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Abstract. In this paper, a new ensemble learning method is proposed.
The main objective of this approach is to jointly use knowledge-based
and data-driven submodels in the modeling process. The integration of
knowledge-based submodels is of particular interest, since they are able
to provide information not contained in the data. On the other hand,
data-driven models can complement the knowledge-based models with
respect to input space coverage. For the task of appropriately integrat-
ing the different models, a method for partitioning the input space for
the given models is introduced. The benefits of this approach are demon-
strated for a real-world application.

1 Introduction

Real-world applications are characterized by an increasing complexity. To gen-
erate adequate models the consideration of all available information sources
is necessary. For this purpose, more and more sophisticated combinations of
knowledge-based and data-driven models are required which are representing
these sources. While data-driven models are learned from available training data
the integration of knowledge-based models is of particular interest since they are
able to provide information not contained in the training data. The knowledge-
based models are designed for particular regions of the input space. In order to
ensure that the models are only active in regions they are designed for, their
specific validity ranges have to be included in the modeling process.

The use of multiple submodels is motivated by the paradigm that different
submodels can complement each other avoiding the weakness of a single model.
The combination of models constitutes an ensemble as depicted in Fig. 1. Ac-
cording to the divide-and-conquer principle a complex task is solved by dividing
it into a number of simpler tasks and then combining the solutions of those tasks.
The ensemble fuses information yj acquired by model j, j = 1, . . .M , to produce
an overall solution y that is supposedly superior to that attainable by any one
of them acting alone. Literature describes many approaches that address the
problem of learning local models. Examples of such methods are boosting [1],
mixture of experts [2], or ensemble averaging [3]. The algorithms for learning
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Fig. 1. A common ensemble model. The dashed line indicates that the Combiner can
involve the current input in its decision dependent on the combining method.

local models can be discriminated with respect to several aspects: in the way
they divide the training data into subsets, the type of submodels they use, or
how they combine the outputs of the submodels. However, none of the existing
methods are able to integrate predefined models that are designed for particular
regions of the input space.

The paper is organized as follows: In Sect. 2, an introduction of multi-source
fusion is given and Sect. 3 describes an ensemble learning model for combining
data-driven and knowledge-based models. In Sect. 4, some experiments on a
real-world application are outlined. Sect. 5 concludes the paper.

2 Multi-source Information Fusion

The term information fusion (IF) encompasses the process of merging and in-
tegrating heterogeneous information components from multiple sources, for in-
stance, in the form of sensors, human experts, symbolic knowledge, or physical
process models (according to Dasarathy [4]). IF is an important technique in
different application domains, such as sensor fusion [5], identity verification [6],
or signal and image processing [7].

Fusion implies the combination of information from more than one source.
There are different reasons for fusion of multiple sources:

– The combined solution is able to attain more accurate, transparent, and
robust results since the different information sources can complement each
other with respect to their strengths and weaknesses.

– A model that depends on a single source is not robust with respect to
error-proneness, i.e. if the single source is erroneous the whole model is af-
fected. Models based on fused information sources are more robust since
other sources are able to compensate for incorrect information.
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– Fusion of information sources will provide extended coverage of information
of the process to be modeled.

We consider two kinds of fusion approaches: complementary and cooperative
fusion. They are discriminated with respect to the relationship among the infor-
mation sources. In complementary fusion each source provides information from
a different region of the input space, i.e. their responsibilities do not overlap.
These sources provide locally a high performance. However, outside their re-
gions the results are not valid. Cooperative fusion means that the information is
shared among several information sources in the same region of the input space
and has to be fused for a more complete modeling of the underlying process.

The next section describes an ensemble learning approach for IF. The infor-
mation sources will be represented by predefined models. The process of parti-
tioning the input space and the fusion of the models is performed by a separate
data-driven model.

3 Combining Knowledge-Based and Data-Driven Models

The proposed ensemble model, referred to as heterogeneous mixture of experts
(HME) model, is based on the mixture of experts (ME) approach [2], [8]. This
model consists of a set of submodels that perform a local function approximation.
The decomposition of the problem is learned by a gate function which partitions
the input space and assigns submodels to these regions. In contrast to the ME
model, the proposed ensemble learning method starts with some knowledge-
based submodels, representing different information sources. Fig. 2 illustrates
a general HME model. It consists of different models and a gate. To ensure
that these submodels are assigned to those domains of the input space they are
designed for, information about the specific validity ranges of the predefined
knowledge-based submodels is used for the partitioning of the input space. It is
assumed that the knowledge-based models will only cover a part of the input
space while data-driven models learn the remainder.

From the probabilistic perspective the output of the HME model can be in-
terpreted as the probability of generating output y(n) given input vector x(n):
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which input vector x(n) was generated by model j. Its introduction simplifies
the training algorithm and allows the HME to be trained with the Expectation-
Maximization (EM) algorithm [9]. The probability P
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the conditional densities of target y(n) for model j.
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Fig. 2. Architecture of the proposed ensemble model. We include the case that gate
and submodels may depend on different feature subsets of the input vector.

To compute the validity of each knowledge-based submodel j for an input
vector a mapping vj : �k → [0, 1], ∀j = 1, . . . , M is defined. The specific validity
function of a knowledge-based submodel j for the i-th dimension is
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where lji and uji are the lower and the upper bound of the validity range of
submodel j in dimension i. The parameter sj determines the slope of the border
of the validity range. Its influence on vj is illustrated in Fig. 3.

For small sj the slope of the border is more flat. The higher sj gets, the steeper
is the slope of the border. In this way, the transition between the submodels can
be controlled. If there are smoothness assumptions about the target function one
can choose a lower value for sj .

To update the model parameter the EM algorithm is used. In the expectation
step, the validity values are integrated into the computation of the posterior
probability h

(n)
j of selecting submodel j for input vector x(n):
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This enforces the gate to reduce the weights of submodel outputs if the input vec-
tors are located outside their domains. The particular amount of weight decrease
depends on the value of vj .
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Fig. 3. The figure shows several validity ranges with different values of s: s = 0.8
(dottet line), s = 2 (dashed line), and s = 100 (solid line)

In the maximization step, the log likelihood function
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is to be maximized with respect to the parameters of the gate and of the data-
driven submodels.

4 Real-World Application

The application addresses the simulation of the electrical energy flow in the
powertrain of a hybrid electric vehicle. Four distinct driving modes can be defined
by the available expert knowledge: pure electric drive mode, hybrid drive mode,
brake mode, and drag mode. Dependent on the current drive mode electrical
energy is used in several different ways. In pure electric drive mode and hybrid
drive mode energy is provided by the battery to drive the electric motor. In
brake mode and drag mode the electric motor is operating as a generator to
recuperate the kinetic energy to be used for charging the battery. Domain experts
designed specific models for each mode. These models represent complementary
information sources since they are defined for different regions of the input space
with each model providing information for different mutually exclusive driving
modes. Furthermore, the battery must maintain certain chemical limits. These
limits determine the maximum charge and discharge capabilities of the battery
dependent on its state of charge and temperature.

The data set is randomly divided into a training data set (80% of the data) and
a test data set (20% of the data). The overall experiment is performed ten times
and the results are averaged. The following models were compared: an HME,
an ME, a multi-layer perceptron (MLP), and an ensemble of MLPs. The HME
model uses four expert models. Two characteristic maps and a mathematical
model represent the pure electric drive mode, brake, and drag mode. However,
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since there is no model provided for the hybrid drive mode a two-layer MLP
with 5 input units, 6 hidden units and one output unit was learned. Each mode
has different input features. As gate, an MLP with 4 hidden units was applied.
For each knowledge-based model j a validity function vj is defined by the the
domain experts. For the data-driven model no validity function is given. Instead,
it is assumed to be valid in the entire input space.

The ME consists of 4 MLPs with 6 hidden units and as gate an MLP with
5 hidden units was used. The single MLP comprises 14 hidden units. In the
ensemble 10 members were combined. All members have the same architecture,
i.e. MLPs with a single hidden layer of 8 hidden units. The ensemble is generated
using K-fold cross-validation, where K is the number of ensemble members. The
output of the ensemble is computed as follows:
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where yj
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is the output of the j ensemble member. We used the mean

absolute error to compare the perfomance of the models:
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Table 1 summarizes the results. The HME achieves superior performance due
to the incorporation of available information sources. Fig. 4 shows the outputs of
the gate model (the activation of the submodels) of the HME. In most cases, the
gate selects only one submodel for each input vector. This behaviour is consistent
with the knowledge of the domain expert that the submodels were defined for
different mutually exclusive modes. The ME model was not able to identify the
driving modes and dividing the input space in a technically non-plausible way.
This is illustrated in Fig. 5. The overall output is composed of the outputs of
the submodels.

The chemical battery limits are violated by all models, except the HME,
since they predict energy flows that cannot be provided by the battery. Some
violations of the limits are shown in Fig. 6 of (a) the MLP, (b) the ME, and
(c) the ensemble. The necessary information about these limits is not contained

Table 1. Mean absolute error for the hybrid electric vehicle data set

Model
Mean absolute error
training testing

HME 1.82 1.84

ME 2.57 2.71

MLP 2.05 2.11

Ensemble 1.97 2.03
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Fig. 4. The figure shows the activations of the different submodels by the gate of the
HME model
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Fig. 5. The figure shows the activations of the different submodels by the gate of the
ME model for the same data as shown in Fig 4
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Fig. 6. The figures (a)-(c) show examples of violations of the chemical battery limits
(depicted as horizontal lines) of (a) the MLP (solid line), (b) the ME (solid line), and
(c) the ensemble (solid line). The target values for the energy flow and the outputs of
the HME are depicted as dotted and dashed lines.

Table 2. Responsibilities of the mode models for data of the corresponding driving
mode

HME Model
Driving mode (in %)

brake pure electric drive drag hybrid

HME 97 94 92 96
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Table 3. Mean absolute error for different sizes of the training data set T for the
hybrid electric vehicle data set

Model
Mean absolute error

T T/2 T/4 T/8 T/16

HME 1.82 1.81 1.83 1.86 1.90

ME 2.57 2.61 2.68 2.82 3.10

MLP 2.05 2.11 2.24 2.39 2.63

Ensemble 1.97 2.03 2.10 2.19 2.34

T T/2 T/4 T/8 T/16
1.5

2

2.5

3

3.5

Fig. 7. The figure shows the predictive error of the models for different sizes of the
training data set T . The HME model (square) has a slight increasing error for small
training data set sizes. If the size of the training data set gets smaller the error of the
ME model (downward-pointing triangle), the MLP (circle), and the ensemble (upward-
pointing triangle) increases fast.

in the training data, but it is implicitly contained in the given knowledge-based
models.

For the HME model Table 2 shows the distribution of the responsibilities
of the mode models for data of the corresponding driving modes. The values
indicate that the mode models are correctly assigned to the partitions of the
driving modes.

An additional advantage of incorporating available knowledge is that fewer
training data are required. In Table 3 and Fig. 7 the results for different sizes
of the training data sets are shown. The smaller the training data set size the
less robust are the results of the purely data-driven models. The results indicate
that the HME model requires fewer training data compared to other regression
methods in order to achieve a good predictive performance. This is useful if few
training data are available.
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5 Conclusions

By applying the proposed ensemble learning model it is possible to fuse informa-
tion from multiple sources represented by knowledge-based models. Data-driven
submodels are used to complement these models with respect to the coverage of
the input space. To be able to integrate given knowledge-based models into the
process of simultaneously training the data-driven submodels and a gate model it
is crucial to incorporate the validity ranges of the knowledge-based models. The
integration of knowledge-based models does not only lead to a superior perfor-
mance but also results in an improved plausibility and reliability of the proposed
model compared to the other models. Furthermore, the HME benefits from the
additional information provided by the knowledge-based models as shown in the
application example.
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