007, Omaha, NE),
pages 399–404. IEEE Press, Piscataway, NJ, USA, 2007.

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1181



Figure 8: The histories of the two subgraphs that scored highest in the two experiments. The upper row shows a six-month
development of five locations that were heavily visited but declined rather rapidly towards the end. It yielded a membership
degree of 71% to the concept “completeness is decreasing and total weight is decreasing”. The lower row depicts the best-
scoring subgraph of the second experiment resulting in a membership degree of 83% to the concept “average is increasing and
deviation is increasing.”

[3] Christian Borgelt. On canonical forms for frequent graph min-
ing. In Workshop on Mining Graphs, Trees, and Sequences
(MGTS’05 at PKDD’05, Porto, Portugal), pages 1–12, Porto,
Portugal, 2005. ECML/PKDD’05 Organization Committee.

[4] Tobias Werth, Alexander Dreweke, Marc Wörlein, Ingrid Fis-
cher, and Michael Philippsen. Dagma: Mining directed acyclic
graphs. In IADIS, editor, Proceedings of the ECDM 2008
(IADIS European Conference on Data Mining (ECDM) ), pages
11–17. IADIS PRESS, 2008.

[5] Rudolf Kruse, Christian Borgelt, Detlef D. Nauck, Nees Jan
van Eck, and Matthias Steinbrecher. The role of soft comput-
ing in intelligent data analysis. In Proc. 16th IEEE Int. Conf.
on Fuzzy Systems (FUZZ-IEEE’07, London, UK), pages 9–17.
IEEE Press, Piscataway, NJ, USA, 2007.

[6] Matthias Steinbrecher and Rudolf Kruse. Identifying tempo-
ral trajectories of association rules with fuzzy descriptions. In
Proc. Conf. North American Fuzzy Information Processing So-
ciety (NAFIPS 2008), pages 1–6, New York, USA, May 2008.

[7] Levent Bolelli, Seyda Ertekin, and C. Lee Giles. Knowledge
Discovery in Databases: PKDD 2006, volume 4213/2006,
chapter Clustering Scientific Literature Using Sparse Citation
Graph Analysis, pages 30–41. Springer Berlin / Heidelberg,
2006.

[8] Prasanna Desikan and Jaideep Srivastava. Advances in Web
Mining and Web Usage Analysis, volume 3932/2006 of Lec-
ture Notes in Computer Science, chapter Mining Temporally
Changing Web Usage Graphs, pages 1–17. Springer Berlin /
Heidelberg, 2006.

[9] M. E. J. Newman. Modularity and community structure in net-
works. PROC.NATL.ACAD.SCI.USA, 103:8577, 2006.

[10] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. Find-
ing community structure in very large networks. Physical Re-
view E, 70:066111, 2004.
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