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Abstract. Evaluation of clustering partitions is a crucial step in data
processing. A multitude of measures exists, which - unfortunately - give
for one data set various results. In this paper we present a visualiza-
tion technique to visualize single clusters of high-dimensional data. Our
method maps single clusters to the plane trying to preserve membership
degrees that describe a data point’s gradual membership to a certain
cluster. The resulting scatter plot illustrates separation of the respecting
cluster and the need of additional prototypes as well. Since clusters will
be visualized individually, additional prototypes can be added locally
where they are needed.
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1 Introduction

Partitioning data sets is an important task in many domains such as costumer
segmentation, organizing textual information or gene expression analysis. The
agenda behind this process is knowledge discovery via abstraction over an ap-
propriate data representation. However, despite the availability of powerful ana-
lytical methods, the evaluation of resulting models turns out to be non-trivial.

Common prototype-based clustering algorithms, such as k-means or fuzzy
c-means, minimize an objective function [3]. As a matter of fact, clustering al-
gorithms always fit the clusters to the data, even if the cluster structure is
not adequate for the problem. Thus, the quality of a partition cannot be ver-
ified meaningfully by the value of the objective function. Therefore, many va-
lidity measures are developed to analyze the adequateness of clustering results
[4,5,12,14,16,17].

Most of these measures evaluate the partitioning by means of analyzing the
fuzzy partition matrix (for fuzzy clustering) or analyzing compactness and sepa-
ration of clusters considering variance, dispersion, homogeneity or other deriva-
tives drawn from the partitions resulting in a single value, which is of course
associated with some loss of information. Primarily, global validity measures
cannot give hints which part of the data should be explored more in detail.
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VAT, Visual Assessment of Cluster Tendency, is a tool to visualize pairwise
dissimilarity information of objects X = {x1, . . . , xn} as a square image with
n2 pixels. VAT reorders the data objects so that the image highlights potential
cluster structures. As a modification of this, bigVAT allows the visualization for
larger data sets [13]. VCV, Visual Cluster Validity, is related to VAT, but takes
the inter-datum distances into account that come from partitioning the data
set [11].

FUZZSAM, an approach to visualize fuzzy partitions based on Sammon’s
Mapping is presented in [1]. The proposed tool maps the cluster centres and
the data on an arbitrary low dimensional feature space such that the distances
between the clusters and the data points will be preserved.

Recently, two visualization methods using the information of a fuzzy clustering
partition were presented in [14]. One method arranges the membership degrees
to the respective cluster over the distances to the according prototype vector.
Each cluster is represented in a single plot. The other method represents a whole
fuzzy partition by plotting the highest membership degree to each feature vector
over the corresponding second highest membership degree. Such a plot gives an
overall impression of a partition.

We propose in this paper a visualization technique to visualize single clusters
of high-dimensional data. Our method maps a single cluster to the plane trying
to preserve the fuzzy membership degrees that are directly obtained from fuzzy
clustering or subsequently derived from crisp partitions. In the following section
we briefly recall fuzzy clustering. Section 3 describes the visualization technique.
In section 4 we will give some practical details to the implementation. In section
5, we illustrate our method on an artificial data set and on a benchmark data
set as well. Finally, we conclude with section 6.

2 Fuzzy Clustering

Generally, fuzzy clustering algorithms partition a data set into several clusters as
minimizing an objective function J that describes the sum of weighted distances
dij between c prototypes vectors vi and n feature vectors xj of the feature
space R

p

J =
c∑

i=1

n∑

j=1

um
ij dij . (1)

Prototype vectors represent the respecting clusters by their location in the clus-
ter’s centre. By means of the fuzzifier m ∈ (1, ∞] one can control how much the
clusters overlap. Widely overlapping clusters, which can be obtained with high
values for m, will be reflected by almost equal membership degrees uij to every
cluster. Rather crisp partitions can be found with small values for m. Usually,
the fuzzifier is set to m = 2. In order to avoid the trivial solution assigning no
data to any cluster by setting all uij to zero and avoiding empty clusters, the
following constraints are required:
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uij ∈ [0, 1] 1 ≤ i ≤ c, 1 ≤ j ≤ n (2)
c∑

i=1

uij = 1 1 ≤ j ≤ n (3)

0 <

n∑

j=1

uij < n 1 ≤ i ≤ c. (4)

When the Euclidian norm

dij = d2(vi, xj) = (xj − vi)T (xj − vi)

is used as distance measure for distances between prototype vectors vi and fea-
ture vectors xj , the fuzzy clustering algorithm is called fuzzy c-means algorithm.
Other distance measures can by applied resulting in clustering techniques which
can adopt different cluster shapes [9,10]. With the Euclidian distance measure
the fuzzy c-means algorithm finds approximately equally sized spherical clusters.

The minimization of the functional (1) represents a nonlinear optimization
problem that is usually solved by means of Lagrange multipliers, applying an
alternating optimization scheme [2]. This optimization scheme considers alter-
natingly one of the parameter sets, either the membership degrees

uij =
1

∑c
k=1

(
dij

dkj

) 1
m−1

(5)

or the prototype parameters

vi =

∑n
j=1(uij)mxj∑n

j=1(uij)m
(6)

as fixed, while the other parameter set is optimized according to equations (5)
and (6), respectively, until the algorithm finally converges.

3 Visualizing Single Clusters

We propose in this paper to visualize single clusters by projection of the data
points onto the plane under the constraint that the membership degrees to clus-
ters are preserved. Note, membership degrees can be obtained directly when us-
ing a fuzzy clustering algorithm (e.g. fuzzy c-means), but also when calculating
membership degrees after the partitioning, which can be done for any prototype-
based clustering algorithm. To achieve the objective of membership preservation,
we adopt the noise distance aspect of the noise clustering technique [6].

Noise clustering is based on the introduction of an additional noise cluster
that is supposed to contain all feature vectors that are about a certain distance,
the noise distance δ, away from all other prototype vectors. This means that the
prototype vc for the noise cluster c has no parameters. The clustering scheme
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Fig. 1. Placement of x̂j in the plane

differs only in one point from k-means or fuzzy c-means. When calculating the
membership degrees the distance of the feature vector xj to the noise cluster vc

is the fixed constant value dcj = δ2. The proper specification of δ is discussed
in [6,15].

With the objective to place the cluster in the plane, we need for each data
point two coordinates. Note, that the constraint for the projection is not to
preserve the distances dij but the membership degrees uij . The idea for our
visualization is to compute the distances to the cluster prototypes by means of
the membership degrees. To achieve this we consider the usual computation of
membership degrees as mentioned in equation (5). This provides a very simple
connection between membership degrees and distances

uij

u�j
=

1
∑c

k=1

(
dij
dkj

) 1
m−1

1
∑

c
k=1

(
d�j
dkj

) 1
m−1

=
(

d�j

dij

) 1
m−1

. (7)

For the purpose of visualization we propose to place the cluster i to be visualized
at (0, 0) and to choose a second cluster � at (1, 0). The cluster at (1, 0) is a virtual
cluster that contains all feature vectors with the highest membership degree
apart from uij . The intention of this cluster is to collect all feature vectors that
are assigned to another cluster than the one we want to visualize. Let us denote
the membership degree to the most competing cluster by u�j . Furthermore, we
introduce a noise cluster to cover the clusters apart from i and �. According to
the distance of the two chosen cluster prototypes at (0, 0) and (1, 0), we define
the noise distance δ = 1. This means we have unoisej = 1 − uij − u�j . According
to equation (7) this leads to

uij

unoisej
=

(
1

d̂ij

) 1
m−1

. (8)

We denote the distance between cluster i and � on the plane by d̂ij to emphasize
the fact that we do not deal with original distances any more but with repre-
sentative distances with respect to the according membership degrees. Solving
equation (8) for d̂ij we obtain

d̂ij =
(

unoisej

uij

)m−1

. (9)
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Analogously, we obtain for the second cluster �

d̂�j =
(

unoisej

u�j

)m−1

. (10)

This approach enables us to visualize some useful aspects: 1. which feature vec-
tors can be assigned clearly to the cluster i of intrest, 2. if a feature vector cannot
be assigned to i, is there another cluster �, where the vector can be assigned to,
3. which feature vectors are near to one or more prototypes apart from i and �,
4. are there feature vectors that cannot be assigned to any cluster clearly.

With equation (9) one can compute the distance of each feature vector xj to
the cluster i, so that it is possible to draw a circle around (0, 0) as one hint for
the feature vector’s position in the plane. With the distance to the other cluster
(1, 0), one could draw another circle around the cluster centre. The intersection
point of these two circles would be the position of the new feature vector in the
plane.

Figure 1 illustrates this approach. The small circle that represents the poten-
tial coordinates of x̂j , can be drawn with distance d̂ij obtained from equation
(9). Analogous, the bigger circle can be drawn with d̂�j that we get with equation
(10). The intersection point of these two circles represents the feature vector x̂j

in the plane.

4 Implementation Aspects

Apart from the clustering itself, which leads to the membership degrees uij

another parameter affects the transformation, namely m (see equations (8, 9,
10)). A priori, one would set m the same value as for the clustering. But it can
be also useful to modify this parameter. Practical tests have shown that in some
cases, i.e. when a feature vector is very close to a prototype vector, no intersection
point can be obtained in the plane and consequently the membership degrees to
the respecting feature vector cannot be preserved exactly.

The rules shown in algorithm (1) handle such cases while trying to preserve
membership degrees approximately. Let us denote the transformed data set X̂ .
With x̂2j = 0 we define for a feature vector that is very close to one certain
prototype vector a position on the x-axis on the plane. The rest of the rule
tries to find the proper position for x̂j on the x-axis balancing the distances
to cluster (0, 0) and cluster (1, 0). If the distance to both clusters is relatively
small, say max(d̂ij , d̂�j) < 1, then we compute a position between both clusters
in relation to d̂ij and d̂�j . Otherwise, which means one or both clusters are about
a distance of 1 or further away from the feature vector we distinguish whether
cluster (0, 0) or cluster (1, 0) is nearer. If the distance of xj to cluster (0, 0) is
higher than the distance to cluster (1, 0) then x̂j will be placed to the right of
cluster (1, 0) at x̂j = (1 + d̂1j , 0). If the distance d̂ij to cluster (0, 0) is smaller
than the distance d̂�j to cluster (1, 0) then x̂j will be placed to the left of cluster
(0, 0) at x̂j = (−d̂ij , 0). This concept enables us to place the data point at least
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Algorithm 1. Placement of x̂j on the x-axis
if no intersection point then

x̂2j = 0
if max(dij , d�j) < 1 then

x̂1j = dij/ (dij + d�j)
else

if dij > d�j then
x̂1j = 1 + d�j

else
x̂1j = −dij

end if
end if

end if

accurate relative to the nearest cluster. However, it is not very interesting to
know exactly how far away the feature vector is, since the distance is quite large
in fact.

With these rules the membership degrees cannot be preserved exactly, but
approximated intuitively. Alternatively, one can avoid this kind of approximation
by modifying parameter m for the transformation process. Small values m → 1
prevent that no intersection point can be met. Otherwise, one can set higher
values for m to force placements on the x-axis. Such transformations may be
not that differentiated, but information can be reduced to some essential facts
if needed. Generally, data points situated left from 0.5 on the x-axis can be
assigned to cluster (0, 0), while data points on the other side belong to another
cluster.

5 Results

Let us first apply our visualization method to an artificial data set. The cube
data set (see figure 2(a)) consists of eight well separated clusters, which are
in the corners of an imaginary 3-dimensional cube. A fuzzy c-means partition
of the data set with five prototypes is shown in the figure. Of course, eight
prototypes would be the best choice to partition the cube data set with. Thus,
we can illustrate with this partition which information one can get from the
visualization tool.

Figure 2(b) shows the transformation of the cube data set from the perspective
of prototype A. Clearly four groups of data points can by observed (circled with a
dashed line). The data points in group 1 are those, which can by clearly assigned
to prototype A. Data points that are located in group 2 are those, which are
not assigned to prototype A at all, but to another prototype. Note, a partition
that only consists of these both groups is ideal. Group 3 stands for feature
vectors, which are not assigned to prototype A and not to any other prototype.
Instead, the data points have approximately the same membership degree to two
or more prototype vectors (but not to prototype A). Group 4 represents feature
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(a) Clustering of the cube data set with
5 prototypes

A

B

C

(b) Transformation of the cube data set
from the perspective of prototype A

1 2 3

4

(c) Transformation of the cube data set
from the perspective of prototype B

(d) Transformation of the cube data set
from the perspective of prototype C

Fig. 2. An illustrative example

vectors that have approximately the same membership degree to prototype A
and another prototype.

Figure 2(c) shows the transformation of the cube data set from the perspective
of prototype B. At first sight one can notice that group 4 is absent. That means
in fact that no other prototype than prototype B has high membership degrees
to the data points in group 1. A closer look reveals that the distance of prototype
B to some misrepresented data is higher comparing to other prototypes, such
as prototype A and C. All other data points that could contribute to group
4 are clearly represented by some prototypes. The transformation of the cube
data set from the perspective of prototype C is shown in figure 2(d). Now group
3 is missing in the plot. This becomes evident, because all data points that
are underrepresented are directly between prototype C and at least one other
prototype. As we have discussed above, group 3 only occurs when data points
have low membership degrees to the regarding prototype and approximately
equal membership degrees to two or more other prototypes. Since prototype C
is at least as near as other prototypes, group 3 cannot be formed.

Figure 3 shows some results on the well known wine data set. The figure shows
exemplarily two clusters of a partitioning with four prototypes. The left one is a
visualization of a quite compact cluster. Data points left from 0.5 on the x-axis
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(a) (b)

Fig. 3. Some transformations of clusters of the wine data set

(a) Transformation with m = 1.2 (b) Transformation with m = 1.02

Fig. 4. The effect of parameter m

whose component on the y-axis is greater than zero have only small membership
degrees to the cluster (1, 0) even if their distance to cluster (0, 0) seams to be
far. This is due to the relatively small fuzzifier. The cluster shown in figure 3(b)
is much more overlapping other clusters as the points on the x-axis, fairly in the
middle between both clusters, indicate. As mentioned above, using small values
for m leads to rather sensitive transformations. Even a relative small membership
degree to a certain cluster attracts the data point in the transformation. To
smooth this effect it is advisable to decrease m for the transformation or increase
m for the clustering if possible.

The effect of decreasing m for the transformation is shown in figure 4. While
figure 4(a) shows the transformation of a cluster of the wine data set with
m = 1.2, the figure 4(b) shows the same cluster transformed with m = 1.02.
The changeover from cluster (0, 0) to cluster (1, 0), which is the imaginary line
at 0.5 through the x-axis, is rather sparse. This fact indicates a compact clus-
ter with only few feature vectors which cannot be assigned that clear to any
cluster.
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6 Conclusion

We presented in this paper a new method to visualize fuzzy clustering partitions
on the plane. The visualization reveals whether a cluster is compact and if there
is some data from the perspective of the respective cluster that is not well rep-
resented. Our results on two data sets are promising. Subject of future work will
be the development of an appropriate evaluation method.
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